- 无标题文档
查看论文信息

论文中文题名:

 异质结器件量子电路的电子输运特征的第一性原理研究    

姓名:

 梁兴坤    

学号:

 22201223073    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085400    

学科名称:

 工学 - 电子信息    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2025    

培养单位:

 西安科技大学    

院系:

 理学院    

专业:

 电子信息学    

研究方向:

 量子电路    

第一导师姓名:

 炎正馨    

第一导师单位:

 西安科技大学    

论文提交日期:

 2025-06-25    

论文答辩日期:

 2025-05-30    

论文外文题名:

 First principles study of electron transport characteristics of quantum circuits in heterojunction devices    

论文中文关键词:

 异质结器件 ; 量子电路 ; 电子输运 ; 自旋流    

论文外文关键词:

 Heterojunction devices ; Quantum circuits ; Electronic transport ; Spin current    

论文中文摘要:

       低维异质结作为量子电路中的核心器件,始终是自旋电子器件研究领域的热点。这种核心异质结器件可以由两种或多种不同材料在原子级别接触形成,界面会处产生一些丰富且新奇的物理现象,进而能够显著地改善异质结处电子的输运特性。此外,研究异质结的电子输运特性对于改进器件性能、降低能量损耗、提高电子迁移率以及实现自旋电子学器件人工设计具有十分重要的理论和实际指导意义。

        本文主要研究异质结器件量子电路的电子输运特性,揭示了电子在异质结层间的隧穿效应及其在不同结构中的电子散射状态。本文的研究工作主要分为以下三个方面:

         (1)设计并构建了三种不同结构的双层SiC-Co构型,涵盖一个同质结和两种不同异质结构型。通过在不同位置引入Co原子实现空间选位掺杂。系统计算了其电子结构信息并施加偏置电压的方式研究了异质结自旋翻转机制。计算结果表明,不同空间选位掺杂显著影响层间电子输运特性,并且在外场调控下能带发生了明显的自旋翻转,由电荷流转变为自旋流,实现了理想的自旋流调控。研究结果揭示了SiC-Co异质结体系在外场具有良好的自旋翻转可调控性,为探索自旋器件具有重要的研究意义。

        (2)通过探索超导异质结的电子输运性质,选取Kagome结构异质结作为研究电子输运的对象。在构建的二维Kagome结构的C体系异质结时,将一个C原子替换为Sb原子,形成C-Sb原胞异质结,并计算对比其考虑自旋轨道耦合(SOC)前后的的电子输运特性。在考虑SOC的之后,进一步计算异质结表面态及贝利曲率。结果表明,掺杂体系掺杂Sb原子之后引起空间群对称性降低,考虑SOC之后能带简并性被破坏以及产生轨道翻转现象,在表面态中存在明显的强凝聚现象,对应贝利曲率中存在明显的高峰。这些理论结果证明了体系空间群对称性降低,进而导致能带简并消失和自旋极化增强,考虑SOC之后引起强烈的自旋分裂特性,以及强拓扑输运特性。SOC对电子输运和拓扑特性的调控作用,揭示了自旋轨道耦合异质结在拓扑量子计算中的潜在应用。

        (3)采用格林函数法研究了介观尺度下的金属-金属异质结、金属-超导异质结及超导-超导异质结的电子输运特性。通过构建体系哈密顿量并进行幺正变换,消除含时项,得到不含时的哈密顿量,结合格林函数求解隧穿电流,分析电子在异质结界面的电子输运现象。研究结果进一步揭示了金属-超导隧道结中的准粒子激发、超导-超导异质结中的隧穿机制,为深入研究量子元器件电子输运的内在机理以及理解纳米器件的工作原理提供了理论性框架与指导方向。

        本文研究工作提出了一种基于空间选位掺杂的异质结结构设计方法,实现了对自旋输运特性的有效调控;首次在Kagome结构C-Sb体系异质结中系统考察了SOC的调控下具有良好的拓扑输运特性,揭示了其自旋极化增强与轨道翻转机制;结合格林函数方法,构建不同体系的异质结进而分析电子输运特性,为介观量子器件电子行为建模提供通用方法。本文从器件设计、自旋调控到量子输运建模三方面系统探讨了异质结量子器件的输运特性,为实现无耗散、高集成度的拓扑自旋的量子电路元器件的迈出新的一步。

论文外文摘要:

        Low-dimensional heterojunctions serve as core components in quantum circuitry and have long been a focal point in the field of spintronic device research. These heterojunctions, formed by atomic-scale contact between two or more distinct materials, often exhibit a variety of rich and novel interfacial phenomena, which significantly enhance the charge transport properties at the junction interface. Investigating their electronic transport characteristics is of vital importance for optimizing device performance, reducing energy dissipation, enhancing carrier mobility, and enabling the rational design of spintronic components.

        This work systematically investigates the electronic transport behavior of heterojunction-based quantum circuits, with a focus on the interlayer tunneling mechanisms and scattering states across various heterostructure configurations. The study is structured into three main parts:

        (1) Three distinct bilayer SiC-Co heterostructures were designed and constructed, including one homojunction and two types of heterojunctions. Spatial site-selective doping was achieved by introducing Co atoms at different positions. The electronic structures of these systems were systematically calculated, and the spin-flip mechanisms under applied bias voltages were investigated. The results demonstrate that different site-selective doping configurations significantly affect the interlayer electronic transport properties. Under external electric fields, notable spin-flip phenomena were observed in the band structures, with charge current transforming into spin current, thereby realizing ideal spin current manipulation. These findings reveal the excellent tunability of spin-flip behavior in SiC-Co heterostructures under external fields and provide valuable insights for the development of spintronic devices.

         (2) To explore the electronic transport properties of superconducting heterostructures, a Kagome-lattice-based heterojunction was selected as the model system. In the constructed two-dimensional Kagome-type carbon heterostructure, one C atom was substituted by an Sb atom, forming a C-Sb unit cell heterostructure. The electronic transport properties were calculated and compared with and without the consideration of spin-orbit coupling (SOC). Upon including SOC, further calculations of surface states and Berry curvature were performed. The results indicate that Sb doping lowers the space group symmetry of the system. The inclusion of SOC breaks the band degeneracy and induces orbital inversion phenomena. Notably, strong condensation features emerge in the surface states, accompanied by sharp peaks in the Berry curvature. These theoretical results confirm that the reduction in symmetry leads to the lifting of band degeneracy and enhanced spin polarization. The SOC induced strong spin splitting and nontrivial topological transport characteristics reveal the potential of SOC engineered heterostructures in topological quantum computing applications.

         (3) Using the Green’s function method, electronic transport properties were investigated for metal-metal, metal-superconductor, and superconductor-superconductor heterojunctions at the mesoscopic scale. By constructing the system Hamiltonian and applying a unitary transformation to eliminate time-dependent terms, a time-independent Hamiltonian was obtained. The tunneling current was calculated using the Green’s function formalism to analyze electronic transport across heterojunction interfaces. The study reveals quasiparticle excitations in metal-superconductor tunnel junctions and tunneling mechanisms in superconductor-superconductor heterostructures, providing a theoretical framework and guiding principles for understanding quantum transport mechanisms in nanoscale electronic devices.

        This work proposes a novel heterostructure design methodology based on spatial site-selective doping, enabling effective control of spin transport properties. For the first time, the topological transport characteristics under SOC in a Kagome C-Sb heterostructure were systematically explored, revealing enhanced spin polarization and orbital inversion mechanisms. Furthermore, by employing the Green’s function method to analyze electronic transport in various heterostructures, a general modeling approach for mesoscopic quantum devices is established. The study provides a comprehensive investigation of transport properties from device design and spin manipulation to quantum transport modeling, paving the way for the realization of dissipationless, highly integrated topological spintronic quantum circuit elements.

参考文献:

[1]Hao Y, Long G-L. Quantum information and quantum computing[J]. Fundamental Research, 2021, 1(1): 2-2.

[2]Sigov A, Ratkin L, Ivanov L A. Quantum information technology[J]. Journal of Industrial Information Integration, 2022, 28: 100365.

[3]Drapak S, Orletskii V, Kovalyuk Z, et al. Semiconductor-propolis heterojunction[J]. Technical Physics Letters, 2003, 29: 867-870.

[4]Hussin R, Chen Y, Luo Y. Metal-semiconductor-metal heterojunction diodes consisting of a thin layer of crystal silicon[J]. Applied Physics Letters, 2013, 102(9): 093507.

[5]Dutta N. Calculated temperature dependence of threshold current of GaAs‐Al x Ga1− x As double heterostructure lasers[J]. Journal of Applied Physics, 1981, 52(1): 70-73.

[6]Sazawa H, Nakajima A, Kuboya S, et al. SiC-based high electron mobility transistor[J]. Applied Physics Letters, 2024, 124(12): 120601.

[7]Hadadian M, Smatt J-H, Correa-Baena J-P. The role of carbon-based materials in enhancing the stability of perovskite solar cells[J]. Energy & Environmental Science, 2020, 13(5): 1377-1407.

[8]Zhu L, Lai S, Zhu J, et al. A facile and environmentally friendly method for preparing supercapacitor electrode carbon-based materials with ultra-long cycling stability[J]. Materials Today Communications, 2022, 31: 103717.

[9]Li H, Chen L, Li X, et al. Recent progress on asymmetric carbon-and silica-based nanomaterials: from synthetic strategies to their applications[J]. Nano-Micro Letters, 2022, 14(1): 031044.

[10]Li Y, Zhao F-G, Liu L-N, et al. Carbon Nanomaterials‐Enabled High‐Performance Supercapacitors: A Review[J]. Advanced Energy and Sustainability Research, 2023, 4(2): 2200152.

[11]Szymczak R, Aleshkevych P, Adams C, et al. Magnetic anisotropy in geometrically frustrated kagome staircase lattices[J]. Journal of Magnetism and Magnetic Materials, 2009, 321(7): 793-795.

[12]Guo J, Dai X, Zhang L, et al. Electron transport properties of graphene/WS2 Van Der Waals heterojunctions[J]. Molecules, 2023, 28(19): 6866.

[13]Lei W, Hu R, Han S, et al. Directional control of the electronic and phonon transport properties in the ferroelastic PtSe2[J]. The Journal of Physical Chemistry C, 2023, 128(1): 543-548.

[14]Nguyen S, Pham K. Theoretical prediction of the electronic structure, optical properties and contact characteristics of a type-I MoS 2/MoGe 2 N 4 heterostructure towards optoelectronic devices[J]. Dalton Transactions, 2024, 53(21): 9072-9080.

[15]Ying H, Wei B, Zang Q, et al. Electrical Transport Properties of PbS Quantum Dot/Graphene Heterostructures[J]. Nanomaterials, 2024, 14(20): 1656.

[16]Tong D. Lectures on the quantum Hall effect[J]. arXiv preprint arXiv:1606.06687, 2016, : .

[17]Stormer H L, Tsui D C, Gossard A C. The fractional quantum Hall effect[J]. Reviews of Modern Physics, 1999, 71(2): S298.

[18]杨锡震 田. 量子霍尔效应[J]. 物理实验, 2001, 21(6): 3-7.

[19]Haldane F D M. Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the" parity anomaly"[J]. Physical Review Letters, 1988, 61(18): 2015.

[20]郑文, 于扬. 超导量子计算核心器件[J]. 物理, 2023, 52(11): 731-743.

[21]Mott N F. The electrical conductivity of transition metals[J]. Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences, 1936, 153(880): 699-717.

[22]Tedrow P M, Meservey R. Spin-dependent tunneling into ferromagnetic nickel[J]. Physical Review Letters, 1971, 26(4): 192.

[23]Felcher G, Adenwalla S, De Haan V, et al. Zeeman splitting of surface-scattered neutrons[J]. Nature, 1995, 377(6548): 409-410.

[24]Mazalova V, Soldatov A. Geometrical and electronic structure of small copper nanoclusters: XANES and DFT analysis[J]. Journal of Structural Chemistry, 2008, 49: 107-115.

[25]Furer V, Vandyukov A, Fuchs S, et al. DFT study of structure, IR and Raman spectra of the first generation dendrimer built from cyclotriphosphazene core with terminal 4-oxyphenethylamino groups[J]. Journal of Molecular Structure, 2012, 1026: 17-22.

[26]Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects[J]. Physical Review, 1965, 140(4A): A1133.

[27]Perdew J P, Zunger A. Self-interaction correction to density-functional approximations for many-electron systems[J]. Physical Review B, 1981, 23(10): 5048.

[28]Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865.

[29]Hafner J. Ab‐initio simulations of materials using VASP: Density‐functional theory and beyond[J]. Journal of Computational Chemistry, 2008, 29(13): 2044-2078.

[30]Wang V, Xu N, Liu J-C, et al. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code[J]. Computer Physics Communications, 2021, 267: 108033.

[31]Marzari N, Vanderbilt D. Maximally localized generalized Wannier functions for composite energy bands[J]. Physical Review B, 1997, 56(20): 12847.

[32]Mostofi A A, Yates J R, Lee Y-S, et al. wannier90: A tool for obtaining maximally-localised Wannier functions[J]. Computer Physics Communications, 2008, 178(9): 685-699.

[33]Wu Q, Zhang S, Song H-F, et al. WannierTools: An open-source software package for novel topological materials[J]. Computer Physics Communications, 2018, 224: 405-416.

[34]Wadley P, Howells B, Zelezny J, et al. Electrical switching of an antiferromagnet[J]. Science, 2016, 351(6273): 587-590.

[35]Barraza-Lopez S, Fregoso B M, Villanova J W, et al. Colloquium: Physical properties of group-IV monochalcogenide monolayers[J]. Reviews of Modern Physics, 2021, 93(1): 011001.

[36]Geng H, Wei J Y, Zou M H, et al. Nonreciprocal charge and spin transport induced by non-Hermitian skin effect in mesoscopic heterojunctions[J]. Physical Review B, 2023, 107(3): 035306.

[37]Hoque A M, Khokhriakov D, Karpiak B, et al. Charge-spin conversion in layered semimetal TaTe2 and spin injection in van der Waals heterostructures[J]. Physical Review Research, 2020, 2(3): 033204.

[38]Mogulkoc Y, Caglayan R, Ciftci Y. Band Alignment in Monolayer Boron Phosphide with Janus Mo S Se Heterobilayers under Strain and Electric Field[J]. Physical Review Applied, 2021, 16(2): 024001.

[39]Caglayan R, Guler H, Mogulkoc Y. An analysis of Schottky barrier in silicene/Ga 2 SeS heterostructures by employing electric field and strain[J]. Physical Chemistry Chemical Physics, 2022, 24(17): 10210-10221.

[40]Lau K W, Calvin, Gong Z R, et al. Interface excitons at lateral heterojunctions in monolayer semiconductors[J]. Physical Review B, 2018, 98(11): 115427.

[41]Zhu L J, Zhu L J, Sui M L, et al. Variation of the giant intrinsic spin Hall conductivity of Pt with carrier lifetime[J]. Science Advances, 2019, 5(7): eaav8025.

[42]Hossain M S, Ma M K, Villegas-Rosales K A, et al. Spontaneous Valley Polarization of Itinerant Electrons[J]. Physical Review Letters, 2021, 127(11): 116601.

[43]Li W, Yan Z, Ban L, et al. Electronic structure and spin texture of Mo/N co-doped polar 2D-SiC[J]. Applied Surface Science, 2020, 509: 145193.

[44]Song W, Yan Z, Ban L, et al. Quantum conductivity in the topological surface state in the SbV3S5 kagome lattice[J]. Physical Chemistry Chemical Physics, 2022, 24(31): 18983-18991.

[45]Cheng Q, Yan Z, Song W, et al. Evolution of local edge state braiding and spin topological transport characterization of Te-doped monolayer 1T′-MoS 2[J]. Physical Chemistry Chemical Physics, 2023, 25(43): 29633-29640.

[46]Xu W, Yan Z, Xiong K, et al. Ab initio study of the topological itinerant transport properties observed between excited edge states in a 2D compound with the Mn15B16Ni composition[J]. Physical Chemistry Chemical Physics, 2023, 25(47): 32387-32392.

[47]Li D, Yan Z, Song W, et al. Topological Quantum Transport Characteristic by Three‐band Correlation Mechanism in 2D SnSe[J]. Advanced Quantum Technologies, 2024, 7(7): 2300462.

[48]Kong J, Yan Z, Song W, et al. Strong Quantized Electron–Phonon Coupling Induced by the Unique LA Phonon Mode in 2D Kramers Semimetal InTe[J]. The Journal of Physical Chemistry C, 2024, 128(43): 18483-18488.

[49]Kitabatake M, Deguchi M, Hirao T. Simulations and experiments of SiC heteroepitaxial growth on Si(001) surface[J]. Journal of Applied Physics, 1993, 74(7): 4438-4445.

[50]Vélez-Fort E, Pallecchi E, Silly M G, et al. Single step fabrication of N-doped graphene/Si3N4/SiC heterostructures[J]. Nano Research, 2014, 7(6): 835-843.

[51]Xin B, Jia R, Hu J, et al. A step-by-step experiment of 3C-SiC hetero-epitaxial growth on 4H-SiC by CVD[J]. Applied Surface Science, 2015, 357: 985-993.

[52]Calabretta C, Scuderi V, Anzalone R, et al. Effect of Nitrogen and Aluminum Doping on 3C-SiC Heteroepitaxial Layers Grown on 4° Off-Axis Si (100)[J]. Materials, 2021, 14(16): 4400.

[53]Wang W, Liu E, Kodzuka M, et al. Coherent tunneling and giant tunneling magnetoresistance inCo2FeAl/MgO/CoFemagnetic tunneling junctions[J]. Physical Review B, 2010, 81(14): 140402.

[54]Li C, Fang B, Zhang L, et al. Terahertz Generation via Picosecond Spin-to-Charge Conversion in IrMn3/Ni−Fe Heterojunction[J]. Physical Review Applied, 2021, 16(2): 024058.

[55]Beaulac R, Feng Y, May J W, et al. Orbital pathways for Mn2+-carriersp−dexchange in diluted magnetic semiconductor quantum dots[J]. Physical Review B, 2011, 84(19): 195324.

[56]Parker D E, Soejima T, Hauschild J, et al. Strain-Induced Quantum Phase Transitions in Magic-Angle Graphene[J]. Physical Review Letters, 2021, 127(2): 027601.

[57]Xie H, Chen X, Luo Z, et al. Spin Torque Gate Magnetic Field Sensor[J]. Physical Review Applied, 2021, 15(2): 024041.

[58]Zhang L, Li H, Jiang Y, et al. Current-driven magnetic resistance in van der Waals spin-filter antiferromagnetic tunnel junctions with MnBi2Te4[J]. Physical Review Applied, 2023, 20(4): 044056.

[59]Souza E S, Scopel W L, Miwa R H. Switchable magnetic moment in cobalt-doped graphene bilayer on Cu(111): Anab initiostudy[J]. Physical Review B, 2016, 93(23): 235308.

[60]Zhang X, Zhong H, Zhang Q, et al. High-spin Co3+ in cobalt oxyhydroxide for efficient water oxidation[J]. Nature Communications, 2024, 15(1): 1383.

[61]Piquemal-Banci M, Galceran R, Martin M B, et al. 2D-MTJs: introducing 2D materials in magnetic tunnel junctions[J]. Journal of Physics D-Applied Physics, 2017, 50(20): 203002.

[62]Chen Z H, Luo J W, Wang L W. Light-induced ultrafast spin transport in multilayer metallic films originates from sp-d spin exchange coupling[J]. Science Advances, 2023, 9(50): eadi1618.

[63]Siqueira E, Cabrera G. Andreev tunneling through a double quantum-dot system coupled to a ferromagnet and a superconductor: effects of mean field electronic correlations[J]. Physical Review B—Condensed Matter and Materials Physics, 2010, 81(9): 094526.

[64]Qin G H, Ren W, Singh D J. Interplay of local moment and itinerant magnetism in cobalt-based Heusler ferromagnets: Co2TiSi, Co2MnSi and Co2FeSi[J]. Physical Review B, 2020, 101(1): 014427.

[65]He J J, Tanaka Y, Nagaosa N. Optical Responses of Chiral Majorana Edge States in Two-Dimensional Topological Superconductors[J]. Physical Review Letters, 2021, 126(23): 237002.

[66]Volmer F, Bisswanger T, Schmidt A, et al. Charge-induced artifacts in non-local spin transport measurements: How to prevent spurious voltage signals[J]. Physical Review Applied, 2022, 18(1): 014028.

[67]Deb D, Mahajan B K. Modeling of Spin Transport in Hybrid Magnetic Tunnel Junctions for Magnetic Recording Applications[J]. Crystals, 2022, 12(10): 1411.

[68]Sukkabot W. Observation of spin-splitting energies on sp–d exchange interactions tailored in colloidal CdSe/CdMnS core/shell nanoplatelets: an atomistic tight-binding model[J]. Physical Chemistry Chemical Physics, 2024, 26(15): 11807-11814.

[69]Smirnov D S, Shamirzaev T S, Yakovlev D R, et al. Dynamic Polarization of Electron Spins Interacting with Nuclei in Semiconductor Nanostructures[J]. Physical Review Letters, 2020, 125(15): 156801.

[70]Yamada Y, Mino H, Kawahara T, et al. Polaron Masses in CH3NH3PbX3 Perovskites Determined by Landau Level Spectroscopy in Low Magnetic Fields[J]. Physical Review Letters, 2021, 126(23): 237401.

[71]ZöLlner M S, Varela S, Medina E, et al. Insight into the origin of chiral-induced spin selectivity from a symmetry analysis of electronic transmission[J]. Journal of Chemical Theory and Computation, 2020, 16(5): 2914-2929.

[72]Bachsoliani N, Platonov S, Wieck A D, et al. Mesoscopic Field-Effect-Induced Devices in Depleted Two-Dimensional Electron Systems[J]. Physical Review Applied, 2017, 8(6): 064015.

[73]Davidović D, Ying H, Dark J, et al. Tunneling, Current Gain, and Transconductance in Silicon-Germanium Heterojunction Bipolar Transistors Operating at Millikelvin Temperatures[J]. Physical Review Applied, 2017, 8(2): 024015.

[74]Van Woudenbergh T, Wildeman J, Blom P W M. Charge injection across a polymeric heterojunction[J]. Physical Review B, 2005, 71(20): 205216.

[75]Saslow W M. Spin pumping of current in non-uniform conducting magnets[J]. Physical Review B, 2007, 76(18): 184434.

[76]Finck B Y, Schwartz B J. Drift-Diffusion Studies of Compositional Morphology in Bulk Heterojunctions: The Role of the Mixed Phase in Photovoltaic Performance[J]. Physical Review Applied, 2016, 6(5): 054008.

[77]Kozlov M G, Safronova M S, Crespo López-Urrutia J R, et al. Highly charged ions: Optical clocks and applications in fundamental physics[J]. Reviews of Modern Physics, 2018, 90(4): 045005.

[78]Orain J C, Bernu B, Mendels P, et al. Nature of the Spin Liquid Ground State in a Breathing Kagome Compound Studied by NMR and Series Expansion[J]. Physical Review Letters, 2017, 118(23): 237203.

[79]Arnold J, Schäfer F. Replacing Neural Networks by Optimal Analytical Predictors for the Detection of Phase Transitions[J]. Physical Review X, 2022, 12(3): 31044.

[80]Chen D, Lian Z, Huang X, et al. Tuning moiré excitons and correlated electronic states through layer degree of freedom[J]. Nature Communications, 2022, 13(1): 4810.

[81]Liu L, Zhu C, Liu Z Y, et al. Thermal dynamics of charge density wave pinning in ZrTe3[J]. Physical Review Letters, 2021, 126(25): 256401.

[82]Steenbock T, Rybakowski L L, Benner D, et al. Exchange Spin Coupling in Optically Excited States[J]. Journal of Chemical Theory and Computation, 2022, 18(8): 4708-4718.

[83]E Silva E a D A, La Rocca G C. Exciton-bound electron-spin relaxation[J]. Physical Review B, 1997, 56(15): 9259.

[84]Tang G M, Bruder C, Belzig W. Magnetic field-induced “mirage” gap in an Ising superconductor[J]. Physical Review Letters, 2021, 126(23): 237001.

[85]Solis D A, D. Borges D, Woellner C F, et al. Structural and thermal stability of graphyne and graphdiyne nanoscroll structures[J]. ACS applied materials & interfaces, 2018, 11(3): 2670-2676.

[86]Talukder N, Wang Y, Nunna B B, et al. Nitrogen-doped graphene nanomaterials for electrochemical catalysis/reactions: A review on chemical structures and stability[J]. Carbon, 2021, 185: 198-214.

[87]Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50.

[88]Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16): 11169.

[89]Ernzerhof M, Scuseria G E. Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional[J]. The Journal of Chemical Physics, 1999, 110(11): 5029-5036.

[90]Zhang S, Liang R, Wang X, et al. Gate controllable spin transistor with semiconducting tunneling barrier[J]. Nano Research, 2020, 13(8): 2192-2196.

[91]Zhang Z, Wang Y, Wang H, et al. Controllable Spin Switching in a Single-Molecule Magnetic Tunneling Junction[J]. Nanoscale Research Letters, 2021, 16(1): 77.

[92]Liu Y, Gottwald T, Mattolat C, et al. Resonant ionization spectroscopy of autoionizing Rydberg states in cobalt and redetermination of its ionization potential[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2017, 50(7): 075002.

[93]Alamri A, Wu C, Nasreen S, et al. High dielectric constant and high breakdown strength polyimide via tin complexation of the polyamide acid precursor[J]. RSC Advances, 2022, 12(15): 9095-9100.

[94]Du G, Li C, Shan L, et al. High-throughput predictions of two-dimensional dielectrics with first-principles calculations[J]. Physical Review B, 2023, 108(23): 235409.

[95]Bennett C H, Divincenzo D P. Quantum information and computation[J]. Nature, 2000, 404(6775): 247-255.

[96]Divincenzo D P. The physical implementation of quantum computation[J]. Fortschritte Der Physik: Progress of Physics, 2000, 48(9‐11): 771-783.

[97]Wu J, Li Q, Xue G, et al. Preparation of Single‐Crystalline Heterojunctions for Organic Electronics[J]. Advanced Materials, 2017, 29(14): 1606101.

[98]Solovan M, Gavaleshko N, Brus V, et al. Fabrication and investigation of photosensitive MoOx/n-CdTe heterojunctions[J]. Semiconductor Science and Technology, 2016, 31(10): 105006.

[99]Yin J-X, Lian B, Hasan M Z. Topological kagome magnets and superconductors[J]. Nature, 2022, 612(7941): 647-657.

[100]Liu Q, Yao Q, Kelly Z, et al. Electron doping of proposed kagome quantum spin liquid produces localized states in the band gap[J]. Physical Review Letters, 2018, 121(18): 186402.

[101]Kelly Z, Gallagher M, Mcqueen T. Electron doping a kagome spin liquid[J]. Physical Review X, 2016, 6(4): 041007.

[102]Li M, Wang Q, Wang G, et al. Dirac cone, flat band and saddle point in kagome magnet YMn6Sn6[J]. Nature Communications, 2021, 12(1): 3129.

[103]Maruyama M, Okada S. Interplay between the Kagome flat band and the Dirac cone in porous graphitic networks[J]. Carbon, 2017, 125: 530-535.

[104]Hwang Y, Rhim J-W, Yang B-J. Flat bands with band crossings enforced by symmetry representation[J]. Physical Review B, 2021, 104(8): L081104.

[105]Denawi A H, Bouju X, Abel M, et al. Metal-organic kagome systems as candidates to study spin liquids, spin ice or the quantum anomalous Hall effect[J]. Physical Review Materials, 2023, 7(7): 074201.

[106]Yin J, Lian B, Hasan M. Topological kagome magnets and superconductors[J]. Nature, 2022, 612(7941): 647-657.

[107]An Y, Chen J, Wang Z, et al. Topological and nodal superconductor kagome magnesium triboride[J]. Physical Review Materials, 2023, 7(1): 014205.

[108]Hussain M, Rashid M, Saeed F, et al. Spin–orbit coupling effect on energy level splitting and band structure inversion in CsPbBr3[J]. Journal of Materials Science, 2021, 56(1): 528-542.

[109]Wang R, Qiao Q, Wang B, et al. The topological quantum phase transitions in Lieb lattice driven by the Rashba SOC and exchange field[J]. The European Physical Journal B, 2016, 89: 1-6.

[110]Zhai X. Layered opposite Rashba spin-orbit coupling in bilayer graphene: Loss of spin chirality, symmetry breaking, and topological transition[J]. Physical Review B, 2022, 105(20): 205429.

[111]Xie M, Das Sarma S. Flavor symmetry breaking in spin-orbit coupled bilayer graphene[J]. Physical Review B, 2023, 107(20): L201119.

[112]Zhang K-C, Shen C, Zhang H-B, et al. Effect of electron-phonon scattering on the electronic transport of Weyl semimetal WP 2[J]. Physical Review B, 2024, 109(4): 045149.

[113]Maklar J, Schüler M, Windsor Y W, et al. Coherent modulation of quasiparticle scattering rates in a photoexcited charge-density-wave system[J]. Physical Review Letters, 2022, 128(2): 026406.

[114]Wang Z-G, Suqing D, Zhao X-G. Effect of elastic scattering on current response in the two-band superlattices driven by an external field[J]. Physics Letters A, 2003, 314(5-6): 484-490.

[115]Akhoundi E, Houssa M, Afzalian A. The impact of electron phonon scattering, finite size and lateral electric field on transport properties of topological insulators: a first principles quantum transport study[J]. Materials, 2023, 16(4): 1603.

[116]Guo K, Zhang R, Ren L, et al. Tuning of photovoltaic response in multiferroic heterojunction photodiodes by a built-in electric field and carrier transport: Effect of magnetization and ferroelectric polarization[J]. Journal of Alloys and Compounds, 2023, 933: 167668.

[117]Sheng X, Zhu H, Yin K, et al. Excited-state absorption by linear response time-dependent density functional theory[J]. The Journal of Physical Chemistry C, 2020, 124(8): 4693-4700.

[118]Umegaki T, Ogawa M, Miyoshi T. Investigation of electronic transport in carbon nanotubes using Green’s-function method[J]. Journal of Applied Physics, 2006, 99(3): 034307.

[119]Liu Y, Zhang X. Green’s function investigation of quantum transport and current patterns in 2D electronic system under spatially modulated magnetic fields[J]. Journal of Materials Science, 2017, 52: 6423-6431.

[120]Song C, Zheng S-B, Zhang P, et al. Continuous-variable geometric phase and its manipulation for quantum computation in a superconducting circuit[J]. Nature Communications, 2017, 8(1): 1061.

[121]Messelot S, Aparicio N, De Seze E, et al. Direct measurement of a sin (2 φ) current phase relation in a graphene superconducting quantum interference device[J]. Physical Review Letters, 2024, 133(10): 106001.

[122]Sun Q-F, Wang J, Lin T-H. Photon-assisted andreev tunneling through a mesoscopic hybrid system[J]. Physical Review B, 1999, 59(20): 13126.

[123]Sun Q-F, Wang B-G, Wang J, et al. Electron transport through a mesoscopic hybrid multiterminal resonant-tunneling system[J]. Physical Review B, 2000, 61(7): 4754.

中图分类号:

 TN710    

开放日期:

 2025-06-25    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式