- 无标题文档
查看论文信息

论文中文题名:

 黑磷烯三维结构体的设计与调控及其在热管理领域的应用研究    

姓名:

 王延东    

学号:

 20213065005    

保密级别:

 保密(2年后开放)    

论文语种:

 chi    

学科代码:

 081704    

学科名称:

 工学 - 化学工程与技术 - 应用化学    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 化学与化工学院    

专业:

 化学工程与技术    

研究方向:

 导热复合材料    

第一导师姓名:

 蔡会武    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-25    

论文答辩日期:

 2023-06-07    

论文外文题名:

 The design and regulation of the three-dimensional morphology of black phosphorene and its implementation in the domain of thermal management    

论文中文关键词:

 黑磷烯 ; 黑磷烯制备 ; 面内高度取向 ; 纵向垂直排列 ; 热管理    

论文外文关键词:

 Black phosphorene ; Preparation of black phosphorene ; In-plane height orientation ; Longitudinal vertical alignment ; Thermal management    

论文中文摘要:

随着5G及电子器件设备的微型化、高度集成化、高性能化和多功能化的飞速发展,对电子设备的散热性能要求更高,热量的堆积可能会导致设备可靠性降低,甚至出现故障。解决这一问题的关键在于开发出高效的热管理材料和系统。目前,一些具有高本征导热系数的二维材料已经在热管理领域得到广泛应用。然而,二维材料的热导率均表现为各向异性,在聚合物基体中的随机分散,以及填料与填料、填料与聚合物基体之间界面声子散射等问题,限制了复合材料的最终传热性能。因此,如何实现二维填料在聚合物基体中的均匀分散和填料之间形成有序取向搭接,以及如何调控接触界面以优化界面声子的输运能力,是目前该领域亟待解决的关键科学与技术难题。

本文以提高聚合物基体传热能力为导向,以新型二维材料黑磷烯(BP)为导热填料,通过调控BP纳米片在聚合物基体中的微观排列取向和界面接触状态制备出具有高导热性能的聚合物基导热复合材料,论文的主要研究内容如下:

(1)块状黑磷晶体经过研磨处理后,采用液相辅助剥离的方式,以N-甲基吡咯烷酮(NMP)为剥离溶剂,在低温无氧的环境下实现块状黑磷晶体到BP纳米片的大批量制备。制备的BP纳米片不仅氧化度极低,而且在维度发生改变的情况下仍保持晶格结构的完整。将BP作为导热填料,兼具柔性和环保的纳米纤维素(CNF)作为基体,通过水流定向辅助的方式制备了BP/CNF柔性复合薄膜。由于BP纳米片在面内高度取向,在BP含量为85 wt%下,面内热导率高达33.14 W m-1 K-1,在垂直于面内方向热导率为3.06 W m-1 K-1,相比于CNF基体的热导率(0.52 W m-1 K-1),面内导热增强率高达6300%。以LED芯片为热源,在BP/CNF复合薄膜实际测试中,相比于纯CNF薄膜,灯珠表面温度下降40.4 ℃,避免了LED芯片由于温度过高而带来的性能降低或损坏。

(2)块状黑磷晶体被剥离为BP纳米片,具有一定的柔顺性。以BP作为“热桥梁”,采用静电自组装的方式桥接氮化硼纳米片(BNNS),采用水流定向辅助制备了BP/f-BNNS/CNF复合薄膜。在填料总质量分数为85 wt%时,BP/f-BNNS/CNF热导率高达72.53 W m-1 K-1,相比于CNF导热增强率高达15300 %。将其应用于LED芯片中,相比于纯CNF薄膜和BP/CNF复合薄膜,灯珠表面温度分别下降63 ℃和11.2 ℃,在发热器件热管理方面展现出巨大潜力。

(3)采用冰晶生长带动纳米片取向的方式,通过凸台冷冻工艺调控冰晶在生长过程中的温度场稳定,制备了在垂直方向高度取向的BP骨架,以相变材料聚乙二醇(PEG)为聚合物基体,通过真空浸渍BP骨架制备3D-BP/PEG相变复合材料。在BP体积分数20 vol%下纵向热导率高达1.81 W m-1 K-1,潜热高达103.91 J g-1。在热界面材料、电池热管理和光热转换中均呈现出极好的性能。实现了多元化的应用。

论文外文摘要:

With the swift advancement of 5G technology and the miniaturization, high integration, high performance, and multifunctionality of electronic devices and equipment, there is a growing demand for enhanced heat dissipation capabilities in electronic equipment. The accumulation of heat can potentially jeopardize the reliability of equipment and even result in failure. The crucial aspect for addressing this issue resides in the development of efficient thermal management materials and systems. Currently, certain 2D materials possessing intrinsic high thermal conductivity have found widespread utility in the domain of thermal management. Nonetheless, the thermal conductivity of two-dimensional materials demonstrates anisotropy, random dispersion within the polymer matrix, and phonon scattering at interfaces between fillers, fillers and polymer matrices, among other factors. These limitations curtail the ultimate performance of composite materials in terms of heat transfer. Hence, the primary scientific and technical challenges to be overcome in this field revolve around achieving homogeneous dispersion of two-dimensional fillers within the polymer matrix, establishing ordered orientation overlap between fillers, and optimizing the transport capacity of interface phonons by adjusting the contact interface.

Directed towards enhancing the heat transfer capability of the polymer matrix, this study employs a novel two-dimensional material known as black phosphorene (BP) as a thermally conductive filler. By manipulating the microscopic alignment and interface contact condition of BP nanosheets within the polymer matrix, a high thermal conductivity material is fabricated. The primary focus of this research is outlined as follows:

Following the grinding of large-scale black phosphorus crystals, the liquid-assisted exfoliation technique was employed to achieve the extensive exfoliation of the aforementioned crystals into black phosphorene (BP) nanosheets within a low-temperature and oxygen-free environment. N-methylpyrrolidone (NMP) served as the exfoliation solvent in this process. Subsequently, a batch of BP nanosheets was prepared, demonstrating both minimal oxidation and lattice structure integrity despite dimensional changes. Utilizing BP as a thermally conductive filler and adopting flexible and environmentally friendly nanocellulose (CNF) as the matrix, a BP/CNF flexible composite film was fabricated with the assistance of water flow orientation. Due to the highly aligned in-plane orientation of BP nanosheets, the in-plane thermal conductivity reached 33.14 W m-1 K-1 at an 85 wt% BP content, while the thermal conductivity perpendicular to the in-plane direction amounted to 3.06 W m-1 K-1. This represents a significant enhancement compared to the thermal conductivity of the CNF matrix, which stands at 0.52 W m-1 K-1. The in-plane thermal conductivity enhancement rate reached an impressive 6300%. In an experimental evaluation utilizing an LED chip as the heat source, the BP/CNF composite film exhibited a remarkable temperature reduction of 40.4 ℃ on the surface of the lamp bead compared to the pure CNF film. This effectively prevented performance degradation or damage to the LED chip arising from excessive temperatures.

The bulk black phosphorus crystals undergo exfoliation, resulting in the formation of BP nanosheets possessing a certain level of flexibility. Employing BP as a "thermal bridge" boron nitride nanosheets (BNNS) are electrostatically self-assembled, leading to the preparation of the BP/f-BNNS/CNF composite film with the assistance of water flow orientation. At an 85 wt% total mass fraction of fillers, the thermal conductivity of BP/f-BNNS/CNF reaches an impressive value of 72.53 W m-1 K-1, exhibiting a staggering 15300% increase compared to CNF. When employed in LED chips, the surface temperature of the lamp bead experiences a reduction of 63 ℃ and 11.2 ℃, respectively, when compared to the pure CNF film and the BP/CNF composite film. This remarkable performance highlights the substantial potential of the BP/f-BNNS/CNF composite film for thermal management in heat-generating devices.

By utilizing the ice crystal growth method to induce the alignment of nanosheets, the temperature field of ice crystals is carefully controlled and stabilized through the boss freezing process, ultimately resulting in the fabrication of a highly vertically oriented BP framework. To create polymer 3D-BP/PEG phase change composites, the phase change material polyethylene glycol (PEG) is employed, with the BP framework being impregnated under vacuum conditions. At a BP volume fraction of 20 vol%, these composites exhibit a remarkable longitudinal thermal conductivity of 1.81 W m-1 K-1 and a latent heat capacity of 103.91 J g-1. These characteristics render them highly suitable for applications such as thermal interface materials, battery thermal management, and light-to-heat conversion, enabling the realization of various practical uses.

参考文献:

Wen Y, Chen C, Ye Y, et al. Advances on Thermally Conductive Epoxy-Based Composites as Electronic Packaging Underfill Materials-A Review[J]. Adv Mater, 2022, 34: 2201023.

[2] 代文. 石墨烯三维宏观体的设计与调控及其在热界面材料领域的应用研究 [D]. 宁波: 中国科学院大学(中国科学院宁波材料技术与工程研究所), 2020, 1-3.

[3] Guo Y, Ruan K, Shi X, et al. Factors affecting thermal conductivities of the polymers and polymer composites: A review[J]. Composites Science and Technology, 2020, 193:108134.

[4] He X, Wang Y. Recent Advances in the Rational Design of Thermal Conductive Polymer Composites[J]. Industrial & Engineering Chemistry Research, 2021, 60: 1137-1154.

[5] Jasmee S, Omar G, Othaman S S C, et al. Interface thermal resistance and thermal conductivity of polymer composites at different types, shapes, and sizes of fillers: A review[J]. Polymer Composites, 2021, 42: 2629-2652.

[6] Burger N, Laachachi A, Ferriol M, et al. Review of thermal conductivity in composites: Mechanisms, parameters and theory[J]. Progress in Polymer Science, 2016, 61: 1-28.

[7] 虞锦洪. 高导热聚合物基复合材料的制备与性能研究 [D]. 上海交通大学, 2012.

[8] 周文英. 高导热绝缘高分子复合材料研究 [D]. 西北工业大学, 2007.

[9] Feng C P, Wei F, Sun K Y, et al. Emerging Flexible Thermally Conductive Films: Mechanism, Fabrication[J]. Application. Nanomicro Lett, 2022, 14: 127.

[10] Huang C, Qian X, Yang R Thermal conductivity of polymers and polymer nanocompo-sites[J]. Materials Science and Engineering: R: Reports, 2018, 132: 1-22.

[11] Xu X, Chen J, Zhou J, et al. Thermal Conductivity of Polymers and Their Nanocompo-sites[J]. Adv Mater, 2018, 30: e1705544.

[12] Zhao H Y, Yu M Y, Liu J, et al. Efficient Preconstruction of Three-Dimensional Graphene Networks for Thermally Conductive Polymer Composites[J]. Nanomicro Lett, 2022, 14: 129.

[13] Hu D, Ma W. Nanocellulose as a Sustainable Building Block to Construct Eco-Friendly Thermally Conductive Composites[J]. Industrial & Engineering Chemistry Research, 2020, 59: 19465-19484.

[14] Zhang L, Deng H, Fu Q. Recent progress on thermal conductive and electrical insulating polymer composites[J]. Composites Communications, 2018, 8: 74-82.

[15] Yang J, Yang W, Chen W, et al. An elegant coupling: Freeze-casting and versatile polymer composites[J]. Progress in Polymer Science, 2020, 109: 101289.

[16] Yang J, Shen X, Yang W, et al. Templating strategies for 3D-structured thermally conductive composites: Recent advances and thermal energy applications[J]. Progress in Materials Science, 2023, 133: 101045.

[17] Chen P Y, Liu M, Wang Z, et al. From Flatland to Spaceland: Higher Dimensional Patterning with Two-Dimensional Materials[J]. Adv Mater, 2017, 29(23): 1605096.

[18] Song H, Liu J, Liu B, et al. Two-Dimensional Materials for Thermal Management Applications[J]. Joule, 2018, 2: 442-463.

[19] Hu D, Liu H, Ma W. Rational design of nanohybrids for highly thermally conductive polymer composites[J]. Composites Communications, 2020, 21: 100427.

[20] Guo H W, Hu Z, Liu Z B, et al. Stacking of 2D Materials[J]. Advanced Functional Materials, 2020, 31(4): 2007810.

[21] Donnay M, Tzavalas S, Logakis E. Boron nitride filled epoxy with improved thermal conductivity and dielectric breakdown strength[J]. Composites Science and Technology, 2015, 110: 152-158.

[22] Kargar F, Barani Z, Salgado R, et al. Thermal Percolation Threshold and Thermal Properties of Composites with High Loading of Graphene and Boron Nitride Fillers[J]. ACS Appl Mater Interfaces, 2018, 10: 37555-37565.

[23] Li M, Wang M, Hou X, et al. Highly thermal conductive and electrical insulating polymer composites with boron nitride[J]. Composites Part B: Engineering, 2020, 184: 107746.

[24] Lu Y, Cao J, Ren S, et al. Boron nitride self-assembly cladding structure promoting thermal property and dimensional stability of polymer composites[J]. Composites Science and Technology, 2021, 201: 108536.

[25] Yue C e, Guan L, Zhang X, et al. Thermally conductive epoxy/boron nitride composites with high glass transition temperatures for thermal interface materials[J]. Materials & Design, 2021, 212: 110190.

[26] Wang W, Zhao M, Jiang D, et al. Amino functionalized boron nitride and enhanced thermal conductivity of epoxy composites via combining mixed sizes of fillers[J]. Ceramics International, 2022, 48: 2763-2770.

[27] Zhang R, Hu H, Chen H, et al. Simultaneous improvement of thermal conductivity and mechanical properties for mechanically mixed ABS/h‐BN composites by using small amounts of hyperbranched polymer additives[J]. Journal of Applied Polymer Science, 2020, 137(39): 49186.

[28] Lin Y, Kang Q, Liu Y, et al. Flexible, Highly Thermally Conductive and Electrically Insulating Phase Change Materials for Advanced Thermal Management of 5G Base Stations and Thermoelectric Generators[J]. Nanomicro Lett, 2023, 15(1): 31.

[29] Chen J, Huang X, Sun B, et al. Highly Thermally Conductive Yet Electrically Insulating Polymer/Boron Nitride Nanosheets Nanocomposite Films for Improved Thermal Management Capability[J]. ACS Nano, 2019, 13: 337-345.

[30] Chen J, Wei H, Bao H, et al. Millefeuille-Inspired Thermally Conductive Polymer Nanocomposites with Overlapping BN Nanosheets for Thermal Management Applications[J]. ACS Appl Mater Interfaces, 2019, 11: 31402-31410.

[31] Pan G, Yao Y, Zeng X, et al. Learning from Natural Nacre: Constructing Layered Polymer Composites with High Thermal Conductivity[J]. ACS Appl Mater Interfaces, 2017, 9: 33001-33010.

[32] Han G, Zhang D, Kong C, et al. Flexible, thermostable and flame-resistant epoxy-based thermally conductive layered films with aligned ionic liquid-wrapped boron nitride nanosheets via cyclic layer-by-layer blade-casting[J]. Chemical Engineering Journal, 2022, 437: 135482.

[33] Yang S, Xue B, Li Y, et al. Controllable Ag-rGO heterostructure for highly thermal conductivity in layer-by-layer nanocellulose hybrid films[J]. Chemical Engineering Journal, 2020, 383: 123072.

[34] Ying J, Tan X, Lv L, et al. Tailoring Highly Ordered Graphene Framework in Epoxy for High-Performance Polymer-Based Heat Dissipation Plates[J]. ACS Nano, 2021, 15: 12922-12934.

[35] He H, Peng W, Liu J, et al. Microstructured BN Composites with Internally Designed High Thermal Conductivity Paths for 3D Electronic Packaging[J]. Adv Mater, 2022, 34: e2205120.

[36] Zhao N, Li J, Wang W, et al. Isotropically Ultrahigh Thermal Conductive Polymer Composites by Assembling Anisotropic Boron Nitride Nanosheets into a Biaxially Oriented Network[J]. ACS Nano, 2022, 16: 18959-18967.

[37] Hu Q, Bai X, Zhang C, et al. Oriented BN/Silicone rubber composite thermal interface materials with high out-of-plane thermal conductivity and flexibility[J]. Composites Part A: Applied Science and Manufacturing, 2022, 152: 106681.

[38] Carvalho A, Wang M, Zhu X, et al. Phosphorene: from theory to applications[J]. Nature Reviews Materials, 2016, 1(11): 1-16.

[39] Dinh K N, Zhang Y, Sun W. The synthesis of black phosphorus: from zero- to three-dimensional nanostructures[J]. Journal of Physics: Energy, 2021, 3(3): 032007.

[40] Ren X, Lian P, Xie D, et al. Properties, preparation and application of black phosphorus/phosphorene for energy storage: a review[J]. Journal of Materials Science, 2017, 52: 10364-10386.

[41] Guan L, Xing B, Niu X, et al. Metal-assisted exfoliation of few-layer black phosphorus with high yield[J]. Chem Commun (Camb), 2018, 54: 595-598.

[42] Guo Z, Zhang H, Lu S, et al. From Black Phosphorus to Phosphorene: Basic Solvent Exfoliation, Evolution of Raman Scattering, and Applications to Ultrafast Photonics[J]. Advanced Functional Materials, 2015, 25: 6996-7002.

[43] Yang Y, Chen X, Lian P, et al. Production of Phosphorene from Black Phosphorus via Sonication and Microwave Co-Assisted Aqueous Phase Exfoliation[J]. Chemistry Letters. 2018. 47(12): 1478-1481.

[44] Rabiei Baboukani A, Khakpour I, Drozd V, et al. Liquid‐Based Exfoliation of Black Phosphorus into Phosphorene and Its Application for Energy Storage Devices[J]. Small Structures, 2021, 2(5): 2000148.

[45] Yang S, Zhang K, Ricciardulli A G, et al. A Delamination Strategy for Thinly Layered Defect-Free High-Mobility Black Phosphorus Flakes[J]. Angew Chem Int Ed Engl, 2018, 57: 4677-4681.

[46] Ambrosi A, Sofer Z, Pumera M Electrochemical Exfoliation of Layered Black Phosphorus into Phosphorene[J]. Angew Chem Int Ed Engl, 2017, 56: 10443-10445.

[47] Luo F, Wang D, Zhang J, et al. Ultrafast Cathodic Exfoliation of Few-Layer Black Phosphorus in Aqueous Solution[J]. ACS Applied Nano Materials, 2019, 2: 3793-3801.

[48] Yang S, Zhang P, Nia A S, et al. Emerging 2D Materials Produced via Electrochemistry[J]. Adv Mater, 2020, 32: e1907857.

[49] Qu Z, Wu K, Meng W, et al. Surface coordination of black phosphorene for excellent stability, flame retardancy and thermal conductivity in epoxy resin[J]. Chemical Engineering Journal, 2020, 397: 125416.

[50] Du X, Qiu J, Deng S, et al. Flame-retardant and solid-solid phase change composites based on dopamine-decorated BP nanosheets/Polyurethane for efficient solar-to-thermal energy storage[J]. Renewable Energy, 2021, 164: 1-10.

[51] Du X, Qiu J, Deng S, et al. Flame-retardant and form-stable phase change composites based on black phosphorus nanosheets/cellulose nanofiber aerogels with extremely high energy storage density and superior solar-thermal conversion efficiency[J]. Journal of Materials Chemistry A, 2020, 8: 14126-14134.

[52] Chen L, Zhou G, Liu Z, et al. Scalable Clean Exfoliation of High-Quality Few-Layer Black Phosphorus for a Flexible Lithium Ion Battery[J]. Adv Mater, 2016, 28: 510-517.

[53] Abate Y, Akinwande D, Gamage S, et al. Recent Progress on Stability and Passivation of Black Phosphorus[J]. Adv Mater: 2018, e1704749.

[54] Zhang Y, Dong N, Tao H, et al. Exfoliation of Stable 2D Black Phosphorus for Device Fabrication[J]. Chemistry of Materials, 2017, 29: 6445-6456.

[55] Smith B, Vermeersch B, Carrete J, et al. Temperature and Thickness Dependences of the Anisotropic In-Plane Thermal Conductivity of Black Phosphorus[J]. Adv Mater, 2017, 29(5): 1603756.

[56] Zhang Y Y, Pei Q X, Jiang J W, et al. Thermal conductivities of single- and multi-layer phosphorene: a molecular dynamics study[J]. Nanoscale, 2016, 8: 483-491.

[57] Qin G, Hu M Thermal Transport in Phosphorene[J]. Small, 2018, 14: e1702465.

[58] Chen L, Xiao C, Tang Y, et al. Preparation and properties of boron nitride nanosheets/cellulose nanofiber shear-oriented films with high thermal conductivity[J]. Ceramics International, 2019, 45: 12965-12974.

[59] Teng C, Su L, Chen J, et al. Flexible, thermally conductive layered composite films from massively exfoliated boron nitride nanosheets[J]. Composites Part A: Applied Science and Manufacturing, 2019, 124: 105498.

[60] Wu K, Fang J, Ma J, et al. Achieving a Collapsible, Strong, and Highly Thermally Conductive Film Based on Oriented Functionalized Boron Nitride Nanosheets and Cellulose Nanofiber[J]. ACS Appl Mater Interfaces, 2017, 9: 30035-30045.

[61] Cui Z, Oyer A J, Glover A J, et al. Large scale thermal exfoliation and functionalization of boron nitride[J]. Small, 2014, 10: 2352-2355.

[62] Hou J, Li G, Yang N, et al. Preparation and characterization of surface modified boron nitride epoxy composites with enhanced thermal conductivity[J]. RSC Adv., 2014, 4: 44282-44290.

[63] Pan C, Kou K, Jia Q, et al. Improved thermal conductivity and dielectric properties of hBN/PTFE composites via surface treatment by silane coupling agent[J]. Composites Part B: Engineering, 2017, 111: 83-90.

[64] Liu Z, Li J, Liu X. Novel Functionalized BN Nanosheets/Epoxy Composites with Advanced Thermal Conductivity and Mechanical Properties[J]. ACS Appl Mater Interfaces, 2020, 12: 6503-6515.

[65] Hu J, Xia H, Hou X, et al. Enhanced thermal management performance of nanofibrillated cellulose composite with highly thermally conductive boron phosphide[J]. Journal of Materials Chemistry A, 2021, 9: 27049-27060.

[66] Wang X, Qu Y, Jiao L, et al. Boosting the thermal conductivity of CNF-based composites by cross-linked lignin nanoparticle and BN-OH: Dual construction of 3D thermally conductive pathways[J]. Composites Science and Technology, 2021, 204: 108641.

[67] Morishita T, Takahashi N Highly thermally conductive and electrically insulating polymer nanocomposites with boron nitride nanosheet/ionic liquid complexes[J]. RSC Advances, 2017, 7: 36450-36459.

[68] Hu Z, Wang S, Chen G, et al. An aqueous-only, green route to exfoliate boron nitride for preparation of high thermal conductive boron nitride nanosheet/cellulose nanofiber flexible film[J]. Composites Science and Technology, 2018, 168: 287-295.

[69] Yang S, Sun X, Shen J, et al. Interface Engineering Based on Polydopamine-Assisted Metallization in Highly Thermal Conductive Cellulose/Nanodiamonds Composite Paper[J]. ACS Sustainable Chemistry & Engineering, 2020, 8: 17639-17650.

[70] Xue B, Yang S, Sun X, et al. From tanghulu-like to cattail-like SiC nanowire architectures: interfacial design of nanocellulose composites toward high thermal conductivity[J]. Journal of Materials Chemistry A, 2020, 8: 14506-14518.

[71] Zhou B, Li Q, Xu P, et al. An asymmetric sandwich structural cellulose-based film with self-supported MXene and AgNW layers for flexible electromagnetic interference shielding and thermal management[J]. Nanoscale, 2021, 13: 2378-2388.

[72] Yin C-G, Ma Y, Liu Z-J, et al. Multifunctional boron nitride nanosheet/polymer composite nanofiber membranes[J]. Polymer, 2019, 162: 100-107.

[73] Wang Z, Zhu Y, Yu H, et al. Simultaneously environmental-friendly exfoliation of boron nitride nanosheets and graphene and the preparation of high thermal conductivity nano-mixture composite membranes[J]. Materials Characterization, 2020, 168: 110508.

[74] Zhang D-L, Zha J-W, Li W-K, et al. Enhanced thermal conductivity and mechanical property through boron nitride hot string in polyvinylidene fluoride fibers by electrospinning[J]. Composites Science and Technology, 2018, 156: 1-7.

[75] Morishita T, Okamoto H. Facile Exfoliation and Noncovalent Superacid Functionalization of Boron Nitride Nanosheets and Their Use for Highly Thermally Conductive and Electrically Insulating Polymer Nanocomposites[J]. ACS Appl Mater Interfaces, 2016, 8: 27064-27073.

[76] Wang T, Wang M, Fu L, et al. Enhanced Thermal Conductivity of Polyimide Composites with Boron Nitride Nanosheets[J]. Sci Rep, 2018, 8: 1557.

[77] Shan B, Xiong Y, Li Y, et al. Sandwich structured RGO/CNF/RGO composite films for superior mechanical and thermally conductive properties[J]. Cellulose, 2020, 27: 5055-5069.

[78] Zheng Z, Shi T, Liu H, et al. Polyimide/phosphorene hybrid aerogel-based composite phase change materials for high-efficient solar energy capture and photothermal conversion[J]. Applied Thermal Engineering, 2022, 207: 118173.

[79] Aftab W, Khurram M, Jinming S, et al. Highly efficient solar-thermal storage coating based on phosphorene encapsulated phase change materials[J]. Energy Storage Materials, 2020, 32: 199-207.

[80] Zhuang Y, Zheng K, Cao X, et al. Flexible Graphene Nanocomposites with Simultaneous Highly Anisotropic Thermal and Electrical Conductivities Prepared by Engineered Graphene with Flat Morphology[J]. ACS Nano, 2020, 14: 11733-11742.

[81] Xia Y, Zhang H, Huang P, et al. Graphene-oxide-induced lamellar structures used to fabricate novel composite solid-solid phase change materials for thermal energy storage[J]. Chemical Engineering Journal, 2019, 362: 909-920.

[82] Shen X, Wang Z Y, Wu Y, et al. A three-dimensional multilayer graphene web for polymer nanocomposites with exceptional transport properties and fracture resistance[J]. Materials Horizons, 2018, 5: 275-284.

[83] Zeng X, Yao Y, Gong Z, et al. Ice-Templated Assembly Strategy to Construct 3D Boron Nitride Nanosheet Networks in Polymer Composites for Thermal Conductivity Improvement[J]. Small, 2015, 11: 6205-6213.

[84] Du X S, Qiu J H, Deng S, et al. Flame-retardant and form-stable phase change composites based on black phosphorus nanosheets/cellulose nanofiber aerogels with extremely high energy storage density and superior solar-thermal conversion efficiency[J]. Journal of Materials Chemistry A, 2020, 8: 14126-14134.

[85] Fan X Q, Liu L, Jin X, et al. MXene Ti3C2Tx for phase change composite with superior photothermal storage capability[J]. Journal of Materials Chemistry A, 2019, 7: 14319-14327.

[86] Liu H, Qian Z Q, Liao G Q, et al. Integration of Magnetic Phase-Change Microcapsules with Black Phosphorus Nanosheets for Efficient Harvest of Solar Photothermal Energy[J]. ACS Applied Energy Materials, 2021. 4: 13248-13262.

[87] Ye S, Zhang Q, Hu D, et al. Core–shell-like structured graphene aerogel encapsulating paraffin: shape-stable phase change material for thermal energy storage[J]. Journal of Materials Chemistry A, 2015, 3: 4018-4025.

[88] Fang X, Fan L W, Ding Q, et al. Thermal energy storage performance of paraffin-based composite phase change materials filled with hexagonal boron nitride nanosheets[J]. Energy Conversion and Management, 2014, 80: 103-109.

[89] Qian T T, Li J H, Min X, et al. Enhanced thermal conductivity of PEG/diatomite shape-stabilized phase change materials with Ag nanoparticles for thermal energy storage[J]. Journal of Materials Chemistry A, 2015, 3: 8526-8536.

[90] Sarı A, Biçer A. Thermal energy storage properties and thermal reliability of some fatty acid esters/building material composites as novel form-stable PCMs[J]. Solar Energy Materials and Solar Cells, 2012, 101: 114-122.

[91] Jeong S G, Chang S J, We S, et al. Energy efficient thermal storage montmorillonite with phase change material containing exfoliated graphite nanoplatelets[J]. Solar Energy Materials and Solar Cells, 2015, 139: 65-70.

[92] Li C, Fu L, Ouyang J, et al. Enhanced performance and interfacial investigation of mineral-based composite phase change materials for thermal energy storage[J]. Sci Rep, 2013, 3: 1908.

[93] Mehrali M, Latibari S T, Mehrali M, et al. Shape-stabilized phase change materials with high thermal conductivity based on paraffin/graphene oxide composite[J]. Energy Conversion and Management, 2013, 67: 275-282.

[94] Xie B S, Li C C, Chen J, et al. Exfoliated 2D hexagonal boron nitride nanosheet stabilized stearic acid as composite phase change materials for thermal energy storage[J]. Solar Energy, 2020, 204: 624-634.

[95] Atinafu D G, Dong W J, Wang J J, et al. Synthesis and Characterization of Paraffin/Metal Organic Gel Derived Porous Carbon/Boron Nitride Composite Phase Change Materials for Thermal Energy Storage[J]. European Journal of Inorganic Chemistry, 2018, 2018(48): 5167-5175.

[96] Wang M, Zhang T, Mao D, et al. Highly Compressive Boron Nitride Nanotube Aerogels Reinforced with Reduced Graphene Oxide[J]. ACS Nano, 2019, 13: 7402-7409.

[97] Shi T, Zheng Z, Liu H, et al. Flexible and foldable composite films based on polyimide/phosphorene hybrid aerogel and phase change material for infrared stealth and thermal camouflage[J]. Composites Science and Technology, 2022, 217: 109127.

[98] Qu Z C, Wu K, Jiao E X, et al. Surface functionalization of few-layer black phosphorene and its flame retardancy in epoxy resin[J]. Chemical Engineering Journal, 2020, 382: 122991.

[99] Qu Z C, Wang K X, Xu C A, et al. Simultaneous enhancement in thermal conductivity and flame retardancy of flexible film by introducing covalent bond connection[J]. Chemical Engineering Journal, 2021, 421: 129729.

[100] Zhao L J, Sun Z, Wan H X, et al. A novel self-thermoregulatory electrode material based on phosphorene-decorated phase-change microcapsules for supercapacitors[J]. Electrochimica Acta, 2020, 354: 136718.

[101] Li Y L, Li J H, Feng W W, et al. Design and Preparation of the Phase Change Materials Paraffin/Porous Al2O3@Graphite Foams with Enhanced Heat Storage Capacity and Thermal Conductivity[J]. ACS Sustainable Chemistry & Engineering, 2017, 5: 7594-7603.

[102] Zhang Y, Wang J S, Qiu J J, et al. Ag-graphene/PEG composite phase change materials for enhancing solar-thermal energy conversion and storage capacity[J]. Applied Energy, 2019, 237: 83-90.

[103] Yang J, Zhang E W, Li X F, et al. Cellulose/graphene aerogel supported phase change composites with high thermal conductivity and good shape stability for thermal energy storage[J]. Carbon, 2016, 98: 50-57.

[104] Zhang X G, Wen R L, Tang C, et al. Thermal conductivity enhancement of polyethylene glycol/expanded perlite with carbon layer for heat storage application[J]. Energy and Buildings, 2016, 130: 113-121.

[105] Karaman S, Karaipekli A, Sarı A, et al. Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2011, 95: 1647-1653.

[106] Zhang X G, Qiao J X, Zhang W Y, et al. Thermal behavior of composite phase change materials based on polyethylene glycol and expanded vermiculite with modified porous carbon layer[J]. Journal of Materials Science, 2018, 53: 13067-13080.

[107] Deng Y, Li J H, Qian T T, et al. Thermal conductivity enhancement of polyethylene glycol/expanded vermiculite shape-stabilized composite phase change materials with silver nanowire for thermal energy storage[J]. Chemical Engineering Journal, 2016, 295: 427-435.

[108] Yang J, Tang L S, Bao R Y, et al. Largely enhanced thermal conductivity of poly (ethylene glycol)/boron nitride composite phase change materials for solar-thermal-electric energy conversion and storage with very low content of graphene nanoplatelets[J]. Chemical Engineering Journal, 2017, 315: 481-490.

[109] Wang W, Yang X, Fang Y, et al. Preparation and performance of form-stable polyethylene glycol/silicon dioxide composites as solid–liquid phase change materials[J]. Applied Energy, 2009, 86: 170-174.

[110] Wang W, Yang X, Fang Y, et al. Enhanced thermal conductivity and thermal performance of form-stable composite phase change materials by using β-Aluminum nitride[J]. Applied Energy, 2009, 86: 1196-1200.

[111] Sun Q R, Yuan Y P, Zhang H Q, et al. Thermal properties of polyethylene glycol/carbon microsphere composite as a novel phase change material[J]. Journal of Thermal Analysis and Calorimetry, 2017, 130: 1741-1749.

[112] Xu B W, Ma H Y, Lu Z Y, et al. Paraffin/expanded vermiculite composite phase change material as aggregate for developing lightweight thermal energy storage cement-based composites[J]. Applied Energy, 2015, 160: 358-367.

[113] Li Y, Li J, Deng Y, et al. Preparation of paraffin/porous TiO2 foams with enhanced thermal conductivity as PCM, by covering the TiO2 surface with a carbon layer[J]. Applied Energy, 2016, 171: 37-45.

[114] Lin S C, Al-Kayiem H H. Evaluation of copper nanoparticles-Paraffin wax compositions for solar thermal energy storage[J]. Solar Energy, 2016, 132: 267-278.

[115] Sarı A, Karaipekli A Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material[J]. Applied Thermal Engineering, 2007, 27: 1271-1277.

[116] Qian Z C, Shen H, Fang X, et al. Phase change materials of paraffin in h-BN porous scaffolds with enhanced thermal conductivity and form stability[J]. Energy and Buildings, 2018, 158: 1184-1188.

[117] Guan W M, Li J H, Qian T T, et al. Preparation of paraffin/expanded vermiculite with enhanced thermal conductivity by implanting network carbon in vermiculite layers[J]. Chemical Engineering Journal, 2015, 277: 56-63.

[118] Li M, Wu Z, Tan J. Properties of form-stable paraffin/silicon dioxide/expanded graphite phase change composites prepared by solgel method[J]. Applied Energy, 2012, 92: 456-461.

[119] Chung O, Jeong S G, Kim S. Preparation of energy efficient paraffinic PCMs/expanded vermiculite and perlite composites for energy saving in buildings[J]. Solar Energy Materials and Solar Cells, 2015, 137: 107-112.

[120] Mehrali M, Latibari S T, Mehrali M, et al. Preparation and properties of highly conductive palmitic acid/graphene oxide composites as thermal energy storage materials[J]. Energy, 2013, 58: 628-634.

[121] Tang F, Su D, Tang Y J, et al. Synthesis and thermal properties of fatty acid eutectics and diatomite composites as shape-stabilized phase change materials with enhanced thermal conductivity[J]. Solar Energy Materials and Solar Cells, 2015, 141: 218-224.

[122] Karaipekli A, Sarı A. Capric–myristic acid/expanded perlite composite as form-stable phase change material for latent heat thermal energy storage[J]. Renewable Energy, 2008, 33: 2599-2605.

[123] Song S K, Dong L J, Zhang Y, et al. Lauric acid/intercalated kaolinite as form-stable phase change material for thermal energy storage[J]. Energy, 2014, 76: 385-389.

中图分类号:

 TB332    

开放日期:

 2025-06-26    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式