论文中文题名: | 煤热解过程中声子微观热传导特性研究 |
姓名: | |
学号: | 21220089048 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 083700 |
学科名称: | 工学 - 安全科学与工程 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2024 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 煤火灾害防控 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2024-06-19 |
论文答辩日期: | 2024-06-01 |
论文外文题名: | Study on microscopic heat conduction characteristics of phonons during coal pyrolysis |
论文中文关键词: | |
论文外文关键词: | Coal molecules ; Phonon density of states ; Atomic group ; Thermal conduction ; Correlation analysis |
论文中文摘要: |
煤的热解是煤热化学转化过程研究的基础,低温热解后出现煤自燃的可能性增大,热解过程中温度及能量的传递与内部结构演化息息相关。基于固体物理学研究可知,非金属固体物质热传导的主要热载流子是声子。因此,探究煤中声子微观特性以及原子团振动规律,有助于揭示出煤在热解过程中内部热量传递特性,对煤自燃防治及煤炭利用效率的提升提供理论基础。 本文基于实验测试和理论计算,构建了煤样的分子结构模型,计算得到了静态以及不同温度下(300、500、700、900 K)下的声子感温特性。通过红外光谱和拉曼光谱实验分析了不同温度下煤中不同原子团的振动规律。最后,采用激光导热实验,测试了低温下煤样的热物性参数变化规律,分析了声子、原子团振动以及热物性参数之间的关系,揭示煤样热解过程中的热传导特性。主要研究成果如下: 煤样的结构分子式为C189H127O23N3S,其中,C、H、N、O和S的元素质量分数分别为79.86%、4.49%、1.49%、13.02%和1.14%。芳香碳、脂肪碳和羰基碳占比分别为59.64%、34.46%和5.90%,萘分子占比最大,最低能量构型的煤晶胞的密度为1.15 g/cm3,最低能量为1686.97 kcal/mol。 理论计算结果表明,煤分子中的声子态密度在低频区间明显高于高频区间,不同原子的振动频率与原子质量有关,C原子和H原子分别是声子总态密度和高频区间声子态密度的主要贡献者。温度升高,声子总态密度峰值向不同频率区域扩散移动,导致不同原子结构表现出不同的热传导特性。其中,羧基碳原子、羰基碳原子及羟基碳原子的声子态密度变化对应的温度分别为700 K、900 K和500 K。 红外光谱和拉曼光谱实验研究反映出不同原子团的振动规律及演化规律。芳香烃结构、脂肪烃结构整体呈现下降的趋势,700 K后降速增快;含氧官能团及羟基波峰整体呈现先升后降的趋势,转折温度为700 K。煤中D峰和G峰拉曼振动模式在温度升至600 K后发生明显变化,表现为WD和WG减小,两峰半宽高均降低,AD/AG比值先降后增,AS/AG比值快速减小。对比发现500~700 K是各种原子团结构的振动强度变化的温度区间,与声子表现出的感温特性密切相关。 在低温(300~570 K)热解过程中,比热容和导热系数逐渐升高,热扩散系数持续降低。相关性分析表明,煤样在低温热解的热传导特性与内部结构演化相关性较高,其中煤中的含氧官能团和芳香结构对热解的影响最大。此外,不同结构的拉曼振动模式强度、芳香结构数量以及原子间振动强度的加强,促进能量扩散,导热能力增强。 |
论文外文摘要: |
The process of coal pyrolysis serves as the fundamental basis for all thermochemical transformation processes. The occurrence of coal spontaneous combustion is more likely following low temperature pyrolysis, and the temperature and energy transfer during the pyrolysis process are closely intertwined with internal structural evolution. The investigation of solid-state physics reveals that phonons serve as the primary conduits for thermal conduction in nonmetallic solid materials. Therefore, investigating the microscopic phonon characteristics in coal and the vibration law of atomic group is crucial for unveiling the internal heat transfer behavior during pyrolysis, the study offers a theoretical foundation for the prevention of coal spontaneous combustion and the enhancement of coal utilization efficiency. The present study constructs a molecular structure model of coal samples based on experimental tests and theoretical calculations. Then, the properties of phonons at static state and various temperatures (300, 500, 700, 900 K) are calculated. The vibrational characteristics of diverse molecular structures in coal at different temperatures were analyzed through experiments utilizing Infrared and Raman spectroscopy. Finally, the thermal and physical properties of coal samples at low temperatures were examined through laser heat conduction experiments. The relationship between phonon vibrations, atomic group, and parameters related to thermal and physical properties was analyzed in order to elucidate the heat conduction characteristics of coal samples during pyrolysis. The primary tasks and research accomplishments are outlined as follows: The macromolecular structure formula of the coal sample is C189H127O23N3S, with elemental mass fractions of 79.86% for carbon (C), 4.49% for hydrogen (H), 1.49% for nitrogen (N), 13.02% for oxygen (O), and 1.14% for sulfur (S). The proportions of aromatic carbon, fatty carbon, and carbonyl carbon were 59.64%, 34.46%, and 5.90% respectively, with naphthalene being the predominant aromatic structure. The unit cell of coal with the lowest energy configuration has a density of 1.15 g/cm3 and its minimum energy is 1686.97 kcal/mol. The results show that the density of phonon states in the low frequency region is obviously higher than that in the high frequency region. The vibration frequencies of different atoms are determined by their respective atomic masses. Specifically, the C atom and H atom play key roles in contributing to the overall state density of phonons and the density of phonon states in the high frequency region, respectively. The increase in temperature leads to the diffusion of the peak of the total state density of phonons across different frequency regions, resulting in variations in different atomic structures showing different heat conduction characteristics. Among them, the temperatures at which the phonon state densities of carboxyl carbon atoms, carbonyl carbon atoms, and hydroxyl carbon atoms change are 700 K, 900 K, and 500 K respectively. The subsequent calculation reveals a continuous increase in the heat capacity of phonons up to 800 K, followed by a deceleration under both static and various dynamic simulation temperatures. The experimental results of Infrared and Raman spectroscopy provide insights into the vibrational intensity and evolution of diverse atomic structures. The overall trend observed among them was a decrease in the structure of aromatic hydrocarbons and aliphatic hydrocarbons, with an increased deceleration rate after reaching 700 K. However, the peak of oxygen-containing functional groups and hydroxyl groups exhibited an initial increase followed by a subsequent decrease, with the corresponding transition temperature occurring at 700 K. The Raman vibrational modes of the D-peak and G-peak in coal undergo significant changes upon heating to 600K, indicating a decrease in WD and WG, as well as a reduction in both peak half-width and height. Additionally, the AD/AG ratio initially decreases before increasing again, while the AS/AG ratio experiences a rapid decline. The region of 500~700K is identified as the range where the vibration intensity of various atomic structures undergoes significant changes, aligning closely with the temperature-sensing characteristics exhibited by phonons. During the pyrolysis process at low temperature (300~570K), there is a gradual increase in specific heat and thermal conductivity, while the thermal diffusion coefficient exhibits a continuous decrease with decreasing speed at higher temperatures. The correlation analysis reveals a strong association between the thermal conductivity characteristics of coal sample pyrolysis within the low temperature and structural evolution, with the oxygen-containing functional groups and aromatic structures in coal exerting the greatest influence. Furthermore, an increase in the intensity of Raman vibration modes for different structures, along with a rise in the number of aromatic ring structures, enhances interatomic vibration intensification and promotes energy diffusion, thereby leading to an elevation in both thermal diffusion coefficient and thermal conductivity. |
参考文献: |
[1]葛世荣, 樊静丽, 刘淑琴, 等. 低碳化现代煤基能源技术体系及开发战略[J]. 煤炭学报, 2024, 49(01): 203–223. [2]陈井瑞, 杨瑞召, 韩枫涛, 等. 煤炭地下气化开发利用现状与发展趋势[J]. 中国煤炭, 2024, 50(02): 13–23. [6]邓军, 李贝, 王凯, 等. 我国煤火灾害防治技术研究现状及展望[J]. 煤炭科学技术, 2016, 44(10): 1–7. [7]曾强, 聂静, 蒲燕. 地下煤火土壤典型重金属分布特征[J]. 煤炭学报, 2016, 41(8): 1989–1996. [11]李美菊, 操涛, 邹春林, 等. 基于TGA和Py-GC/MS不同成熟度煤的热解特征研究[J].地球化学, 2023, 52(04): 428–438. [12]方民新. 煤矿地下开采工艺的现状分析及发展趋势[J]. 当代化工研究, 2021, 95(18): 4–5. [13]何欣. 低阶煤低温热解、氧化机理及抗氧阻化特性[D]. 北京: 中国矿业大学, 2022. [15]李金泽, 王杰平, 孙章. 煤及其热解过程中微观结构的光谱学研究进展[J]. 燃料与化工, 2020, 51(02): 8–13. [16]李美芬, 李晔熙, 邵燕, 等.伊敏煤热解过程中化学结构演化特征的原位拉曼光谱[J]. 煤炭学报, 2022, 47(12): 4313–4322. [17]战星羽. 低煤阶煤热解生烃及其分子动力学研究[D]. 北京, 中国矿业大学, 2023. [18]苏小平, 李宁, 王志超, 等. 低变质烟煤中低温热解机理研究进展[J]. 中国煤炭地质, 2023, 35(07): 1-6+20. [19]崔帅. 型煤热解的热传递数学模型研究[J]. 化学世界, 2018, 59(04): 253–256. [20]任帅京, 张嬿妮, 邓军, 等. 烟煤升温过程中热物理特性[J]. 西安科技大学学报, 2023, 43(04): 697–704. [22]张辛亥, 周山林, 拓龙龙, 等. 不同程度预氧化煤传热特性[J]. 西安科技大学学报, 2019, 39(05): 761–766. [23]赵婧昱, 宋佳佳, 郭涛, 等. 基于煤火发展演化的松散煤体自燃温度纵深蔓延特征[J]. 煤炭学报, 2021, 46(06): 1759–1767. [24]郭荣. 几类半导体材料热载流子动力学的研究[D]. 呼和浩特: 内蒙古大学, 2019. [26]樊花, 刘振虎, 牛鸿权, 等. 煤热解技术及其运行影响因素分析[J]. 煤化工, 2022, 50(06): 151–154. [30]赵宁, 刘东, 赵锰锰, 等. 陕北低阶烟煤回转热解反应特性[J]. 中国石油大学学报(自然科学版), 2019, 43(03): 167–175. [31]张蕾, 韩智坤, 舒浩, 等. 陕北富油煤低温热解提油基础特性[J]. 煤炭工程, 2022, 54(09): 124–128. [32]钮志远. 典型煤的官能团热解机理、动力学分析及影响因素研究[D]. 合肥: 中国科学技术大学, 2017. [35]郭啸晋. 煤热解过程中挥发物反应的共价键断裂—生成模型研究[D]. 北京: 北京化工大学, 2015. [36]郝婉舒. 煤低温热解及氧化过程自由基演化规律研究[D]. 安徽: 安徽理工大学, 2024. [37]洪迪昆. 准东煤热解及富氧燃烧的反应分子动力学研究[D]. 武汉: 华中科技大学, 2018 [39]Chermin H, Krevelen D. Chemical structure and properties of coal[J]. Fuel, 1957, 36(3): 313–320. [43]相建华, 曾凡桂, 梁虎珍, 等. 兖州煤大分子结构模型构建及其分子模拟[J]. 燃料化学学报, 2011, 39(07): 481–488. [45]冯炜, 高红凤, 王贵, 等. 枣泉煤分子模型构建及热解的分子模拟[J]. 化工学报, 2019, 70(4): 1531–1540. [46]葛涛, 李洋, WANG Meng, 等. 山西高硫气肥煤结构表征与分子模型构建[J]. 光谱学与光谱分析, 2020, 40(11): 3373–3378. [47]朱红青, 何欣, 霍雨佳, 等. 褐煤分子结构模型构建与优化[J]. 矿业科学学报, 2021, 6(04): 429–437. [49]周星宇, 曾凡桂, 相建华, 等. 马脊梁镜煤有机质大分子模型构建及分子模拟[J]. 化工学报, 2020, 71: 1802–1811. [50]张帅, 马汝嘉, 刘路, 等. 扎鲁特地区无烟煤分子结构特征和模型构建[J]. 煤田地质与勘探, 2020, 48: 62–69. [52]程有基, 陈新元, 阳倦成, 等. 液态金属热对流典型流动结构实验研究[J]. 中国科学院大学学报, 2023, 40(02): 155–164. [53]李启鹏. 热辐射条件下煤体自燃特性研究[D]. 西安: 西安科技大学, 2021. [54]狄琛. 几种典型氧化物单晶中热导率及声子输运机制的研究[D]. 南京: 南京大学, 2021. [55]袁文强, 赵忠海, 乔宾. 辐射流体程序中的非局域电子热传导[J]. 计算物理, 2023, 40(2): 232–240. [57]王学智, 汤雨婷, 车军伟, 等. 二元氧化物Yb3TaO7的非晶状热传导机理[J]. 物理学报, 2023, 72(05): 349–359. [60]李树娟, 段海明. 不同热浴下Co团簇熔化行为的分子动力学模拟[J]. 原子与分子物理学报, 2010, 27(01): 61–68. [61]王贺琦. 高温高压下六硝基茋炸药反应机理的分子动力学模拟[D]. 北京, 北京理工大学, 2018. [66]黄雪, 王照亮. GaAs纳米线晶格热导率温度和尺度效应及声子非弹性散射[J]. 热科学与技术, 2019, 18(06): 444–450. [67]王芳, 朱南, 陈靖奕, 等. 几种常见抗生素及治疗COVID-19药物温度特性红外光谱表征研究[J]. 光谱学与光谱分析, 2022, 42(12): 3719–3729. [70]庞思敏, 谢亚茹, 张俊. 角分辨布里渊光散射对材料的弹性和热学性能研究的综述[J]. 光散射学报, 2021, 33(2): 101–111. [71]赵敏兰. SrF2的晶体结构分析及其X射线热漫散射强度解析[D]. 内蒙古: 内蒙古民族大学, 2015. [72]李历斯, 王猛. 非弹性中子散射谱仪[J]. 物理实验, 2021, 41(9): 1–10. [73]孙彧. 水相外延法生长典型Ⅴ族元素含氧酸盐及光谱特性分析[D]. 黑龙江: 哈尔滨工业大学, 2012. [75]钱志刚. 新型半导体氮化铟薄膜的晶格振动研究[D]. 上海: 上海交通大学, 2003. [76]何哲. 二维二硒化钨的晶格振动谱及光电器件研究[D]. 江苏: 南京航空航天大学, 2020. [77]梁阔. 钙钛矿型微波介质陶瓷的晶格振动光谱研究[D]. 山东: 山东师范大学, 2016. [78]张佳丽, 刘全润, 张如意. 煤焦高温比热容的实验研究[J]. 中国煤炭, 2005, 31(2): 55–56. [79]陈清华, 张国枢, 关维娟, 等. 松散煤体热物性参数测试系统的设计与开发[J]. 煤炭科学技术, 2009, 37(2): 86–89. [80]王文强, 杨小彬, 刘伟, 等. 松散煤体热导率及热扩散率的粒径效应[J]. 煤矿安全, 2017, 48(3): 28–31. [81]李雪珂. 浅谈煤的热导率研究现状[J]. 民营科技, 2016(1): 30–31. [82]崔帅. 型煤热解的热传递数学模型研究[J]. 化学世界, 2018, 59(04): 253–256 [83]崔洋, 李寿航, 应韬, 等. 基于第一性原理的金属导热性能研究. 金属学报, 2021, 57(3): 375–384. [84]赵敬棋, 孟凡成, 申景博, 等. 导热高分子复合材料的研究进展[J]. 化学工业与工程, 2020, 37(03): 67–73. [86]刘之的, 王伟, 杨珺茹, 等. 煤及煤层气储层导电特性研究综述与展望[J]. 地球物理学进展, 2020, 35(4): 1415–1423. [87]王成勇, 陈鹏, 谭金龙, 等. 基于密度泛函理论的水对黄铁矿和煤表面润湿性机理研究[J]. 矿产综合利用, 2022, 233(01): 157–163. [88]康天慧, 董东, 魏建平, 等. 煤电阻率与其瓦斯含量关系的实验研究. 地质与勘探, 2016, 52(05): 918–923. [89]李芳, 牛会永, 李石林, 等. 煤导电率影响因素研究现状与展望[J]. 安全, 2017, 38(12): 24–26. [95]邓军, 任帅京, 肖旸, 等. 煤低温氧化与热解过程的传热特性对比研究[J]. 煤炭学报, 2019, 44(S1): 171–177. [96]何欣. 低阶煤低温热解、氧化机理及抗氧阻化特性[D]. 北京: 中国矿业大学, 2022. |
中图分类号: | TD752 |
开放日期: | 2024-06-20 |