论文中文题名: | 基于个体差异性的人体热应激模拟与实验研究 |
姓名: | |
学号: | 19220089011 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 083700 |
学科名称: | 工学 - 安全科学与工程 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 人体热舒适 |
第一导师姓名: | |
第一导师单位: | |
第二导师姓名: | |
论文提交日期: | 2022-06-20 |
论文答辩日期: | 2022-06-01 |
论文外文题名: | Simulative and Experimental Study on Human Heat Strain Based on Individual Differences |
论文中文关键词: | |
论文外文关键词: | human heat strain ; thermal comfort ; individual differences ; PHS model ; high temperature environment |
论文中文摘要: |
随着温室效应加剧和生产工艺需求,高温环境造成的热应激和热疾病广泛存在于生产和生活中。人体热生理调节模型可以预测人体热生理指标参数,为高温环境下人体热防护提供理论指导,但现有的人体热生理调节模型将被试者视为标准人体,未考虑个体差异性因素对人体热生理调节的影响,而研究表明人体热生理调节存在显著的个体差异性。因此,考虑人体热生理调节的个体差异性,建立个体差异性人体热生理调节模型是科学合理进行人体热防护的重要手段。本文在人体热应激(PHS)模型的基础上,考虑个体差异性因素对人体热生理调节的影响,开展了模拟与实验研究:
|
论文外文摘要: |
With the intensification of the greenhouse effect and the demand for production technology, heat strain and heat disease caused by high temperature environments widely exist in production and life. The thermoregulation model can predict the human body's thermal physiological indexes and provide human bodily protection theoretical guidance for people working in high temperature environments. Although the existing models do not consider the influence of individual differences on the thermal physiological regulation of the human body, the study shows that there are significant individual differences in thermoregulation of the human body. Therefore, considering the individual difference in human thermal physiology regulation, the establishment of individual difference human thermal physiology regulation model is an important means of scientific and reasonable human thermal protection. Based on the predicted heat strain (PHS) model, the simulation and experimental research considering the influence of individual differences on human thermal physiological regulation was carried out: Based on the PHS model, the IPHS model was established by considering the influence of individual difference factors (height, weight, gender, age) on human thermophysical parameters and thermoregulation. To verify the effectiveness of the improved model, the experimental conditions (3 cases, 9 conditions, 51 subjects) in the literature were input into the PHS model and IPHS model, and then the predicted values of the model were compared with the experimental values. The results show that the IPHS model has better prediction performance than the PHS model. The maximum prediction differences of the core temperature, skin temperature, and sweating are less than 1.0 ℃, 1.6 ℃, and 10 g, respectively. The IPHS model has a better prediction performance for core temperature (PHS: 0.98 ℃ vs. IPHS: 0.55 ℃) and sweat volume (PHS: 335.7 g vs. IPHS: 8.9 g) than the PHS model. To investigate the influence of body fat on objective parameters and subjective evaluation, a human trial was carried out among subjects with different body mass indexes (BMI). The experimental results show that the BMI difference could cause a statistical difference in the physiological and psychological responses of subjects. There were statistically differences in core temperature, total sweating loss, thermal comfort, clothing wetness, thermal fatigue degree, and mean skin temperature at the initial stage (0-10 min) between overweight and thin subjects (p<0.05) under medium metabolic rate conditions (35 ℃, 50 % RH, 80/140/200 W/m2); There were statistically differences in core temperature, total sweating loss, clothing wetness and average skin temperature at the initial stage (0-10 min) between overweight and lean subjects (p<0.05) under the condition of high metabolic rate (32.2±0.6 ℃, 54.0±3.5 % RH, 290 W/m2). To fully verify the prediction performance of the IPHS model, medium and high metabolic rate experiment conditions were input into the PHS model and IPHS model, and the experimental and simulated values were compared. The results showed that the IPHS model was significantly better than the PHS model in predicting the core temperature of overweight and thin subjects in medium and high metabolic rate experiments (p<0.001). The IPHS model can improve the prediction accuracy and provide theoretical support for safety evaluation and protective clothing development in high temperature environments. |
参考文献: |
[7] 陈正洪, 王祖承, 杨宏青, 等. 城市暑热危险度统计预报模型[J]. 气象科技, 2002(02): 98-101+104. [8] 孙仕强, 鹿文涵, 郭建民, 等. 2012—2016年宁波市中暑流行特征及热浪对其影响分析[J]. 气象与环境学报, 2019, 35(01): 66-71. [9] 王力军, 寿松涛, 柴艳芬, 等. 2017年天津市成人中暑患者调查分析[J]. 中华危重症医学杂志(电子版), 2018, 11(05): 347-349. [10] 魏婧. 应用PHS预测婴幼儿遗留在汽车内中暑致命时间的研究[D]. 上海: 东华大学, 2019. [11] 赵朝阳, 赵丽, 杨建民. 消防员猝死的原因分析及对策[J]. 中国职业医学, 2010, 37(1): 86-87. [12] 柴艳芬, 寿松涛, 么颖, 等. “8·12”天津港危化品库特大爆炸事故医学救援的经验与反思[J]. 中华急诊医学杂志, 2015, 24(10): 1065-1069. [18] 朱颖心. 建筑环境学[M]. 中国 北京: 中国建筑工业出版社, 2010. [19] 杨杰, 翁文国. 基于高温人体热反应模型的生理参数预测[J]. 清华大学学报(自然科学版), 2014, 54(11): 1422-1427. [20] PARSONS K C. Human heat stress[M]. Boca Raton, FL: CRC Press, Taylor and Francis Group, 2019. [21] 《中国职业医学》编辑部. 高温作业与预防职业性中暑[J]. 中国职业医学, 2017, 44(04): 447. [22] 中国卫生健康委员会. 职业性中暑的诊断: GBZ 41-2019[S]. 2019. [24] 袁修干. 液冷式个体热调节的二维体温调节数学模型[J]. 航空学报, 1989(05): 242-248. [25] 袁修干. 人体热调节系统的数学模拟[M]. 中国, 北京: 北京航空航天大学出版社, 2005. [27] 李文选, 汪济民, 吴绍棠. 高温环境下负重行军对士兵心功能的影响及适宜负重的研究[J]. 解放军预防医学杂志, 16(1): 18-21. [28] 何平, 王道英, 耿秀萍, 等. 戈壁沙漠地区干热环境对作训人员影响的研究[J]. 护理管理杂志, 2004, 4(1): 5-8. [29] 包瀛春, 吴晓农. 湿热环境对官兵身体的影响研究[J]. 军事体育学报, 2014, 33(1): 112-115. [34] 崔文广. 深井热害对矿工生理和生化指标的影响[D]. 武汉: 华中科技大学同济医学院: 华中科技大学, 2008. [35] 黄华良. 热害矿井气候与人体生理反应研究[J]. 矿业安全与环保, 2012, 39(3): 50-53. [36] 张锐, 吴佳哲, 付晓磊, 等. 建筑工人在高温高空作业下的生理应激变化[J]. 职业与健康, 2011, 27(20): 2303-2304. [37] 吕石磊, 高萍, 朱能, 等. 高热湿工业建筑中人体热耐受的性别差异[J]. 沈阳工业大学学报, 2011, 33(06): 708-714. [38] 刘岐山, 李思本. 气温对列车员心输出量的影响[J]. 南京铁道医学院学报, 1985, 4(2): 60-62. [39] 孙灏琳, 程柳, 林子清. 汽车内儿童中暑死亡案例分3例[J]. 广东公安科技, 2020, 28(02): 64-65. [43] 裴国献. 重视热带地区战创伤救治研究[J]. 解放军医学杂志, 2003, 28(4): 285-288. [44] 李永强. 高温劳动环境人体热应激的动态预测(中等劳动代谢率以上)[D]. 重庆: 重庆大学, 2016. [47] 鲍海阁, 许清, 施红旗, 等. 船舶热湿环境人体生理应激反应实验研究[J]. 船舶工程, 2008, 29(6): 21-24. [48] 吕石磊. 极端热环境下人体热耐受力研究[D]. 天津: 天津大学, 2007. [50] 李楠. 热环境中影响人体耐受能力的生理参数研究[D]. 天津: 天津大学, 2012. [53] PARSONS K, P.135-137. Human Thermal Environments[M]. England, London: Taylor & Francis, 2002. [54] 吴建松, 付明. 高温矿井作业人员热应激预测评价[M]. 中国, 北京: 煤炭工业出版社, 2017. [66] 刘国华, 盛迪晔. 基于三维测量的人体表面积计算公式的比较[J]. 解剖学报, 2019, 50(05): 627-632. [94] 周鑫. 基于中国人热特性的多节点热舒适模型[D].上海: 上海交通大学, 2015. [96] 田水承, 周润康, 杨杰. 高温环境下降温服对消防员热反应的影响[J]. 中国安全科学学报, 30(04): 166-171. [110] 国际生命科学学会中国办事处中国肥胖问题工作组联合数据汇总分析协作组. 中国成人体质指数分类的推荐意见简介[J]. 中华预防医学杂志, 2001, 35(5): 349-350. |
中图分类号: | X968 |
开放日期: | 2022-06-20 |