- 无标题文档
查看论文信息

论文中文题名:

 沟壑区浅埋煤层开采覆岩裂隙演化及结构 失稳致灾机理    

姓名:

 赵周妍    

学号:

 21203226090    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 能源学院    

专业:

 资源与环境    

研究方向:

 矿山压力与岩层控制    

第一导师姓名:

 王红伟    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-21    

论文答辩日期:

 2024-06-05    

论文外文题名:

 The formation mechanism of overburden strata movement and dynamic and static load mine pressure disaster in shallow coal seam mining in the gully area    

论文中文关键词:

 浅埋煤层 ; 沟壑地形 ; 裂隙演化 ; 结构失稳 ; 灾害治理    

论文外文关键词:

 Gully area ; shallow coal seam ; fissure evolution ; disaster zoning ; comprehensive prevention and control    

论文中文摘要:

榆神府矿区赋存丰富的煤炭资源,多为浅埋深、薄基岩,地表沟壑密布,地层连续性遭到破坏,采动裂隙发育引发顶板结构失稳,导致灾害控制工作面临更多挑战。本文针对沟壑区浅埋煤层开采致灾机理的关键问题,以锟源煤矿典型沟壑区浅埋煤层为工程背景,通过现场监测、数值计算、相似模拟和理论分析等综合研究方法,系统分析了沟壑区浅埋煤层开采过程中采动裂隙演化和顶板结构失稳致灾机理,主要研究结果如下:

(1)过沟开采中,113101工作面一号沟壑逆坡段下部及二号沟壑沟谷段最大位移值分别为1.7 m、1.0 m,二号沟壑顺坡段中下部及一号沟壑沟谷段分别形成应力集中,应力峰值分别为17.4MPa、14.5MPa。沟壑区顺坡段呈“受压”状态,逆坡段呈“受拉”状态,位移量变化程度由大到小依次为:沟谷段、逆坡段、顺坡段。

(2)工作面推进过程中沟壑区不同区域的裂隙发育特征各不相同,塌陷型裂隙主要分布在逆坡段,拉伸型裂隙主要分布在顺坡段,滑动性裂隙则多见于沟谷段。大部分裂隙表现为“形成-发育-缩小/愈合”动态演化特征。对线性载荷作用下基岩结构失稳引发的裂隙发育形态进行分类并得出四种采动裂隙发育曲线,采动裂隙发育特征与“岩链”块体回转过程之间的联系表现为:“岩链”块体回转次数愈多,裂隙动态变化程度愈复杂。

(3)根据沟壑区浅埋煤层采动覆岩运移及应力分布规律将顶板结构的失稳类型主要分为两种:拉伸型和垮塌型,分别由水平拉应力集中引起的岩层位移和垂直压应力集中引起的覆岩塌陷所致。顺坡段关键岩块发生失稳,易引发突水溃沙灾害;逆坡段关键岩块发生失稳,会间接导致覆岩形成“大范围完整岩块”,引发压架事故的产生;沟谷段区域顶板切落易形成塌陷型裂隙,易造成工作面压架和沟体滑坡塌陷灾害。

(4)对工作面过沟开采区域进行灾害区域划分,不同灾害间相互影响又相互制约。沟体滑坡抑制工作面突水溃沙但促进压架灾害产生,顶板切落压架同时促进突水溃沙和沟体滑坡灾害,切顶压架同时促进沟体滑坡和突水溃沙灾害。根据覆岩灾害产生区域及作用特征,提出了顺坡段移除水沙、逆坡段注浆加固、沟谷段及逆坡段中下部岩层预裂等综合防治措施,为工作面安全高效回采提供相应研究基础。

论文外文摘要:

The Yushenfu mining area contains abundant coal resources, most of which are shallowly buried with thin bedrock. The surface is densely covered with ravines, which disrupt the continuity of the strata, leading to the development of mining-induced fractures and destabilizing the roof structure, thereby posing significant challenges for disaster control. This paper addresses the key issues related to the disaster mechanism in shallow-buried coal seam mining in ravine areas, using the shallow-buried coal seam in the typical ravine area of Kunyuan Coal Mine as an engineering background. Through comprehensive research methods including on-site monitoring, numerical calculations, similar simulations, and theoretical analysis, we systematically analyze the evolution of mining-induced fractures and the mechanism of roof structure instability during shallow-buried coal seam mining in ravine areas. The main research results are as follows:

(1) During mining across ravines, the maximum displacement values in the lower part of the reverse slope section of Ravine No. 1 and the valley section of Ravine No. 2 in the 113101 working face were 1.7 m and 1.0 m, respectively. Stress concentration formed in the middle and lower parts of the down-slope section of Ravine No. 2 and the valley section of Ravine No. 1, with stress peak values of 17.4 MPa and 14.5 MPa, respectively. The down-slope section of the ravine area is in a "compressed" state, the reverse slope section is in a "tensile" state, and the degree of displacement variation decreases in the following order: valley section, reverse slope section, down-slope section.

(2) During the working face advancement, the characteristics of fracture development vary across different regions of the ravine area. Collapse-type fractures are mainly distributed in the reverse slope section, tensile-type fractures in the down-slope section, and sliding-type fractures are mostly found in the valley section. Most fractures exhibit a dynamic evolution characterized by "formation-development-reduction/healing." The fracture development patterns caused by bedrock structure instability under linear load were classified, resulting in four types of mining-induced fracture development curves. The relationship between mining-induced fracture development characteristics and the "rock chain" block rotation process is shown as: the more rotations of the "rock chain" blocks, the more complex the dynamic changes of fractures.

(3) Based on the migration and stress distribution patterns of the overburden during shallow-buried coal seam mining in ravine areas, the types of roof structure instability are mainly classified into two types: tensile and collapse. These are respectively caused by horizontal tensile stress concentration leading to rock layer displacement and vertical compressive stress concentration leading to overburden collapse. Instability of key rock blocks in the down-slope section can easily lead to water inrush and sand burst disasters. Instability of key rock blocks in the reverse slope section can indirectly form a "large-scale intact rock block" in the overburden, leading to press frame accidents. Roof cutting in the valley section tends to form collapse-type fractures, causing press frame accidents and ravine slope collapses.

(4) Disaster zones are delineated for the working face across ravine mining areas, with different disasters influencing and restraining each other. Ravine slope collapse inhibits water inrush and sand burst but promotes press frame disasters. Roof cutting and press frames simultaneously promote water inrush, sand burst, and ravine slope collapses. Comprehensive prevention and control measures, such as water and sand removal in the down-slope section, grouting reinforcement in the reverse slope section, and pre-splitting of rock layers in the middle and lower parts of the valley and reverse slope sections, are proposed based on the characteristics and regions of overburden disasters. This provides a research basis for the safe and efficient recovery of the working face.

中图分类号:

 TD323    

开放日期:

 2024-06-24    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式