- 无标题文档
查看论文信息

论文中文题名:

 基于个体差异性的人体热应激模拟与实验研究    

姓名:

 王兴明    

学号:

 19220089011    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 083700    

学科名称:

 工学 - 安全科学与工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 人体热舒适    

第一导师姓名:

 张玉涛    

第一导师单位:

 西安科技大学    

第二导师姓名:

 杨杰    

论文提交日期:

 2022-06-20    

论文答辩日期:

 2022-06-01    

论文外文题名:

 Simulative and Experimental Study on Human Heat Strain Based on Individual Differences    

论文中文关键词:

 人体热应激 ; 热舒适 ; 个体差异性 ; PHS模型 ; 高温环境    

论文外文关键词:

 human heat strain ; thermal comfort ; individual differences ; PHS model ; high temperature environment    

论文中文摘要:

随着温室效应加剧和生产工艺需求,高温环境造成的热应激和热疾病广泛存在于生产和生活中。人体热生理调节模型可以预测人体热生理指标参数,为高温环境下人体热防护提供理论指导,但现有的人体热生理调节模型将被试者视为标准人体,未考虑个体差异性因素对人体热生理调节的影响,而研究表明人体热生理调节存在显著的个体差异性。因此,考虑人体热生理调节的个体差异性,建立个体差异性人体热生理调节模型是科学合理进行人体热防护的重要手段。本文在人体热应激(PHS)模型的基础上,考虑个体差异性因素对人体热生理调节的影响,开展了模拟与实验研究:
在传统PHS模型的基础上,考虑个体差异性因素(身高、体重、性别、年龄)对人体热物性参数及热生理调节的影响,建立IPHS模型。为验证改进模型的有效性,将文献中实验工况(三个案例,9种工况,51名被试者)输入PHS模型及IPHS模型,对比模型预测值与实验值。结果表明IPHS模型较PHS模型具有更好的预测表现:核心温度、皮肤温度与出汗量的实验值与模拟值的最大预测误差均未超过1.0 ℃,1.6 ℃,10 g;IPHS模型较PHS模型对核心温度(PHS: 0.98 ℃ vs. IPHS: 0.55 ℃)和出汗量(PHS: 335.7 g vs. IPHS: 8.9 g)的预测能力更优异。
为探究脂肪含量差异对人体热生理调节客观参数和主观评价的影响,开展了不同身体质量指数(BMI)被试者的人体热生理实验。实验结果表明,BMI差异可以造成被试者生理与心理响应存在统计学差异。在中等代谢率工况下(35 ℃,50 % RH, 80/140/200 W/m2),偏胖者与偏瘦者的核心温度、总出汗量、热舒适、服装湿润度及热疲劳程度、初始阶段(0-10 min)平均皮肤温度均存在统计学差异(p<0.05);在高代谢率工况下(32.2±0.6 ℃,54.0±3.5 % RH,290 W/m2)偏胖者与偏瘦者在核心温度、总出汗量、服装湿润度、初始阶段(0-10 min)平均皮肤温度均存在统计学差异(p<0.05)。
为充分验证IPHS模型预测性能,将中等与高代谢率实验工况输入PHS模型与IPHS模型,对比实验值与模拟值。结果表明IPHS模型较PHS模型对中等及高代谢率实验中偏胖者与偏瘦者的核心温度预测能力均显著优于PHS模型(p<0.001)。
研究建立的IPHS模型提高了预测精度,可为高温环境人员安全性评估及防护服研发等提供理论支撑。

 

论文外文摘要:

With the intensification of the greenhouse effect and the demand for production technology, heat strain and heat disease caused by high temperature environments widely exist in production and life. The thermoregulation model can predict the human body's thermal physiological indexes and provide human bodily protection theoretical guidance for people working in high temperature environments. Although the existing models do not consider the influence of individual differences on the thermal physiological regulation of the human body, the study shows that there are significant individual differences in thermoregulation of the human body. Therefore, considering the individual difference in human thermal physiology regulation, the establishment of individual difference human thermal physiology regulation model is an important means of scientific and reasonable human thermal protection. Based on the predicted heat strain (PHS) model, the simulation and experimental research considering the influence of individual differences on human thermal physiological regulation was carried out:

Based on the PHS model, the IPHS model was established by considering the influence of individual difference factors (height, weight, gender, age) on human thermophysical parameters and thermoregulation. To verify the effectiveness of the improved model, the experimental conditions (3 cases, 9 conditions, 51 subjects) in the literature were input into the PHS model and IPHS model, and then the predicted values of the model were compared with the experimental values. The results show that the IPHS model has better prediction performance than the PHS model. The maximum prediction differences of the core temperature, skin temperature, and sweating are less than 1.0 ℃, 1.6 ℃, and 10 g, respectively. The IPHS model has a better prediction performance for core temperature (PHS: 0.98 ℃ vs. IPHS: 0.55 ℃) and sweat volume (PHS: 335.7 g vs. IPHS: 8.9 g) than the PHS model.

To investigate the influence of body fat on objective parameters and subjective evaluation, a human trial was carried out among subjects with different body mass indexes (BMI). The experimental results show that the BMI difference could cause a statistical difference in the physiological and psychological responses of subjects. There were statistically differences in core temperature, total sweating loss, thermal comfort, clothing wetness, thermal fatigue degree, and mean skin temperature at the initial stage (0-10 min) between overweight and thin subjects (p<0.05) under medium metabolic rate conditions (35 ℃, 50 % RH, 80/140/200 W/m2); There were statistically differences in core temperature, total sweating loss, clothing wetness and average skin temperature at the initial stage (0-10 min) between overweight and lean subjects (p<0.05) under the condition of high metabolic rate (32.2±0.6 ℃, 54.0±3.5 % RH, 290 W/m2).

To fully verify the prediction performance of the IPHS model, medium and high metabolic rate experiment conditions were input into the PHS model and IPHS model, and the experimental and simulated values were compared. The results showed that the IPHS model was significantly better than the PHS model in predicting the core temperature of overweight and thin subjects in medium and high metabolic rate experiments (p<0.001).

The IPHS model can improve the prediction accuracy and provide theoretical support for safety evaluation and protective clothing development in high temperature environments.

参考文献:

[1] SEMENZA J. Excess hospital admissions during the July 1995 heat wave in Chicago[J]. American Journal of Preventive Medicine, 1999, 16(4): 269-277.

[2] WEISSKOPF M G, ANDERSON H A, FOLDY S, et al. Heat wave morbidity and mortality, Milwaukee, Wis, 1999 vs 1995: An Improved Response?[J]. American Journal of Public Health, 2002, 92(5): 830-833.

[3] KOVATS R S, KRISTIE L E. Heatwaves and public health in Europe[J]. European Journal of Public Health, 2006, 16(6): 592-599.

[4] LUNDGREN K, KUKLANE K, GAO C, et al. Effects of heat stress on working populations when facing climate change[J]. Industrial Health, 2013, 51(1): 3-15.

[5] HEIDARI H, GOLBABAEI F, SHAMSIPOUR A, et al. Outdoor occupational environments and heat stress in IRAN[J]. Journal of Environmental Health Science and Engineering, 2015, 13(1): 48.

[6] LOKOSHCHENKO M A, KORNEVA I A, DUBOVETSKY A Z, et al. Air temperature in the lower troposphere over moscow during heat wave in the summer of 2010[J]. Atmospheric and Oceanic Optics, 2016, 29(3): 267-273.

[7] 陈正洪, 王祖承, 杨宏青, 等. 城市暑热危险度统计预报模型[J]. 气象科技, 2002(02): 98-101+104.

[8] 孙仕强, 鹿文涵, 郭建民, 等. 2012—2016年宁波市中暑流行特征及热浪对其影响分析[J]. 气象与环境学报, 2019, 35(01): 66-71.

[9] 王力军, 寿松涛, 柴艳芬, 等. 2017年天津市成人中暑患者调查分析[J]. 中华危重症医学杂志(电子版), 2018, 11(05): 347-349.

[10] 魏婧. 应用PHS预测婴幼儿遗留在汽车内中暑致命时间的研究[D]. 上海: 东华大学, 2019.

[11] 赵朝阳, 赵丽, 杨建民. 消防员猝死的原因分析及对策[J]. 中国职业医学, 2010, 37(1): 86-87.

[12] 柴艳芬, 寿松涛, 么颖, 等. “8·12”天津港危化品库特大爆炸事故医学救援的经验与反思[J]. 中华急诊医学杂志, 2015, 24(10): 1065-1069.

[13] ISO 7933. Ergonomics of the thermal environment—analytical determination and interpretation of heat stress using calculation of the predicted heat strain[S]. International Standardization Organization, Geneva, Switzerland, 2004: Geneva, Switzerland.

[14] TAKADA S, KOBAYASHI H, MATSUSHITA T. Thermal model of human body temperature regulation considering individual difference[J]. Building Simulation, 2007, 25(1): 95-107.

[15] HAVENITH G, GRIGGS K, QIU Y, et al. Higher comfort temperature preferences for anthropometrically matched Chinese and Japanese versus white-western-middle-European individuals using a personal comfort / cooling system[J]. Building and Environment, 2020, 183: 107162.

[16] CHOI J H, LOFTNESS V. Investigation of human body skin temperatures as a bio-signal to indicate overall thermal sensations[J]. Building and Environment, 2012, 58: 258-269.

[17] BOREGOWDA S C, CHOATE R E, HANDY R. Entropy generation analysis of human thermal stress responses[J]. ISRN Thermodynamics, 2012, 2012: 1-11.

[18] 朱颖心. 建筑环境学[M]. 中国 北京: 中国建筑工业出版社, 2010.

[19] 杨杰, 翁文国. 基于高温人体热反应模型的生理参数预测[J]. 清华大学学报(自然科学版), 2014, 54(11): 1422-1427.

[20] PARSONS K C. Human heat stress[M]. Boca Raton, FL: CRC Press, Taylor and Francis Group, 2019.

[21] 《中国职业医学》编辑部. 高温作业与预防职业性中暑[J]. 中国职业医学, 2017, 44(04): 447.

[22] 中国卫生健康委员会. 职业性中暑的诊断: GBZ 41-2019[S]. 2019.

[23] HARDY J D, STOLWIJK J A. Partitional calorimetric studies of man during exposures to thermal transients[J]. Journal of Applied Physiology, 1966, 21(6): 1799-1806.

[24] 袁修干. 液冷式个体热调节的二维体温调节数学模型[J]. 航空学报, 1989(05): 242-248.

[25] 袁修干. 人体热调节系统的数学模拟[M]. 中国, 北京: 北京航空航天大学出版社, 2005.

[26] ASTM Standards. ASTM F2668 - 07, Standard practice for determining the physiological responses of the wearer to protective clothing ensembles[S]. West Conshohocken, PA: ASTM International, 2011.

[27] 李文选, 汪济民, 吴绍棠. 高温环境下负重行军对士兵心功能的影响及适宜负重的研究[J]. 解放军预防医学杂志, 16(1): 18-21.

[28] 何平, 王道英, 耿秀萍, 等. 戈壁沙漠地区干热环境对作训人员影响的研究[J]. 护理管理杂志, 2004, 4(1): 5-8.

[29] 包瀛春, 吴晓农. 湿热环境对官兵身体的影响研究[J]. 军事体育学报, 2014, 33(1): 112-115.

[30] STEWART I B, ROJEK A M, HUNT A P. Heat strain during explosive ordnance disposal[J]. Military Medicine, 2011, 176(8): 959-963.

[31] BORG D N. Can perceptual indices estimate physiological strain across a range of environments and metabolic workloads when wearing explosive ordnance disposal and chemical protective clothing?[J]. Physiology & Behavior, 2015, 147: 71-77.

[32] RICHMOND V L, WILKINSON D M, BLACKER S D, et al. Insulated skin temperature as a measure of core body temperature for individuals wearing CBRN protective clothing[J]. Physiological Measurement, 2013, 34(11): 1531-1543.

[33] KALKOWSKY B, KAMPMANN B. Physiological strain of miners at hot working places in german coal mines[J]. Industrial Health, 2006, 44(3): 465-473.

[34] 崔文广. 深井热害对矿工生理和生化指标的影响[D]. 武汉: 华中科技大学同济医学院: 华中科技大学, 2008.

[35] 黄华良. 热害矿井气候与人体生理反应研究[J]. 矿业安全与环保, 2012, 39(3): 50-53.

[36] 张锐, 吴佳哲, 付晓磊, 等. 建筑工人在高温高空作业下的生理应激变化[J]. 职业与健康, 2011, 27(20): 2303-2304.

[37] 吕石磊, 高萍, 朱能, 等. 高热湿工业建筑中人体热耐受的性别差异[J]. 沈阳工业大学学报, 2011, 33(06): 708-714.

[38] 刘岐山, 李思本. 气温对列车员心输出量的影响[J]. 南京铁道医学院学报, 1985, 4(2): 60-62.

[39] 孙灏琳, 程柳, 林子清. 汽车内儿童中暑死亡案例分3例[J]. 广东公安科技, 2020, 28(02): 64-65.

[40] GODEK S F, Bartolozzi A R, Godek J J. Sweat rate and fluid turnover in American football players compared with runners in a hot and humid environment[J]. British Journal of Sports Medicine, 2005, 39(4): 205-211.

[41] TIKUISIS P, KEEFE A A. Heat strain at high levels does not degrade target detection and rifle marksmanship[J]. 2005, 76(10): 963-969.

[42] MOHR M, NYBO L, GRANTHAM J, et al. Physiological responses and physical performance during football in the heat[J]. PLoS ONE, 2012, 7(6): e39202.

[43] 裴国献. 重视热带地区战创伤救治研究[J]. 解放军医学杂志, 2003, 28(4): 285-288.

[44] 李永强. 高温劳动环境人体热应激的动态预测(中等劳动代谢率以上)[D]. 重庆: 重庆大学, 2016.

[45] CHOWDHURY S. Prediction and comparison of monthly indoor heat stress (WBGT and PHS) for RMG production spaces in Dhaka, Bangladesh[J]. Sustainable Cities and Society, 2017, 29: 41-57.

[46] D’AMBROSIO ALFANO F R, PALELLA B I, RICCIO G, et al. Heat stress assessment in artistic glass units[J]. Industrial Health, 2018, 56(2): 171-184.

[47] 鲍海阁, 许清, 施红旗, 等. 船舶热湿环境人体生理应激反应实验研究[J]. 船舶工程, 2008, 29(6): 21-24.

[48] 吕石磊. 极端热环境下人体热耐受力研究[D]. 天津: 天津大学, 2007.

[49] LU S, ZHU N. Experimental research on physiological index at the heat tolerance limits in China[J]. Building and Environment, 2007, 42(12): 4016-4021.

[50] 李楠. 热环境中影响人体耐受能力的生理参数研究[D]. 天津: 天津大学, 2012.

[51] LIU W, ZHONG W, WARGOCKI P. Performance, acute health symptoms and physiological responses during exposure to high air temperature and carbon dioxide concentration[J]. Building and Environment, 2017, 114: 96-105.

[52] HAVENITH G, FIALA D. Thermal indices and thermophysiological modeling for heat stress[M]. Comprehensive Physiology. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015: 255-302.

[53] PARSONS K, P.135-137. Human Thermal Environments[M]. England, London: Taylor & Francis, 2002.

[54] 吴建松, 付明. 高温矿井作业人员热应激预测评价[M]. 中国, 北京: 煤炭工业出版社, 2017.

[55] YAGLOU C P, MINARD D. Control of heat casualties at military training centers[J]. American Medical Association Archives of Industrial Health, 1957, 16(4): 302-316.

[56] BELDING H S, HATCH T. Index for evaluating heat stress in terms of resulting physiological strains[J]. undefined, 1955, 27(8): 129-136.

[57] GAGGE A, FOBELETS A, BERGLUND L. A standard predictive index of human response to the thermal environment[J]. ASHRAE Transactions, 1986, 92(2B): 709-731.

[58] ISO 7933. Hot environments—analytical determination and interpretation of thermal stress using calculation of required sweat rate[S]. International Organization for Standardization, Geneva: Switzerland, 1989.: International Organization for Standardization. 1989.

[59] PARSONS K. Occupational health impacts of climate change: current and future iso standards for the assessment of heat stress[J]. Industrial Health, 2013, 15(1): 86-100.

[60] ISO 9886. Ergonomics—Evaluation of thermal strain by physiological measurements[S]. International Organization for Standardization, Geneva, Switzerland, 2004: Geneva, Switzerland. 2004.

[61] ISO 8996. Ergonomics of the thermal environment—Determination of metabolic rate[S]. International Organization for Standardization, Geneva, Switzerland, 2004.

[62] DAVOODI F, HASSANZADEH H, ZOLFAGHARI S A, et al. A new individualized thermoregulatory bio-heat model for evaluating the effects of personal characteristics on human body thermal response[J]. Building and Environment, 2018, 136: 62-76.

[63] ZHOU X, LIAN Z, LAN L. An individualized human thermoregulation model for Chinese adults[J]. Building and Environment, 2013, 70: 257-265.

[64] MCARDLE W D, MAGEL J R, GERGLEY T J, et al. Thermal adjustment to cold-water exposure in resting men and women[J]. Journal of Applied Physiology, 1984, 56(6): 1565-1571.

[65] SIGURDSSON T S, LINDBERG L. Six commonly used empirical body surface area formulas disagreed in young children undergoing corrective heart surgery[J]. Acta Paediatrica, 2020, 109(9): 1838-1846.

[66] 刘国华, 盛迪晔. 基于三维测量的人体表面积计算公式的比较[J]. 解剖学报, 2019, 50(05): 627-632.

[67] AUSTIN D M, LANSING M W. Body size and heat tolerance: a computer simulation[J]. Human Biology, 1986, 58(2): 153-169.

[68] STOLWIJK J. A mathematical model of physiological temperature regulation in man[R]. NASA-Langely, 1971, CR-1855.

[69] ZHANG H, HUIZENGA C, ARENS E, et al. Considering individual physiological differences in a human thermal model[J]. Journal of Thermal Biology, 2001, 26(4-5): 401-408.

[70] HARDY J D, DU BOIS E F. Differences between men and women in their response to heat and cold[J]. Proceedings of the National Academy of Sciences, 1940, 26(6): 389-398.

[71] KIM J, DE DEAR R, CÂNDIDO C, et al. Gender differences in office occupant perception of indoor environmental quality (IEQ)[J]. Building and Environment, 2013, 70: 245-256.

[72] XIONG J, LIAN Z, ZHOU X, et al. Investigation of gender difference in human response to temperature step changes[J]. Physiology & Behavior, 2015, 151: 426-440.

[73] YASUOKA A, KUBO H, TSUZUKI K, et al. Interindividual differences in thermal comfort and the responses to skin cooling in young women[J]. Journal of Thermal Biology, 2012, 37(1): 65-71.

[74] LAN L, LIAN Z, LIU W, et al. Investigation of gender difference in thermal comfort for Chinese people[J]. European Journal of Applied Physiology, 2008, 102(4): 471-480.

[75] GUERGOVA S, DUFOUR A. Thermal sensitivity in the elderly: A review[J]. Ageing Research Reviews, 2011, 10(1): 80-92.

[76] HELLON R F, LIND A R, WEINER J S. The physiological reactions of men of two age groups to a hot environment[J]. The Journal of Physiology, 1956, 133(1): 118-131.

[77] MEADE R D, AKERMAN A P, NOTLEY S R, et al. Physiological factors characterizing heat-vulnerable older adults: A narrative review[J]. Environment International, 2020, 144: 105909.

[78] COULL N A, WEST A M, HODDER S G, et al. Body mapping of regional sweat distribution in young and older males[J]. European Journal of Applied Physiology, 2021, 121:109-125.

[79] HARRELL J S, MCMURRAY R G, BAGGETT C D, et al. Energy costs of physical activities in children and adolescents[J]. Medicine & Science in Sports & Exercise, 2005, 37(2): 329-336.

[80] LIU H Y, LU F Y, CHEN W J. Predictive equations for basal metabolic rate in Chinese adults: a cross-validation study[J]. Journal of the American Dietetic Association, 1995, 95(12): 1403-1408.

[81] POTTER A W, GONZALEZ J A, KARIS A J, et al. Biophysical assessment and predicted thermophysiologic effects of body armor[J]. PLOS ONE, 2015, 10(7): e0132698.

[82] SENAY L C, MITCHELL D, WYNDHAM C H. Acclimatization in a hot, humid environment: body fluid adjustments[J]. Journal of Applied Physiology, 1976, 40(5): 786-796.

[83] NADEL E R, PANDOLF K B, ROBERTS M F, et al. Mechanisms of thermal acclimation to exercise and heat[J]. Journal of Applied Physiology, 1974, 37(4): 515-520.

[84] SENAY L C, KOK R. Effects of training and heat acclimatization on blood plasma contents of exercising men[J]. Journal of Applied Physiology, 1977, 43(4): 591-599.

[85] NADEL E R. Circulatory and thermal regulations during exercise[J]. Federation Proceedings, 1980, 39(5): 1491-1497.

[86] MARINS J C B, FORMENTI D, COSTA C M A, et al. Circadian and gender differences in skin temperature in militaries by thermography[J]. Infrared Physics & Technology, 2015, 71: 322-328.

[87] KENNEY W L, ANDERSON R K. Responses of older and younger women to exercise in dry and humid heat without fluid replacement[J]. Medicine & Science in Sports & Exercise, 1988, 20(2): 155-160.

[88] CHICK T W, HALPERIN A K, GACEK E M. The effect of antihypertensive medications on exercise performance: a review[J]. Medicine & Science in Sports & Exercise, 1988, 20(5): 447-454.

[89] WANG L, CHEN M, YANG J. Interindividual differences of male college students in thermal preference in winter[J]. Building and Environment, 2020, 173: 106744.

[90] YANG J, WANG L, YIN H, et al. Thermal responses of young males of three thermal preference groups in summer indoor environments[J]. Building and Environment, 2021, 194: 107705.

[91] YIN H, WANG L, YANG J, et al. Local thermal responses of male college students of three thermal preference groups[J]. Energy and Buildings, 2020, 228: 110497.

[92] LU H, FU X, MA X, et al. Relationships of percent body fat and percent trunk fat with bone mineral density among Chinese, black, and white subjects[J]. Osteoporosis International, 2011, 22(12): 3029-3035.

[93] FAN X, LIU W, WARGOCKI P. Physiological and psychological reactions of sub‐tropically acclimatized subjects exposed to different indoor temperatures at a relative humidity of 70%[J]. Indoor Air, 2019, 29(2): 215-230.

[94] 周鑫. 基于中国人热特性的多节点热舒适模型[D].上海: 上海交通大学, 2015.

[95] KENNEY W L, KAMON E, BUSKIRK E R. Effect of mild essential hypertension on control of forearm blood flow during exercise in the heat[J]. Journal of Applied Physiology, 1984, 56(4): 930-935.

[96] 田水承, 周润康, 杨杰. 高温环境下降温服对消防员热反应的影响[J]. 中国安全科学学报, 30(04): 166-171.

[97] SHUTER B, ASLANI A. Body surface area: Du Bois and Du Bois revisited[J]. European Journal of Applied Physiology, 2000, 82(3): 250-254.

[98] HAN T S, LEAN M E J. Anthropometric indices of obesity and regional distribution of fat depots[M], BJÖRNTORP P. International Textbook of Obesity. Chichester, UK: John Wiley & Sons, Ltd, 2001: 49-65

[99] SIM P Y, SU T T, ABD MAJID H, et al. A comparison study of portable foot-to-foot bioelectrical impedance scale to measure body fat percentage in Asian adults and children[J]. BioMed Research International, 2014, 2014: 1-10.

[100] LUNDGREN-KOWNACKI K, MARTÍNEZ N, JOHANSSON B, et al. Human responses in heat – comparison of the Predicted Heat Strain and the Fiala multi-node model for a case of intermittent work[J]. Journal of Thermal Biology, 2017, 70: 45-52.

[101] HAVENITH G. Individualized model of human thermoregulation for the simulation of heat stress response[J]. Journal of Applied Physiology, 2001, 90(5): 1943-1954.

[102] ISO 7726. Ergonomics of the thermal environment instruments for measuring physical quantities[S]. Swiss Standards. 2002.

[103] RAMANATHAN N L. A new weighting system for mean surface temperature of the human body[J]. Journal of Applied Physiology, 1964, 19(3): 531-533.

[104] HASLAM R A, PARSONS K C. Using computer-based models for predicting human thermal responses to hot and cold environments[J]. Ergonomics, 1994, 37(3): 399-416.

[105] HAYASHI T, ISHIZU Y, KATO S, et al. CFD analysis on characteristics of contaminated indoor air ventilation and its application in the evaluation of the e ects of contaminant inhalation by a human occupant[J]. Building and Environment, 2002: 12.

[106] LI B, YANG Y, YAO R, et al. A simplified thermoregulation model of the human body in warm conditions[J]. Applied Ergonomics, 2017, 59: 387-400.

[107] GAGGE A P, NISHI Y. Heat exchange between human skin surface and thermal environment[M], TERJUNG R. Comprehensive Physiology. 1 Ed. Wiley, 1977: 69-92.

[108] YANG J, WANG F, SONG G, et al. Effects of clothing size and air ventilation rate on cooling performance of air ventilation clothing in a warm condition[J]. International Journal of Occupational Safety and Ergonomics, 2020: 1-10.

[109] LIM J U, LEE J H, KIM J S, et al. Comparison of World Health Organization and Asia-Pacific body mass index classifications in COPD patients[J]. International Journal of Chronic Obstructive Pulmonary Disease, 2017, 12: 2465-2475.

[110] 国际生命科学学会中国办事处中国肥胖问题工作组联合数据汇总分析协作组. 中国成人体质指数分类的推荐意见简介[J]. 中华预防医学杂志, 2001, 35(5): 349-350.

[111] YANG J, WENG W, ZHANG B. Experimental and numerical study of physiological responses in hot environments[J]. Journal of Thermal Biology, 2014, 45: 54-61.

[112] SALLOUM M, GHADDAR N, GHALI K. A new transient bioheat model of the human body and its integration to clothing models[J]. International Journal of Thermal Sciences, 2007, 46(4): 371-384.

中图分类号:

 X968    

开放日期:

 2022-06-20    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式