- 无标题文档
查看论文信息

论文中文题名:

 基于性能的装配式Y型桥墩多级抗震机理研究    

姓名:

 郭朝阳    

学号:

 19204053019    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081406    

学科名称:

 工学 - 土木工程 - 桥梁与隧道工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 土木工程    

研究方向:

 桥梁抗震理论和减隔震技术    

第一导师姓名:

 刘群峰    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-12-27    

论文答辩日期:

 2022-12-05    

论文外文题名:

 Research on multi-stage energy dissipation mechanism of fabricated Y-shaped piers based on performance    

论文中文关键词:

 多级抗震机理 ; 装配式CFST-Y型桥墩 ; 耗能 ; 纤维模型 ; 参数分析    

论文外文关键词:

 Multi-level seismic mechanism ; Prefabricated CFST-Y shaped pier ; Energy dissipation ; Fibre model ; Parametric analysis    

论文中文摘要:

预制装配式桥墩在地震作用下存在墩身损伤集中、整体耗能不足和抗震机理不明确等问题,阻碍了其在中高地震区的推广。为提高预制装配桥墩在中高地震区的服役能力,减少桥墩结构地震损伤及修复成本,本文以装配式钢管混凝土Y型(CFST-Y)桥墩及其自复位桥墩(含耗能装置)为研究对象。利用OpenSees软件建立了两种装配式钢管混凝土Y型桥墩纤维模型,对两种桥墩的抗震性能及其多级抗震机理进行了研究,并对两种桥墩的结构形式和设计参数进行优化分析。主要研究内容如下:

(1)采用非线性静力推覆分析法,研究了装配式CFST-Y型桥墩在常遇地震、罕遇地震和极罕遇地震作用下的抗震性能。本文通过理论推导的桥墩抗侧刚度公式,开展了固结、支撑铰接和自由铰接三种类型CFST-Y型桥墩的有限元分析,研究了桥墩-主梁连接形式、结构几何尺寸和支座剪切刚度对桥墩抗震性能的影响。结果表明:桥墩-主梁连接形式是影响桥墩侧向刚度和结构延性的主要因素。桥墩的肢高、柱高决定了其塑性铰的发展,通过肢底、柱底的多塑性铰可实现不同地震作用下的多级耗能目标。

(2)基于三种类型CFST-Y型桥墩的结构形式,提出一种有效利用桥墩构件局部延性的多级耗能抗震设计方法。采用拟静力分析法对三种类型桥墩的滞回性能进行评价,对比分析了桥墩-主梁连接形式、结构几何尺寸对桥墩耗能的影响。基于自由铰接桥墩耗能的形式,提出了以CFST-Y型桥墩的肢部构件为“结构保险丝”的耗能理念,建议在桥墩上采用多塑性铰的多级耗能机制。

(3)采用拟静力分析法,研究了装配式CFST-Y型自复位桥墩(含内置、外置耗能装置)的抗震性能。本文选取内置耗能钢筋数量、初始预应力水平、恒载轴压比以及外置耗能钢筋的布置角度、截面贡献率等关键设计参数,研究了耗能装置的主要控制参数对桥墩抗震性能的影响,并给出合理的取值建议。在此基础上对装配式CFST-Y型自复位桥墩(含外置耗能钢筋)进行非线性时程分析,发现含外置耗能钢筋的装配式CFST-Y型自复位桥墩在不同地震等级下可以很好的实现分级耗能。

论文外文摘要:

The prefabricated assembled piers have problems of concentrated pier damage, insufficient overall energy consumption and unclear seismic mechanisms under earthquake action, which hinder their promotion in medium and high seismic zones. In order to improve the serviceability of prefabricated assembled piers in medium and high seismic zones and to reduce the seismic damage and repair costs of bridge pier structures, this paper takes assembled steel pipe concrete Y-type (CFST-Y) piers and their self-resetting piers (including energy-consuming devices) as the object of study. Two fibre models of assembled tubular concrete Y-shaped bridge piers were established using OpenSees software, the seismic performance of the two piers and their multi-stage seismic mechanism were investigated, and the structural forms and design parameters of the two piers were optimised and analysed. The main research contents are as follows:

(1) The seismic performance of assembled CFST-Y piers under normal, rare and very rare earthquakes was investigated using non-linear static pushover analysis. In this paper, finite element analysis of three types of CFST-Y piers, namely solid, braced hinged and free hinged, is carried out by means of theoretically derived lateral stiffness equations for bridge piers, and the effects of pier-deck connection form, structural geometry and support shear stiffness on the seismic performance of the piers are investigated. The results show that the pier-deck connection is the main factor affecting the lateral stiffness and structural ductility of the bridge pier. The limb height and column height of the piers determine the development of their plastic hinges. The objective of energy dissipation under different seismic effects can be achieved by means of multiple plastic hinges at the bottom of the limbs and the bottom of the columns.

(2) Based on the structural forms of three types of CFST-Y piers, a multi-stage energy dissipation seismic design method that effectively utilises the local ductility of the bridge pier members is proposed. The hysteresis performance of three types of bridge piers is evaluated

using the proposed static analysis method, and the effects of pier-deck connection form and structural geometry on the energy dissipation of bridge piers are compared and analysed. Based on the form of energy dissipation in freely articulated piers, a multi-stage energy dissipation concept with CFST-Y pier limbs as the "structural fuse" is proposed, and a multi-stage energy dissipation mechanism with multiple plastic hinges is suggested for the piers.

(3) The seismic performance of the assembled CFST-Y type (with built-in and external energy dissipation devices) self-resetting piers was studied using the proposed static analysis method. In this paper, key design parameters such as the number of built-in energy dissipating bars, initial prestressing level, gravity axial compression ratio and the arrangement angle and section contribution rate of external energy dissipating bars are selected to study the influence of the main control parameters of energy dissipating devices on the seismic performance of bridge piers, and reasonable recommendations are given. On this basis, a non-linear time analysis of the assembled CFST-Y (with external energy dissipating reinforcement) self-reversible piers was carried out and it was found that the assembled CFST-Y self-reversible piers with external energy dissipating reinforcement could achieve good graded energy dissipation under different seismic levels.

参考文献:

[1]Shen Y, Freddi F, Li J. Experimental and numerical investigations of the seismic behavior of socket and hybrid connections for PCFT bridge columns[J]. Engineering Structures, 2022, 253: 113833.

[2]Chung Y S, Park C K, Meyer C. Residual seismic performance of reinforced concrete bridge piers after moderate earthquakes[J]. ACI structural journal, 2008, 105(1): 87.

[3]袁万城, 王思杰, 李怀峰, 等. 桥梁抗震智能与韧性的发展[J]. 中国公路学报, 2021, 34(02): 98-117.

[4]Palermo A, Pampanin S, Calvi G M. Concept and development of hybrid solutions for seismic resistant bridge systems[J]. Journal of Earthquake Engineering, 2005, 9(06): 899-921.

[5]王志强, 葛继平, 魏红一. 东海大桥预应力混凝土桥墩抗震性能分析[J]. 同济大学学报(自然科学版), 2008(11): 1462-1466+1500.

[6]韩强, 贾振雷, 何维利, 等.自复位双柱式摇摆桥梁抗震设计方法及工程应用[J]. 中国公路学报, 2017, 30(12): 169-177.

[7]Wang S, Xu W, Wang J, et al. Experimental research on anti-seismic reinforcement of fabricated concrete pier connected by grouting sleeve based on CFRP and PET materials[J]. Engineering Structures, 2021, 245: 112838.

[8]Marriott D, Pampanin S, Palermo A. Quasi‐static and pseudo‐dynamic testing of unbonded post‐tensioned rocking bridge piers with external replaceable dissipaters[J]. Earthquake engineering & structural dynamics, 2009, 38(3): 331-354.

[9]Billington S L, Yoon J K. Cyclic response of unbonded posttensioned precast columns with ductile fiber-reinforced concrete[J]. Journal of Bridge Engineering, 2004, 9(4): 353-363.

[10]Stephens M T, Lehman D E, Roeder C W. Seismic performance modeling of concrete-filled steel tube bridges: Tools and case study[J]. Engineering Structures, 2018, 165: 88-105.

[11]Chacón R, Mirambell E, Real E. Strength and ductility of concrete-filled tubular piers of integral bridges[J]. Engineering Structures, 2013, 46: 234-246.

[12]Priestley M J N. Performance Based Seismic Design[J]. Bulletin of the New Zealand Society for Earthquake Engineering, 2000, 33(3): 2483-2493(11).

[13]Hamburger R O. The ATC-58 project: development of next-generation performance-based earthquake engineering design criteria for buildings[C]. Structures Congress 2006: Structural Engineering and Public Safety. 2006: 1-8.

[14]Lehman D, Moehle J, Mahin S, et al. Experimental evaluation of the seismic performance of reinforced concrete bridge columns[J]. Journal of Structural Engineering, 2004, 130(6): 869-879.

[15]Ghobarah A. Performance-based design in earthquake engineering: state of develo-pment[J]. Engineering structures, 2001, 23(8): 878-884.

[16]王志强, 葛继平, 魏红一, 等.节段拼装桥墩抗震性能研究进展[J]. 地震工程与工程振动, 2009, 29(04): 147-154.

[17]Billington S L, Barnes R W, Breen J E. A precast segmental substructure system for standard bridges[J]. PCI journal, 1999, 44(4): 56-73.

[18]ElGawady M, Booker A J, Dawood H M. Seismic behavior of posttensioned concrete-filled fiber tubes[J]. Journal of Composites for Construction, 2010, 14(5): 616-628.

[19]Freyermuth C L. Ten years of segmental achievements and projections for the next century[J]. PCI journal, 1999, 44(3).

[20]朱治宝, 刘英. 跨海大桥大型预制墩柱的施工技术[J]. 桥梁建设, 2004(05): 50-52.

[21]李英, 陈越. 港珠澳大桥岛隧工程的意义及技术难点[J]. 工程力学, 2011, 28(S2): 67-77.

[22]Mander J B, Cheng C T. Seismic Resistance of Bridge Piers Based on Damage Avoidance Design[R]. New York: National Center for Earthquake Engineering Research, State University of New York at Buffalo, NCEER-97-0014, 1997.

[23]Palermo A, Pampanin S, Marriott D. Design, modeling, and experimental response of seismic resistant bridge piers with posttensioned dissipating connections[J]. Journal of Structural Engineering, 2007, 133(11): 1648-1661.

[24]Haber Z B, Mackie K R, Al-Jelawy H M. Testing and analysis of precast columns with grouted sleeve connections and shifted plastic hinging[J]. Journal of Bridge Engineering, 2017, 22(10): 04017078.

[25]Marriott D, Pampanin S, Palermo A. Quasi‐static and pseudo‐dynamic testing of unbonded post‐tensioned rocking bridge piers with external replaceable dissipaters[J]. Earthquake engineering & structural dynamics, 2009, 38(3): 331-354.

[26]Liu Y, Zhou B, Cai J, et al. Experimental study on seismic behavior of precast concrete column with grouted sleeve connections considering ratios of longitudinal reinforcement and stirrups[J]. Bulletin of Earthquake Engineering, 2018, 16(12): 6077-6104.

[27]葛继平, 王志强. 干接缝节段拼装桥墩振动台试验研究[J]. 工程力学, 2011, 28(09): 122-128.

[28]Xin G, Xu W, Wang J, et al. Seismic performance of fabricated concrete piers with grouted sleeve joints and bearing-capacity estimation method[C]Structures. Elsevier, 2021, 33: 169-186.

[29]王军文, 丁世广, 白维刚, 等. 装配式预应力桥墩地震损伤评估及影响参数分析[J].中国公路学报, 2018, 31(12): 258-266.

[30]Motaref S, Saiidi M S, Sanders D. Shake table studies of energy-dissipating segmental bridge columns[J]. Journal of Bridge Engineering, 2014, 19(2): 186-199.

[31]Zhang Q, Alam M S. Evaluating the seismic behavior of segmental unbounded posttensioned concrete bridge piers using factorial analysis[J]. Journal of Bridge Engineering, 2016, 21(4): 04015073.

[32]钱辉, 叶晨阳, 李宗翱, 等. 自复位承插式多节段预制桥墩抗震性能数值模拟[J]. 土木工程学报, 2020, 53(S2): 301-308.

[33]Dawood H, Elgawady M, Hewes J. Factors affecting the seismic behavior of segmental precast bridge columns[J]. Frontiers of Structural and Civil Engineering, 2014, 8(4): 388-398.

[34]孙治国, 谷明洋, 司炳君, 等. 外置角钢摇摆-自复位双柱墩抗震性能分析[J]. 中国公路学报, 2017, 30(12): 40-49.

[35]Hewes J T. Seismic design and performance of precast concrete segmental bridge columns[M]. University of California, San Diego, 2002.

[36]Hieber D G, Wacker J M, Eberhard M O, et al. Precast concrete pier systems for rapid construction of bridges in seismic regions[R]. Seattle, Washington, USA: University of Washington, 2005.

[37]Chou C C, Chen Y C. Cyclic tests of post‐tensioned precast CFT segmental bridge columns with unbonded strands[J]. Earthquake engineering & structural dynamics, 2006, 35(2): 159-175.

[38]Kim T H, Park J G, Kim Y J, et al. A computational platform for seismic performance assessment of reinforced concrete bridge piers with unbonded reinforcing or prestressing bars[J]. Computers and Concrete, An International Journal, 2008, 5(2): 135-154.

[39]贾俊峰, 赵建瑜, 张强, 等. 后张预应力节段拼装CFST桥墩抗侧力学行为试验[J].中国公路学报, 2017, 30(03): 236-245.

[40]Zhang D, Li N, Zhang S. Energy dissipation and resilience of precast segmented concrete-filled steel tube self-centering column: Parameter study and design methodology[J]. Engineering Structures, 2021, 244: 112747.

[41]张强. 节段预制拼装钢管混凝土桥墩抗震性能研究[D]. 北京: 北京工业大学, 2016.

[42]Guerrini G, Restrepo J I, Massari M, et al. Seismic behavior of posttensioned self-centering precast concrete dual-shell steel columns[J]. Journal of structural engineering, 2015, 141(4): 04014115.

[43]赵建锋, 刘雪飞, 孟庆一, 等.外置可更换耗能装置的节段拼装CFST桥墩抗震性能分析[J]. 西南交通大学学报, 2022, 04(06):1-9.

[44]Shen Y, Freddi F, Li J. Experimental and numerical investigations of the seismic behavior of socket and hybrid connections for PCFT bridge columns[J]. Engineering Structures, 2022, 253: 113833.

[45]李宁, 张双城, 李忠献, 等. 预制拼装钢管混凝土自复位桥墩变形分析模型及验证[J]. 工程力学, 2020, 37(04): 135-143.

[46]魏博, 贾俊峰, 张强, 等. 自复位预制节段钢管混凝土桥墩拟静力试验数值仿真[J].北京工业大学学报, 2021, 47(10): 1129-1137.

[47]Krawinkler H, Seneviratna G. Pros and cons of a pushover analysis of seismic performance evaluation[J]. Engineering structures, 1998, 20(4-6): 452-464.

[48]Applied technology council. ATC-40 Seismic evaluation and retrofit of concrete buildings. Volume 2,Appendices[M]. Seismic Safety Commission, 1996.

[49]Wang J H, Kunnath S, He J, et al. Post-Earthquake Fire Resistance of Circular Concrete-Filled Steel Tubular Columns[J]. Journal of Structural Engineering, 2020, 146(6): 04020105.

[50]Wang Z, Wang J Q, Tang Y C, et al. Seismic behavior of precast segmental UHPC bridge columns with replaceable external cover plates and internal dissipaters[J]. Engineering Structures, 2018, 177: 540-555.

[51]中华人民共和国交通运输部. 公路桥梁抗震设计规范. JTG/T 2231-01—2020. 北京: 中华人民共和国交通运输部, 2020.

[52]Yang S, Huang D. Aesthetic considerations for urban pedestrian bridge design[J]. Journal of architectural engineering, 1997, 3(1): 3-8.

[53]Scott B D, Park R, Priestley M J N. Stress-strain behavior of concrete confined by overlapping hoops at low and high strain rates[C] Journal Proceedings. 1982, 79(1): 13-27.

[54]中华人民共和国交通运输部. 公路桥梁板式橡胶支座. JT/T 4-2019. 北京: 中华人民共和国交通运输部, 2019.

[55]龚恋, 徐略勤, 李建中, 等. 近场地震下采用板式橡胶支座的简支梁桥横向位移控制[J]. 结构工程师, 2018, 34(02): 70-78.

[56]Dicleli M. Performance of seismic-isolated bridges with and without elastic-gap devices in near-fault zones[J]. Earthquake engineering & structural dynamics, 2008, 37(6): 935-954

[57]Calvi G M, Pavese A. Conceptual design of isolation systems for bridge structures[J]. Journal of Earthquake Engineering, 1997, 1(01): 193-218.

[58]Fajfar P. A nonlinear analysis method for performance-based seismic design[J]. Earthquake spectra, 2000, 16(3): 573-592.

[59]Lagaros N D, Fragiadakis M. Evaluation of ASCE-41, ATC-40 and N2 static pushover methods based on optimally designed buildings[J]. Soil Dynamics and Earthquake Engineering, 2011, 31(1): 77-90.

[60]范立础, 卓卫东. 桥梁延性抗震设计[M]. 人民交通出版社, 2001.

[61]Sigurdardottir, D.H. and Glisic, B. (2013), Measures of structural art: A case study using Streicker Bridge. Princeton University, NJ, USA, 275-284.

[62]Abey E T, Somasundaran T P, Sajith A S. Significance of elastomeric bearing on seismic response reduction in bridges[M].Advances in Structural Engineering, 2015: 1339-1352.

[63]Liang Q Q, Fragomeni S. Nonlinear analysis of circular concrete-filled steel tubular short columns under eccentric loading[J]. Journal of Constructional Steel Research, 2010, 66(2): 159-169.

[64]Susantha K A S, Ge H, Usami T. Uniaxial stress–strain relationship of concrete confined by various shaped steel tubes[J]. Engineering Structures, 2001, 23(10): 1331-1347.

[65]谷明洋. 摇摆—自复位桥墩抗震性能分析[D]. 大连: 大连理工大学, 2017.

[66]张双城. 预制拼装钢管混凝土自复位桥墩抗震性能分析[D]. 天津: 天津大学, 2019.

[67]Zhang D, Li N, Li Z X. Seismic Performance of Precast Segmental Concrete-Filled Steel-Tube Bridge Columns with Internal and External Energy Dissipaters[J]. Journal of Bridge Engineering, 2021, 26(11): 04021085.

[68]Liu Q, Zhu S, Yu W, et al. Ground Motion Frequency Insensitivity of Bearing-Supported Pedestrian Bridge with Viscous DaE3rs[J]. KSCE Journal of Civil Engineering, 2021, 25(7): 2662-2673.

[69]Ibrahim A M A, Wu Z, Fahmy M F M, et al. Experimental study on cyclic response of concrete bridge columns reinforced by steel and basalt FRP reinforcements[J]. Journal of Composites for Construction, 2016, 20(3): 04015062.

[70]Bu Z Y, Ding Y, Chen J, et al. Investigation of the seismic performance of precast segmental tall bridge columns[J]. Structural Engineering and Mechanics, 2012, 43(3): 287-309.

[71]Zhang D, Li N, Li Z X, et al. Seismic performance of bridge with unbonded posttensioned self-centering segmented concrete-filled steel-tube columns: An underwater shaking table test[J]. Soil Dynamics and Earthquake Engineering, 2020, 138: 106350.

[72] Mazza F. Seismic demand of base-isolated irregular structures subjected to pulse-type earthquakes[J]. Soil Dynamics and Earthquake Engineering, 2018, 108

[73] Fema. Quantification of building seismic performance factors[R]. FEMA P695, Washington, D.C.: Applied Technology Council Federal Emergency Management Agency, 2009.

[74] Atik L A, Abrahamson R. An Improved Method for Nonstationary Spectral Matching[J]. Earthquake Spectra, 2010, 26(3): 601-617.

中图分类号:

 U443.22    

开放日期:

 2022-12-28    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式