- 无标题文档
查看论文信息

论文中文题名:

 大采高综采工作面风流及粉尘运移规律研究    

姓名:

 李清政    

学号:

 19220214072    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 083700    

学科名称:

 工学 - 安全科学与工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 粉尘防治    

第一导师姓名:

 金永飞    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-20    

论文答辩日期:

 2022-06-05    

论文外文题名:

 Research on wind flow and dust migration law in fully mechanized mining face with large mining height    

论文中文关键词:

 综采工作面 ; 相似理论 ; 风流分布规律 ; 粉尘浓度分布规律 ; 数值模拟    

论文外文关键词:

 fully mechanized ; mining face ; similarity theory ; air flow distribution law ; dust concentration distribution law ; numerical simulation    

论文中文摘要:

随着近些年综采工艺的快速革新,选用大采高综采的煤矿越来越多。大采高综采面因其采煤机滚筒直径大,截割粉尘产生量也远高于普通采高,且各类大型设备的存在使得风流分布变化规律复杂,工作面空间内不同高度,不同区域的粉尘浓度分布情况也均有不同。粉尘会对矿工的健康和煤矿的安全开采造成严重的危害。由此可见,研究确定综采工作面内粉尘浓度分布的沿程变化趋势,能够帮助找到重点防尘区域,为降低粉尘危害提供理论基础。

本文以气固两相流、粉尘性质等理论为基础,通过现场测定、理论研究、相似实验和数值模拟相结合的方法,对大采高综采工作面粉尘运移和分布规律进行研究。主要研究内容和成果如下:

首先,通过现场观测,测定了综采面粉尘样品的产尘能力、粉尘分散度和浓度等参数,以实测数据分析计算结果为依据,确定模型边界条件、离散相及连续相参数,为搭建综采面相似实验平台和模拟整个综采工作面空间内的粉尘运移扩散规律建立了基础。

其次,基于相似理论和流体力学相关知识,得出了综采面相似实验需要满足的相似准则,自行设计搭建了1:5的大尺寸综采面相似模拟实验系统。根据实验台实际尺寸,设计了相似实验的内容和具体实验步骤。通过开展相关实验,得到了综采面巷道内风流分布规律以及不同风速情况下不同粒径粉尘在巷道沿程上的粉尘浓度分布情况。

最后,开展数值模拟,研究了风速为2.0 m/s时大采高综采工作面的风流分布情况、采煤机截割粉尘质量浓度分布规律和主要影响因素。并通过调整参数,模拟不同风速对呼吸带粉尘质量浓度、风流分布的影响以及综采面多尘源粉尘分布规律。

根据研究结果,大采高综采工作面风流的变化及分布受工作面障碍物影响明显,在规程范围内,风速越大,越有利于降低工作面粉尘浓度,但风速过大容易造成二次扬尘,得出6m大采高工作面入口风速不应低于2m/s,因此该矿工作面的风速设定是合理的。

论文外文摘要:

With the speedy innovation of thoroughly mechanized mining technological know-how in latest years, extra and extra coal mines select giant mining top entirely mechanized mining. Due to the giant diameter of the shearer drum in the totally mechanized mining face with massive mining height, the quantity of slicing dirt is additionally a great deal greater than that in the normal mining top, and the existence of various large-scale equipment makes the variation law of air flow distribution complex. The dust concentration distribution in different heights and regions in the working face space is also different. Dust will cause serious harm to the health of miners and the safe mining of coal mines. It can be seen that studying and determining the variation trend of dust concentration distribution in fully mechanized mining face can help to find key dust-proof areas and provide a theoretical basis for reducing dust hazards.

Based on the theories of gas-solid two-phase waft and dirt properties, this paper research the migration and distribution regulation of flour dirt in wholly mechanized mining with massive mining peak via the aggregate of area measurement, theoretical research, comparable test and numerical simulation. The principal lookup contents and outcomes are as follows:

Firstly, via discipline observation, the parameters such as dirt manufacturing capacity, dirt dispersion and awareness of dirt samples in totally mechanized mining face are measured. Based on the evaluation and calculation effects of measured data, the mannequin boundary conditions, discrete segment and non-stop segment parameters are decided, which establishes a foundation for building a similar experimental platform in fully mechanized mining face and simulating the dust migration and diffusion law in the whole fully mechanized mining face space.

Secondly, based totally on the similarity principle and associated expertise of hydrodynamics, the similarity criteria that need to be met in the similarity experiment of fully mechanized mining face are obtained, and a 1:5 large-scale similarity simulation experiment system of fully mechanized mining face is designed and built. According to the actual size of the test-bed, the contents and specific experimental steps of similar experiments are designed. Through relevant experiments, the air go with the flow distribution regulation in the roadway of absolutely mechanized mining face and the dirt awareness distribution of exceptional particle sizes alongside the roadway below exclusive wind speeds are obtained.

Finally, the numerical simulation is carried out to find out about the air drift distribution in the entirely mechanized mining face with giant mining top, the distribution law of dust mass concentration cut by shearer and the main influencing factors when the wind speed is 2.0m/s. By adjusting parameters, the consequences of extraordinary wind speeds on dirt mass attention and air drift distribution in respiratory region and the distribution regulation of multi dirt supply dirt in wholly mechanized mining face are simulated.

According to the lookup results, the alternate and distribution of air glide in the thoroughly mechanized mining face with giant mining peak are for sure affected with the aid of the limitations in the working face. Within the scope of regulations, the higher the wind speed is, the more conducive it is to reduce the dust concentration of working flour. However, immoderate wind pace is effortless to reason secondary dust. It is concluded that the top of the line air flow wind velocity of 6m excessive mining face is about 2.0 m/s. Therefore, the wind speed setting of the working face of the mine is reasonable.

参考文献:

[1] 梁敦仕.2018年世界煤炭市场特点及2019年发展趋势[J].中国煤炭,2019,45(05):118-129+134.

[2] 刘闯,蓝晓梅.世界煤炭供需形势分析[J].中国煤炭,2020,46(04):99-104.

[3] Xu S C,Zhang W W,He Z X,et al.Decomposition analysis of the decoupling indicator of carbon emissions due to fossil energy consumption from economic growth in China[J].Energy Efficiency,2017,10(6):1-16.

[4] 郑彦奎,张设计,吴国友,等.综放工作面粉尘产生规律及降尘措施[J].煤矿安全,2012,43(02):116-118.

[5] 2020年全国职业病报告情况[J].中国职业医学,2021,48(04):3.

[6] 国家安全生产监督管理总局,国家煤矿安监局.煤矿安全规程(2016修订版)[S]北京:煤炭工业出版社,2016.

[7] N.Fuchs,P.Lissowski.The charging of aerosols by ionic diffusion[J].Journal of Colloid Science,1956,11(1).

[8] S.L.Soo, Multiphase Fluid Dynamics, Science Press,Beijing,1990.

[9] BhaskarR.and Ramani,R.V,Behavior of Dust Clouds in Mine Airways[J].SME Transactions,Vol.280,1986,65:156-168.

[10] Courtney W G,Cheng L,Divers E F.Deposition of Respirable Coal Dust in an Airway. 1986.

[11] Alam,Mohammad Masroor. An integrated approach to dust control in coal mining face areas of a continuous miner and its computational fluid dynamics modeling[D].Southern Illinois University at Carbondale,2006.

[12] He C,Morawska L,Gilbert D. Particle deposition rates in residential houses[J]. Atmospheric Environment, 2005, 39(21):3891-3899.

[13] 杨胜来.采煤工作面粉尘颗粒运动的动力学模型的探讨[J].山西矿业学院学报,1994(03):250-258.

[14] 李恩良,王秉权.井巷紊流传质的数学模型及紊流弥散系数[J].东北工学院学报,1985(03):41-47.

[15] 刘毅,蒋仲安,蔡卫,等.综采工作面粉尘运动规律的数值模拟[J].北京科技大学学报,2007(04):351-353+362.

[16] 李艳强.两力作用下粉尘运移速度变化规律[J].矿业工程研究,2014,29(03):21-24.

[17] 李艳强,杨炯照,周勇.矿井粉尘扩散系数及其规律[J].矿业工程研究,2012,27(02):49-51.

[18] 刘亚力.综掘工作面高压喷雾降尘技术研究[D].西安科技大学,2010.

[19] O.Green,J.E.and Me Nider,et al.An Overview Of General Operating Experience As It Relates to Long Wall Dust Control[R].1991.

[20] Jankowski,R.A.etal,Dust Sources And Control On High Tonnage Long wall Faces[R]. 1991.

[21] Liu B,Agarwal J K. Experimental observation of aerosol deposition in turbulent flow[J]. Journal of Aerosol Science, 1974, 5(2):145,IN1,149-148,IN2,155.

[22] Liu A B,Reitz R D.Mechanisms of air-assisted liquid atomization [J].Atomization An Sprays, 1993, 3(1):55-75.

[23] Xie Y,Hopke P.K.Use of multiple fractal dimensions to quantify airborne particle shape[J].Aerosol Sci. and Technol.,1994,20(2).

[24] Descamps I,Harion J L,Baudoin B.Taking-off model of particles with a wide size distribution[J].Chemical Engineering and Processing: Process Intensification2005, 44(2):159-166.

[25] 徐景德,周心权.有源巷道中粉尘运移与浓度分布规律的实验研究[J].湘潭矿业学院学报,1999(02):1-6.

[26] 邹常富,刘勇,马威,等.综掘工作面粉尘的产生及运移规律研究[J].矿业安全与环保,2014,41(06):26-28.

[27] 李艳强.综掘工作面分风降尘理论及应用研究[D].中国矿业大学(北京),2013.

[28] 刘江月.综掘工作面通风除尘实验研究[D].中国矿业大学(北京),2012.

[29] 周刚,聂文,程卫民,等.煤矿综放工作面高压雾化降尘对粉尘颗粒微观参数影响规律分析[J].煤炭学报,2014,39(10):2053-2059.

[30] 王明,蒋仲安,陈举师.不同影响因素条件下综放工作面移架粉尘分布规律实验研究[J].煤矿安全,2016,47(04):56-59.

[31] 蒋仲安.通风除尘中气固两相流动相似理论研究[J].煤炭工程师,1993(04):12-15+42.

[32] 蔡卫,蒋仲安,刘毅.综采工作面喷雾降尘中相似准则数的探讨[J].煤炭学报,2005(02):151-154.

[33] 蒋仲安,金龙哲,袁绪忠,等.掘进巷道中粉尘分布规律的实验研究[J].煤炭科学技术,2001(03):43-45.

[34] 姜婉.综掘工作面压入式通风流场及粉尘运移规律研究[D].河南理工大学,2018.

[35] 赵振保.采煤机截割粉尘扩散运移规律的试验研究[J].北京理工大学学报,2011,31(04):383-386+390.

[36] 王健.采煤工作面回风巷风流中粉尘运移沉降特征研究[D].中国矿业大学(北京),2017.

[37] 汤梦.煤矿井下高压喷雾特性及降尘效果实验研究[D].湖南科技大学,2015.

[38] 谭烜昊.煤尘湿润特性及喷雾降尘效率实验研究[D].湖南科技大学,2019.

[39] 裴叶.矿用喷雾降尘技术中焦煤抑尘剂的实验研究[D].湖南科技大学,2019.

[40] 李静海.颗粒流体复杂系统的多尺度模拟[M].北京:科学出版社, 2005.

[41] 樊建人,姚军,张新育,等.气固两相流中颗粒-颗粒随机碰撞新模型[J].工程热物理学报,2001(05):629-632.

[42] 岑可法.工程气固多相流动的理论及计算[M]. 杭州:浙江大学出版社,1990.

[43] Nieuwland J J,Annaland M V S,Kuipers J A M,et al. Hydrodynamic modeling of gas/particle flows in riser reactors[J].AIChE Journal,1996,42.

[44] 孙晨,陈凌珊,汤晨旭.气固两相流模型在流场分析中的研究进展[J].上海工程技术大学学报,2011,25(01):49-53.

[45] 王维,李佑楚.颗粒流体两相流模型研究进展[J].化学进展,2000(02):208-217.

[46] 陈东春,徐培铭,李燃.煤矿粉尘现状及综合防治技术探讨[J].矿业工程,2010,8 (03):59-62.

[47] 李德文,隋金君,刘国庆,等.中国煤矿粉尘危害防治技术现状及发展方向[J].矿业安全与环保,2019,46(06):1-7+13.

[48] Zhongwei Wang,Ting Ren.Investigation of airflow and respirable dust flow behaviour above an underground bin[J].Powder Technology,2013,250.

[49] 赵卫强,句海洋,陈磊.采煤机截割粉尘扩散运移规律研究[J].煤炭工程,2017,49(11):109-111+115.

[50] 蒋仲安,陈举师,牛伟,等.皮带运输巷道粉尘质量浓度分布规律的数值模拟[J].北京科技大学学报,2012,34(09):977-981.

[51] 陈举师,蒋仲安,姜兰.胶带输送巷道粉尘分布及其影响因素的实验研究[J].煤炭学报,2014,39(01):135-140.

[52] 周刚,张琦,白若男,等.大采高综采面风流-呼尘耦合运移规律CFD数值模拟[J].中国矿业大学学报,2016,45(04):684-693.

[53] 王洪胜,谭聪,蒋仲安,等.综放面多尘源粉尘分布规律数值模拟及实测[J].哈尔滨工业大学学报,2015,47(08):106-112.

[54] 张辛亥,尚治州,冯振,等.大采高综采工作面风流-呼吸带粉尘分布数值模拟[J].安全与环境学报,2021,21(02):570-575.

[55] 张琦,白若男,马骁,等.综采工作面风流-粉尘运移规律的数值模拟[J].工业安全与环保,2015,41(12):96-99.

[56] 李金龙,吴玉庭,赵益芳.综采工作面粉尘粒径分布的数值模拟[J].中国煤炭,2014( 7) : 113-118.

[57] 雷猛.基于时间尺度的综采工作面粉尘运移规律研究[J].煤矿安全,2019,50(03):185-188.

[58] 郭玉峰,郝永江,李云龙,等.综放工作面转载破碎粉尘扩散运移规律分析[J].煤炭工程,2022,54(02):73-77.

[59] 李智翼.不同厚度煤层综采工作面粉尘分布规律研究[D].中国矿业大学,2016.

[60] 王峰,冯博,王乃国.综采面截割-移架尘源粉尘沉积附壁规律研究[J].煤炭技术,2019,38(10):97-99.

[61] 尚治州.大采高综采工作面呼吸带风流及粉尘运移数值模拟研究[D].西安科技大学,2020.

[62] 任志峰,李远知,武建君,等.采煤机割煤产尘及粉尘运移规律的数值模拟[J].煤矿安全,2021,52(07):170-174.DOI:10.13347/j.cnki.mkaq.2021.07.032.

[63] 李世勇.综采面采煤机割煤粉尘运移规律及降尘技术[J].山东煤炭科技,2020 (02):82-85.

[64] 谭聪,蒋仲安,王明,等.综放工作面多尘源粉尘扩散规律的相似实验[J].煤炭学报,2015,40(01):122-127.

[65] 文伟杰,李宁.综掘工作面通风除尘合理压抽比实践与试验研究[J].山西焦煤科技,2020,44(10):21-24.

[66] Jianping Wei, Xiangyu Xu, Wan Jiang. Influences of ventilation parameters on flow field and dust migration in an underground coal mine heading[J]. Scientific Reports,2020,10(3).

[67] M. I.Fes’kov.Energy estimate of dust suppression by spraying in mine workings[J]. Soviet Mining Science,1979,14(5).

[68] 马素平,寇子明.喷雾降尘机理的研究[J].煤炭学报,2005(03):297-300.

[69] Zhou Q., Qin B.T., Wang J., et al. Effects of preparation parameters on the wetting features of surfactant-magnetized water for dust control in Luwa mine, China[J]. Powder Technology, 2018, 326: 7-15.

[70] 耿卫国,宋丽华,宋强,等.煤矿粉尘化学抑尘剂的试验研究[J].煤矿安全,2018,49(11):33-38.

[71] 张江石,刘绍灿,范召兖.新型煤尘化学抑尘剂配方优选实验[J].煤矿安全,2020,51(06):31-36.

中图分类号:

 TD714    

开放日期:

 2022-06-20    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式