- 无标题文档
查看论文信息

论文中文题名:

 人工湿地-微生物燃料电池对水中五价钒的去除研究    

姓名:

 关艳香    

学号:

 22209085037    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0830    

学科名称:

 工学 - 环境科学与工程(可授工学、理学、农学学位)    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2025    

培养单位:

 西安科技大学    

院系:

 地质与环境学院    

专业:

 环境科学与工程    

研究方向:

 水污染控制与生态修复    

第一导师姓名:

 刘慎坦    

第一导师单位:

 西安科技大学    

论文提交日期:

 2025-06-16    

论文答辩日期:

 2025-06-03    

论文外文题名:

 Study on removal of vanadium pentavalent from water by microbial fuel cell in constructed wetlands    

论文中文关键词:

 人工湿地 ; 微生物燃料电池 ; 产电性能 ; V(Ⅴ)去除 ; 微生物群落    

论文外文关键词:

 Constructed wetland ; Microbial fuel cell ; power generation performance ; V(V) removal ; Microbial community    

论文中文摘要:

重金属废水治理一直是环保领域的难题。钒(V)作为常见的重金属污染物,自身毒性虽低,但其化合物却对人体、生物及环境呈现中等毒性,且化合价态越高毒性越强,其中五价钒毒性最为突出。相较于传统处理工艺,人工湿地耦合微生物燃料电池(CW-MFC)系统成本更低、操作简便、环境友好,还不会造成二次污染。本研究将CW-MFC系统用于含钒废水处理,通过调整碳源类型、COD浓度、进水V(Ⅴ)浓度和植物种类等因素确定最优运行参数,并基于此开展后续实验以优化污染物去除效果。利用X射线光电子能谱(XPS)等技术对反应结束后的碳毡进行表征,从金属价态角度分析五价钒的去除途径。通过分析微生物群落组成的差异性和多样性,从微观角度探究植物、CW-MFC系统以及系统内的微生物对废水中钒去除的协同作用,并阐明微生物产电性能对含钒废水中钒的去除与转化影响。研究结果表明:

(1)乙酸钠作为碳源时,CW-MFC系统的产电以及对氨氮、总氮的去除率均优于其他碳源。COD浓度通过调控异化金属还原菌的活性影响V(Ⅴ)的去除和系统产电性能,当COD浓度为420 mg/L时对系统促进作用最佳。湿地植物显著强化了CW-MFC的产电性能和五价钒的去除,水葱、泽泻、风车草和水烛四种湿地植物对CW-MFC系统的影响具有显著差异。采用水葱作为湿地植物时,系统对150 mg/L V(Ⅴ)的去除效率最大,达98.86%。

(2)实验过程中观察到生成的蓝绿色沉淀即为还原产物,随着反应时间延长而增多。XPS分析显示,碳毡在517-520 eV范围内存在钒的V2p峰,分峰结果显示:517.67 eV(V(Ⅴ)的2p3/2轨道)和523.61 eV(V(Ⅴ)的2p1/2轨道)对应五价钒,516.74 eV峰对应四价钒。四价钒的生成证实钒从+5价被还原至+4价,形成更易沉淀的形态。CW-MFC系统中五价钒的去除是植物吸收、生物电化学还原、基质吸附与电极共沉淀协同作用的结果,实验结束后,植物各部位均检测到五价钒,表明其富集能力对系统净化具有重要贡献。

(3)CW-MFC阴阳极的微生物群落组成存在有明显差异,样品中含有酸杆菌门(Acidobacteriota)、变形菌门(Proteobacteria)、放线菌门(Actinobactesriota)等优势菌门。变形菌门(Proteobacteria)和放线菌门(Actinobactesriota)、拟杆菌门(Bacteroidota)、Geobacter作为常见的电活性细菌,有力推动了系统产电,不但参与了有机物的降解过程,还通过促进电子转移强化五价钒还原。硝化螺旋菌属(Nitrospira)和硝基念珠菌属(Candidatus_Nitrotoga)是常见的硝化菌,参与了反硝化过程的进行。铁矿单胞菌属(Arenimonas)、新草螺菌(Noviherbaspirillum)可以在微电解环境下对水体中的金属污染物进行还原和去除。

论文外文摘要:

The treatment of heavy metal wastewater has always been a difficult problem in the field of environmental protection. Vanadium (V), as a common heavy metal pollutant, has low toxicity itself, but its compounds show moderate toxicity to humans, organisms and the environment, and the higher the valence state, the stronger the toxicity, among which pentavalent vanadium has the most prominent toxicity. Compared with traditional treatment processes, the constructed wetland coupled with microbial fuel cell (CW-MFC) system has lower cost, simpler operation, is environmentally friendly, and does not cause secondary pollution. This study applied the CW-MFC system to the treatment of vanadium-containing wastewater, and determined the optimal operating parameters by adjusting factors such as carbon source type, COD concentration, influent V(V) concentration and plant species. Based on this, subsequent experiments were carried out to optimize the removal effect of pollutants. The carbon felt after the reaction was characterized by X-ray photoelectron spectroscopy (XPS) and other techniques, and the removal pathway of pentavalent vanadium was analyzed from the perspective of metal valence state. By analyzing the differences and diversity of microbial community composition, the synergistic effect of plants, the CW-MFC system and the microorganisms within the system on the removal of vanadium in wastewater was explored from a microscopic perspective, and the influence of microbial electricity production performance on the removal and transformation of vanadium in vanadium-containing wastewater was clarified. The research results show that:

(1) When sodium acetate is used as the carbon source, the power generation of the CW-MFC system and the removal rates of ammonia nitrogen and total nitrogen are better than those of other carbon sources. The COD concentration affects the removal of V(V) and the power generation performance of the system by regulating the activity of dissimilatory metal-reducing bacteria. When the COD concentration is 420 mg/L, the promoting effect on the system is the best. Wetland plants significantly enhance the power generation performance of the CW-MFC and the removal of pentavalent vanadium. The four wetland plants, namely Acorus calamus, Euryale ferox, Cyperus alternifolius and Typha angustifolia, have significant differences in their effects on the CW-MFC system. When Acorus calamus is used as the wetland plant, the system has the highest removal efficiency of 150 mg/L V(V), reaching 98.86%.

(2) During the experiment, the blue-green precipitate observed was the reduction product, which increased with the extension of the reaction time. XPS analysis showed that there was a V2p peak of vanadium in the range of 517-520 eV on the carbon felt. The peak splitting results indicated that 517.67 eV (2p3/2 orbital of V(V)) and 523.61 eV (2p1/2 orbital of V(V)) corresponded to pentavalent vanadium, and the 516.74 eV peak corresponded to tetravalent vanadium. The generation of tetravalent vanadium confirmed that vanadium was reduced from +5 to +4, forming a more easily precipitated form. The removal of pentavalent vanadium in the CW-MFC system is the result of the synergistic action of plant absorption, bioelectrochemical reduction, substrate adsorption and electrode co-precipitation. After the experiment, pentavalent vanadium was detected in all parts of the plants, indicating that their enrichment ability makes an important contribution to the system purification.

(3) There are significant differences in the microbial community composition of the anode and cathode of the CW-MFC system. The samples contain dominant phyla such as Acidobacteriota, Proteobacteria, and Actinobactesriota. Proteobacteria, Actinobactesriota, Bacteroidota, and Geobacter, as common electroactive bacteria, strongly promote the power generation of the system. They not only participate in the degradation of organic matter but also enhance the reduction of pentavalent vanadium by promoting electron transfer. Nitrospira and Candidatus Nitrotoga, as common nitrifying bacteria, participate in the denitrification process. Arenimonas and Noviherbaspirillum can reduce and remove metal pollutants in water under micro-electrolytic conditions.

参考文献:

[1] Li X, Zhu W, Meng G, et al. Efficiency and kinetics of conventional pollutants and tetracyclines removal in integrated vertical-flow constructed wetlands enhanced by aeration [J]. Journal of Environmental Management, 2020, 273: 111120.

[2] Samal K, Dash RR, Bhunia P. Design and development of a hybrid macrophyte assisted vermifilter for the treatment of dairy wastewater: A statistical and kinetic modelling approach [J]. Science of the Total Environment, 2018, 645: 156-169.

[3] 王晨雪. 简述国内钒资源开发利用情况 [J]. 新疆有色金属, 2023, 46(5): 19-20.

[4] 简小枚, 汪鹏, 陈玮. 中国钒资源全生命周期动态物质流分析 [J]. 科技导报, 2022, 40(8): 127-136.

[5] 李楠, 马力言, 曹瑞. 钛合金用钒铝中间合金技术概述 [J]. 金属世界, 2021, (4): 25-28.

[6] 任学佑. 稀有金属钒的应用现状及市场前景 [J]. 稀有金属, 2003, (6): 809-812.

[7] 时金玲, 余良晖. 国内外钒资源供需分析与思考 [J]. 中国矿业, 2025, 34(1): 63-69.

[8] 陈东辉, 李九江, 赵备备. 战略资源金属钒的绿色价值概述 [J]. 世界有色金属, 2018, (20): 1-3.

[9] Li C, rong LJ, Jing G, et al. Vanadium in Soil-Plant System: Source, Fate, Toxicity, and Bioremediation [J]. Journal of Hazardous Materials, 2020, 405: 124200.

[10] Concetta P, Javad S, Jidong K, et al. The effect of vanadium on microstrain partitioning and localized damage during deformation of unnotched and notched DP1300 steels [J]. International Journal of Plasticity, 2022, 158: 103435.

[11] Bing C, Jian W, Xueting L, et al. Vanadium dioxide plates reduced graphene oxide as sulfur cathodes for efficient polysulfides trap in long-life lithium-sulfur batteries [J]. Journal of Colloid and Interface Science, 2023, 629: 1003-1011.

[12] Sajjad H, Imran S, Ahmed BJ, et al. Synthesis and characterization of vanadium ferrites, electrochemical sensing of acetaminophen in biological fluids and pharmaceutical samples [J]. Ceramics International, 2023, 49(5): 8165-8171.

[13] 牟俊, 肖艳, 毛柠. 浅析国内钒电池产业现状及发展趋势 [J]. 四川化工, 2023, 26(4): 4-8+20.

[14] Qilang W, Xing L, Bohai L, et al. Thermal conductivity of V2O5 nanowires and their contact thermal conductance [J]. Nanoscale, 2020, 12(2): 1138-1143.

[15] Yao J, Li Y, Massé RC, et al. Revitalized interest in vanadium pentoxide as cathode material for lithium-ion batteries and beyond [J]. Energy Storage Materials, 2018, 11: 205-259.

[16] López L, Mónaco SL, Galarraga F, et al. VNi ratio in maltene and asphaltene fractions of crude oils from the west Venezuelan basin: correlation studies [J]. Chemical Geology, 1994, 119(1): 255-262.

[17] Xiao XY, Yang M, Guo ZH, et al. Soil vanadium pollution and microbial response characteristics from stone coal smelting district [J]. Transactions of Nonferrous Metals Society of China, 2015, 25(4): 1271-1278.

[18] Imtiaz M, Rizwan MS, Xiong S, et al. Vanadium, recent advancements and research prospects: A review [J]. Environment International, 2015, 80: 79-88.

[19] Pu ZS, Fan KK, Song GQ. Cross section measurements for (n, p) reaction on stannum isotopes at neutron energies from 13.5 to 14.6 MeV [J]. Chinese Physics C, 2011, 35(5): 445-448.

[20] Larsson MA, Baken S, Smolders E, et al. Vanadium bioavailability in soils amended with blast furnace slag [J]. Journal of Hazardous Materials, 2015, 296: 158-165.

[21] Shaheen SM, Alessi DS, Tack FMG, et al. Redox chemistry of vanadium in soils and sediments: Interactions with colloidal materials, mobilization, speciation, and relevant environmental implications-A review [J]. Advances in Colloid and Interface Science, 2019, 265: 1-13.

[22] Yuan W. Reduction of vanadium(V) in a microbial fuel cell: V(IV) Migration and Electron Transfer Mechanism [J]. International Journal of Electrochemical Science, 2018, 13(11): 11024-11037.

[23] Geng R, Zhang B, Cheng H, et al. Pyrrhotite-dependent microbial reduction and magnetic separation for efficient vanadium detoxification and recovery in contaminated aquifer [J]. Water Research, 2024, 251: 121143.

[24] 曾英, 倪师军, 张成江. 钒的生物效应及其环境地球化学行为 [J]. 地球科学进展, 2004, (1): 472-476.

[25] 陈婷, 李超, 杨金燕. 富铁营养液中五价钒对胭脂红景天生长及养分吸收的影响 [J]. 西南农业学报, 2015, 28(1): 359-365.

[26] 王珏, 潘伟丽, 金光明. 钒水平对闽中麻鸡免疫器官发育的影响 [J]. 中国兽医学报, 2009, 29(6): 782-787.

[27] 杨金燕, 唐亚, 李廷强. 我国钒资源现状及土壤中钒的生物效应 [J]. 土壤通报, 2010, 41(6): 1511-1517.

[28] Khan S, Kazi TG, Kolachi NF, et al. Hazardous impact and translocation of vanadium (V) species from soil to different vegetables and grasses grown in the vicinity of thermal power plant [J]. Journal of Hazardous Materials, 2011, 190(1-3): 738-743.

[29] Can TO, Cengiz T, Harun B, et al. Evaluation of an innovative approach based on prototype engineered wetland to control and manage boron (B) mine effluent pollution [J]. Environmental science and pollution research international, 2016, 23(19): 19302-19316.

[30] Temel FA, Özyazıcı G, Uslu VR, et al. Full scale subsurface flow constructed wetlands for domestic wastewater treatment: 3 years' experience [J]. Environmental Progress & Sustainable Energy, 2018, 37(4): 1348-1360.

[31] Sgroi M, Pelissari C, Roccaro P, et al. Removal of organic carbon, nitrogen, emerging contaminants and fluorescing organic matter in different constructed wetland configurations [J]. Chemical Engineering Journal, 2018, 332: 619-627.

[32] Zhang X, Hu Z, Ngo HH, et al. Simultaneous improvement of waste gas purification and nitrogen removal using a novel aerated vertical flow constructed wetland [J]. Water Research, 2018, 130: 79-87.

[33] Mustafa A, Scholz M, Harrington R, et al. Long-term performance of a representative integrated constructed wetland treating farmyard runoff [J]. Ecological Engineering, 2008, 35(5): 779-790.

[34] Khan S, Ahmad I, Shah MT, et al. Use of constructed wetland for the removal of heavy metals from industrial wastewater [J]. Journal of Environmental Management, 2009, 90(11): 3451-3457.

[35] Spokas L A, Veneman P L M, Simkins S C, et al. Performance evaluation of a constructed wetland treating high-ammonium primary domestic wastewater effluent [J]. Water environment research : a research publication of the Water Environment Federation, 2010, 82(7): 592-600.

[36] Shamil JS, Jumaah Ghufran F, Abbas Talib R. Photosynthetic Microbial Desalination Cell to Treat Oily Wastewater Using Microalgae Chlorella Vulgaris [J]. Civil Engineering Journal, 2019, 5(12): 2686-2699.

[37] Asma M, Bahman Y, Ebrahim P, et al. Investigated of Desalination of Saline Waters by Using Dunaliella Salina Algae and Its Effect on Water Ions [J]. Civil Engineering Journal, 2019, 5(11): 2450-2460.

[38] Wang Y, Liu Y, Zhan W, et al. Long-term stabilization of Cd in agricultural soil using mercapto-functionalized nano-silica (MPTS/nano-silica): A three-year field study [J]. Ecotoxicology and Environmental Safety, 2020, 197: 110600.

[39] Xiaoling L, Ke Z, Liangqian F, et al. Intermittent micro-aeration control of methane emissions from an integrated vertical-flow constructed wetland during agricultural domestic wastewater treatment [J]. Environmental science and pollution research international, 2018, 25(24): 24426-24444.

[40] Yin T, Te SH, Reinhard M, et al. Biotransformation of Sulfluramid (N-ethyl perfluorooctane sulfonamide) and dynamics of associated rhizospheric microbial community in microcosms of wetland plants [J]. Chemosphere, 2018, 211: 379-389.

[41] 杨雪萌, 徐瑜, 游少鸿. 不同人工湿地对Cd去除的影响 [J]. 桂林理工大学学报, 2025: 1-11.

[42] 李俊明, 肖蓉, 胡艳萍. 添加互花米草碎屑的人工湿地对阿特拉津和重金属的净化效果 [J]. 湿地科学, 2024, 22(3): 405-417.

[43] 伍德, 张威宇, 刘玉玲. 三级模拟人工湿地对镉钨复合污染废水净化研究 [J]. 农业环境科学学报, 2023, 42(6): 1368-1378.

[44] 陈柯沁, 郝庆菊. 人工湿地不同基质配置对复合重金属污水的长期处理效果 [J]. 环境工程学报, 2023, 17(2): 497-506+348.

[45] 武坤, 孔潇, 董郁. 人工湿地植物对污水中重金属铬、镉、铅富集能力的整合分析 [J]. 江苏农业学报, 2022, 38(6): 1532-1540.

[46] 王新帅, 董堃, 杨秀玖. 竹炭人工湿地净化铁锰效果及其微生物群落 [J]. 环境科学与技术, 2022, 45(3): 73-80.

[47] 张鹏东. 铁/锰-木块基质垂直流人工湿地处理钒和硒污染废水研究 [D]. 长春; 吉林大学, 2024.

[48] Chi Z, Li W, Zhang P, et al. Simultaneous removal of vanadium and nitrogen in two-stage vertical flow constructed wetlands: Performance and mechanisms [J]. Chemosphere, 2024, 367: 143663.

[49] Quan X, Mei Y, Xu H, et al. Optimization of Pt-Pd alloy catalyst and supporting materials for oxygen reduction in air-cathode Microbial Fuel Cells [J]. Electrochimica Acta, 2015, 165: 72-77.

[50] Santoro C, Arbizzani C, Erable B, et al. Microbial fuel cells: From fundamentals to applications. A review [J]. Journal of Power Sources, 2017, 356: 225-244.

[51] Khawaji AD, Kutubkhanah IK, Wie J-M. Advances in seawater desalination technologies [J]. Desalination, 2007, 221(1): 47-69.

[52] Du H, Li F. Enhancement of solid potato waste treatment by microbial fuel cell with mixed feeding of waste activated sludge [J]. Journal of Cleaner Production, 2016, 143: 336-344.

[53] Rezk H, Sayed ET, Al-Dhaifallah M, et al. Fuel cell as an effective energy storage in reverse osmosis desalination plant powered by photovoltaic system [J]. Energy, 2019, 175: 423-433.

[54] Altaee A, Millar GJ, Zaragoza G. Integration and optimization of pressure retarded osmosis with reverse osmosis for power generation and high efficiency desalination [J]. Energy, 2016, 103: 110-118.

[55] Ardakani MN, Gholikandi GB. Microbial fuel cells (MFCs) in integration with anaerobic treatment processes (AnTPs) and membrane bioreactors (MBRs) for simultaneous efficient wastewater/sludge treatment and energy recovery -A state-of-the-art review [J]. Biomass and Bioenergy, 2020, 141: 105726.

[56] 田彩星. 基于生物电化学系统强化五价钒去除的机理研究 [D]. 北京; 中国地质大学, 2015.

[57] Juanping Z, Taiping Z, Nengwu Z, et al. Bioelectricity generation by wetland plant-sediment microbial fuel cells (P-SMFC) and effects on the transformation and mobility of arsenic and heavy metals in sediment [J]. Environmental geochemistry and health, 2019, 41(5): 2157-2168.

[58] Qiu R, Zhang B, Li J, et al. Enhanced vanadium (V) reduction and bioelectricity generation in microbial fuel cells with biocathode [J]. Journal of Power Sources, 2017, 359: 379-383.

[59] 梁柱元. 微生物燃料电池还原废水中六价铬与回收氧化铬的效能 [D]. 哈尔滨; 哈尔滨工业大学, 2018.

[60] 罗倩, 林凤莲, 陈灿. 人工湿地植物根际微生物对4种污水重金属元素的净化能力 [J]. 西南农业学报, 2022, 35(1): 176-185.

[61] Hao L, Zhang B, Cheng M, et al. Effects of various organic carbon sources on simultaneous V(V) reduction and bioelectricity generation in single chamber microbial fuel cells [J]. Bioresource Technology, 2016, 201: 105-110.

[62] Zhang B, Feng C, Ni J, et al. Simultaneous reduction of vanadium (V) and chromium (VI) with enhanced energy recovery based on microbial fuel cell technology [J]. Journal of Power Sources, 2012, 204: 34-39.

[63] Doherty L, Zhao Y, Zhao X, et al. A review of a recently emerged technology: Constructed wetland-Microbial fuel cells [J]. Water Research, 2015, 85: 38-45.

[64] Benjamin E, Luc E, Alain B. From microbial fuel cell (MFC) to microbial electrochemical snorkel (MES): maximizing chemical oxygen demand (COD) removal from wastewater [J]. Biofouling, 2011, 27(3): 319-326.

[65] Di L, Li Y, Nie L, et al. Influence of plant radial oxygen loss in constructed wetland combined with microbial fuel cell on nitrobenzene removal from aqueous solution [J]. Journal of Hazardous Materials, 2020, 394: 122542.

[66] Wen H, Zhu H, Yan B. Treatment of typical antibiotics in constructed wetlands integrated with microbial fuel cells: Roles of plant and circuit operation mode [J]. Ecology, Environment & Conservation, 2020, 250: 126252.

[67] Wen H, Zhu H, Yan B, et al. Treatment of typical antibiotics in constructed wetlands integrated with microbial fuel cells: Roles of plant and circuit operation mode [J]. Chemosphere, 2020, 250: 126252.

[68] 嵇斌, 赵亚乾, 杨扬. 人工湿地微生物燃料电池耦合系统对典型全氟化合物的去除效果 [J]. 水生生物学报, 2022, 46(10): 1429-1436.

[69] Yadav AK, Dash P, Mohanty A, et al. Performance assessment of innovative constructed wetland-microbial fuel cell for electricity production and dye removal [J]. Ecological Engineering, 2012, 47: 126-131.

[70] Chunxia M, Lin W, Li W. Performance of lab-scale microbial fuel cell coupled with unplanted constructed wetland for hexavalent chromium removal and electricity production [J]. Environmental science and pollution research international, 2020, 27(20): 25140-25148.

[71] Liu ST, Qiu DF, Lu FF, et al. Acorus calamus L. constructed wetland-microbial fuel cell for Cr(VI)-containing wastewater treatment and bioelectricity production [J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 103020.

[72] Qiang K, Wenhan G, Ruipeng S, et al. Enhancement of chromium removal and energy production simultaneously using iron scrap as anodic filling material with pyrite-based constructed wetland-microbial fuel cell [J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106630.

[73] Tetteh KF, Philip A, Jing D, et al. Enhanced bioremediation of heavy metals and bioelectricity generation in a macrophyte-integrated cathode sediment microbial fuel cell (mSMFC) [J]. Environmental science and pollution research international, 2019, 26(26): 26829-26843.

[74] Lu W, Dayong X, Qingyun Z, et al. Simultaneous removal of heavy metals and bioelectricity generation in microbial fuel cell coupled with constructed wetland: an optimization study on substrate and plant types [J]. Environmental science and pollution research international, 2021, 29(1): 768-778.

[75] 刘婷婷, 徐大勇, 王璐. 电极间距对CW-MFC处理污泥中Zn和Ni的效果及其产电性能的影响 [J]. 化工进展, 2021, 40(7): 4074-4082.

[76] Zhao CC, Shang DW, Zou YL, et al. Changes in electricity production and microbial community evolution in constructed wetland-microbial fuel cell exposed to wastewater containing Pb(II) [J]. Science of the Total Environment, 2020, 732: 139127.

[77] 唐刚, 石玉翠, 蒋文萱. 人工湿地耦合微生物燃料电池系统对含六价铬废水的净化和产电效果 [J]. 湿地科学, 2023, 21(4): 564-574.

[78] Tang X, Wang L, Zhang Q, et al. Performance optimization for Pb(II)-containing wastewater treatment in constructed wetland-microbial fuel cell triggered by biomass dosage and Pb(II) level [J]. Environmental science and pollution research international, 2024, 31(10): 15039-15049.

[79] Kahrizi H, Garmdareh SEH, Abbassi R. Simultaneous removal of heavy metals and electricity generation from wastewater in constructed wetland-microbial fuel cells [J]. Process Safety and Environmental Protection, 2024, 190: 921-929.

[80] Logan Bruce E, Hamelers B, Rozendal R, et al. Microbial fuel cells: methodology and technology [J]. Environmental Science & Technology, 2006, 40(17): 5181-5192.

[81] 张晓威. CW-MFC性能的影响因素及其对苯酚的去除研究 [D]. 北京; 北京化工大学, 2018.

[82] Doherty L, Zhao Y, Zhao X, et al. Nutrient and organics removal from swine slurry with simultaneous electricity generation in an alum sludge-based constructed wetland incorporating microbial fuel cell technology [J]. Chemical Engineering Journal, 2015, 266: 74-81.

[83] Oscar GP, Yarely BRK, Ulises DC, et al. Bioelectricity production using shade macrophytes in constructed wetlands-microbial fuel cells [J]. Environmental Technology, 2020, 43(10): 31-37.

[84] Wang H, Zhang H, Tang H, et al. Heavy metal pollution characteristics and health risk evaluation of soil around a tungsten-molybdenum mine in Luoyang, China [J]. Environmental Earth Sciences, 2021, 80(7): 293.

[85] Yuntao W, Guanghui G, Degang Z, et al. An integrated method for source apportionment of heavy metal(loid)s in agricultural soils and model uncertainty analysis [J]. Environmental Pollution, 2021, 276: 116666.

[86] Hinojosa AC, Altamirano MJG, Pozo C, et al. Hydraulic retention time drives changes in energy production and the anodic microbiome of a microbial fuel cell (MFC) [J]. Journal of Water Process Engineering, 2024, 59: 104966.

[87] Huang J, Nicholas M, David E-M, et al. Assessing the factors influencing the performance of constructed wetland-microbial fuel cell integration [J]. Water science and technology : a journal of the International Association on Water Pollution Research, 2020, 81(4): 631-643.

[88] Zhang B, Wang S, Diao M, et al. Microbial Community Responses to Vanadium Distributions in Mining Geological Environments and Bioremediation Assessment [J]. Journal of Geophysical Research: Biogeosciences, 2019, 124(3): 601-615.

[89] Ma Y, Li X, Wang X, et al. Enhanced biological phosphorus removal using a novel laboratory-scale sequencing batch reactor operated with controlled iron dosing [J]. Bioresource Technology, 2017, 241: 773-781.

[90] Fang Z, Song H-L, Cang N, et al. Performance of microbial fuel cell coupled constructed wetland system for decolorization of azo dye and bioelectricity generation [J]. Bioresource Technology, 2013, 144: 165-171.

[91] Doherty L, Zhao X, Zhao Y, et al. The effects of electrode spacing and flow direction on the performance of microbial fuel cell-constructed wetland [J]. Ecological Engineering, 2015, 79: 8-14.

[92] Li H, Feng Y, Zou X, et al. Study on microbial reduction of vanadium matallurgical waste water [J]. Hydrometallurgy, 2009, 99(1): 13-17.

[93] Zhang B, Tian C, Liu Y, et al. Simultaneous microbial and electrochemical reductions of vanadium (V) with bioelectricity generation in microbial fuel cells [J]. Bioresource Technology, 2015, 179: 91-97.

[94] S AK. Recovery of chromium, copper and vanadium combined with electricity generation in two-chambered microbial fuel cells [J]. FEMS microbiology letters, 2020, 367(15): 129.

[95] Virdis B, Rabaey K, Rozendal RA, et al. Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells [J]. Water Research, 2010, 44(9): 2970-2980.

[96] Panyu J, Tingsheng Z, Jing B, et al. Nitrogen-containing wastewater fuel cells for total nitrogen removal and energy recovery based on Cl•/ClO• oxidation of ammonia nitrogen [J]. Water Research, 2023, 235: 119914.

[97] He Y, Wang Y, Song X. High-effective denitrification of low C/N wastewater by combined constructed wetland and biofilm-electrode reactor (CW-BER) [J]. Bioresource Technology, 2016, 203: 245-251.

[98] Hong L, Logan Bruce E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane [J]. Environmental Science & Technology, 2004, 38(14): 4040-4046.

[99] 吴姣姣, 黎远梅, 谭东梅. HRT对UASB厌氧反硝化脱氮的影响 [J]. 环境工程学报, 2018, 12(5): 1510-1516.

[100] 王金玲, 晏雨辰, 李巧月. 生物降解柠檬酸及其影响因素的研究进展 [J]. 现代食品科技, 2022, 38(2): 347-357+312.

[101] 唐丹琦, 王娟, 郑天龙. 聚乳酸/淀粉固体缓释碳源生物反硝化研究 [J]. 环境科学, 2014, 35(6): 2236-2240.

[102] 张欣瑞, 池玉蕾, 王倩. 低碳源条件下供氧模式对活性污泥系统脱氮性能的影响 [J]. 环境科学, 2020, 41(7): 3356-3364.

[103] Ortiz-Bernad I, Anderson Robert T, Vrionis Helen A, et al. Vanadium respiration by Geobacter metallireducens: novel strategy for in situ removal of vanadium from groundwater [J]. Applied and environmental microbiology, 2004, 70(5): 3091-3095.

[104] 程铭. 微生物燃料电池去除地下水中五价钒及其微生物群落的研究 [D]. 北京; 中国地质大学, 2016.

[105] Lu N, Zhou S-g, Zhuang L, et al. Electricity generation from starch processing wastewater using microbial fuel cell technology [J]. Biochemical Engineering Journal, 2008, 43(3): 246-251.

[106] Bellenger JP, Xu Y, Zhang X, et al. Possible contribution of alternative nitrogenases to nitrogen fixation by asymbiotic N2-fixing bacteria in soils [J]. Soil Biology and Biochemistry, 2014, 69: 413-420.

[107] Jinxing M, Zhiwei W, Chaowei Z, et al. Analysis of nitrification efficiency and microbial community in a membrane bioreactor fed with low COD/N-ratio wastewater [J]. Plos One, 2013, 8(5): 63059.

[108] Villaseñor J, Capilla P, Rodrigo MA, et al. Operation of a horizontal subsurface flow constructed wetland-Microbial fuel cell treating wastewater under different organic loading rates [J]. Water Research, 2013, 47(17): 6731-6738.

[109] Zhang B, Hao L, Tian C, et al. Microbial reduction and precipitation of vanadium (V) in groundwater by immobilized mixed anaerobic culture [J]. Bioresource Technology, 2015, 192: 410-417.

[110] Rabaey K, Verstraete W. Microbial fuel cells: novel biotechnology for energy generation [J]. Trends in Biotechnology, 2005, 23(6): 291-298.

[111] Logan BE, Bert H, René R, et al. Microbial fuel cells: methodology and technology [J]. Environmental Science & Technology, 2006, 40(17): 5181-5192.

[112] Bond Daniel R, Lovley Derek R. Electricity production by Geobacter sulfurreducens attached to electrodes [J]. Applied and environmental microbiology, 2003, 69(3): 1548-1555.

[113] Park DH, Kim SK, Shin IH, et al. Electricity production in biofuel cell using modified graphite electrode with Neutral Red [J]. Biotechnology Letters, 2000, 22(16): 1301-1304.

[114] 景明霞. 潜流人工湿地处理稀土氨氮废水的实验研究 [J]. 科学技术与工程, 2015, 15(10): 247-252.

[115] 王文林, 韩睿明, 王国祥. 湿地植物根系泌氧及其在自然基质中的扩散效应研究进展 [J]. 生态学报, 2015, 35(22): 7286-7297.

[116] Fei YM, Zhang BG, Chen DD, et al. The overlooked role of denitrifying bacteria in mediating vanadate reduction [J]. Geochimica et Cosmochimica Acta, 2023, 361: 67-81.

[117] 邹宝方, 何增耀. 钒对大豆生长的影响 [J]. 农业环境科学学报, 1992, (6): 261-263+277.

[118] 付春平, 唐运平, 李江华. 水葱湿地对泰达景观河道水质净化特性研究 [J]. 环境科学与技术, 2006, (7): 6-8+115.

[119] Zhao K, Han W, Tang Z, et al. Investigation of coating technology and catalytic performance over monolithic V2O5-WO3/TiO2 catalyst for selective catalytic reduction of NOx with NH3 [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 503: 53-60.

[120] 杨盟, 张宝刚, 李家欣. 微生物燃料电池修复钒污染地下水的响应曲面优化研究 [J]. 北京大学学报(自然科学版), 2018, 54(4): 865-872.

[121] Shi C, Cui Y, Lu J, et al. Sulfur-based autotrophic biosystem for efficient vanadium (V) and chromium (VI) reductions in groundwater [J]. Chemical Engineering Journal, 2020, 395: 124972.

[122] Zhang R, Leiviskä T. Surface modification of pine bark with quaternary ammonium groups and its use for vanadium removal [J]. Chemical Engineering Journal, 2020, 385: 123967.

[123] Peacock CL, Sherman DM. Vanadium(V) adsorption onto goethite (α-FeOOH) at pH 1.5 to 12: a surface complexation model based on ab initio molecular geometries and EXAFS spectroscopy [J]. Geochimica et Cosmochimica Acta, 2003, 68(8): 1723-1733.

[124] Lu L, Xing D, Ren N. Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H2 production from waste activated sludge [J]. Water Research, 2012, 46(7): 2425-2434.

[125] Hao L, Zhang B, Tian C, et al. Enhanced microbial reduction of vanadium (V) in groundwater with bioelectricity from microbial fuel cells [J]. Journal of Power Sources, 2015, 287: 43-49.

[126] Galletti A, Verlicchi P, Ranieri E. Removal and accumulation of Cu, Ni and Zn in horizontal subsurface flow constructed wetlands: Contribution of vegetation and filling medium [J]. Science of the Total Environment, 2010, 408(21): 5097-5105.

[127] Zhang B, Zhao H, Zhou S, et al. A novel UASB-MFC-BAF integrated system for high strength molasses wastewater treatment and bioelectricity generation [J]. Bioresource Technology, 2009, 100(23): 5687-5693.

[128] Zhang B, Zhao H, Shi C, et al. Simultaneous removal of sulfide and organics with vanadium(V) reduction in microbial fuel cells [J]. Journal of Chemical Technology & Biotechnology, 2009, 84(12): 1780-1786.

[129] Mu C, Huang K, Wang L. Constructed wetland coupled microbial fuel cell (CW-MFC) with Phragmites australis planted for hexavalent chromium removal and electricity generation [J]. Journal of Water Process Engineering, 2024, 67: 106238.

[130] Wang J, Song X, Wang Y, et al. Bioelectricity generation, contaminant removal and bacterial community distribution as affected by substrate material size and aquatic macrophyte in constructed wetland-microbial fuel cell [J]. Bioresource Technology, 2017, 245: 372-378.

[131] Atanasova ND, Dey R, Scott C, et al. Persistence of infectious Enterovirus within free-living amoebae -A novel waterborne risk pathway? [J]. Water Research, 2018, 144: 204-214.

[132] Ryan P, Forbes C, McHugh S, et al. Enrichment of acetogenic bacteria in high rate anaerobic reactors under mesophilic and thermophilic conditions [J]. Water Research, 2010, 44(14): 4261-4269.

[133] Vanham D, Mekonnen MM. The scarcity-weighted water footprint provides unreliable water sustainability scoring [J]. Science of the Total Environment, 2021, 756: 143992.

[134] Hubenova Y, Bakalska R, Mitov M. Electrodeposited styrylquinolinium dye as molecular electrocatalyst for coupled redox reactions [J]. Bioelectrochemistry, 2018, 123: 173-181.

[135] Shenzheng Z, Dongdong W, Dongwei H, et al. Sediment microbiota in polyculture of shrimp and fish pattern is distinctive from those in monoculture intensive shrimp or fish ponds [J]. Science of the Total Environment, 2021, 787: 147594.

[136] Qiong Z, Fengxing X, Fengfeng Z, et al. Analysis of bacterial community functional diversity in late-stage shrimp (Litopenaeus vannamei) ponds using Biolog EcoPlates and PICRUSt2 [J]. Aquaculture, 2022, 546: 737288.

[137] Shan H, Obbard J P. Ammonia removal from prawn aquaculture water using immobilized nitrifying bacteria [J]. Applied Microbiology and Biotechnology, 2001, 57(5-6): 791-798.

[138] Stilianos L, F PM, Florent M, et al. Function and functional redundancy in microbial systems [J]. Nature ecology & evolution, 2018, 2(6): 936-943.

[139] Kemp PF, Aller JY. Bacterial diversity in aquatic and other environments: what 16S rDNA libraries can tell us [J]. FEMS Microbiology Ecology, 2004, 47(2): 161-177.

[140] Izsák J, Pavoine S. Links between the species abundance distribution and the shape of the corresponding rank abundance curve [J]. Ecological Indicators, 2011, 14(1): 1-6.

[141] Chuan C, Xu XJ, Peng X, et al. Pyrosequencing reveals microbial community dynamics in integrated simultaneous desulfurization and denitrification process at different influent nitrate concentrations [J]. Ecology Environment & Conservation, 2017, 171: 294-301.

[142] Zhu G, Chen G, Yu R, et al. Enhanced simultaneous nitrification/denitrification in the biocathode of a microbial fuel cell fed with cyanobacteria solution [J]. Process Biochemistry, 2016, 51(1): 80-88.

[143] Ansola G, Arroyo P, Miera LESd. Characterisation of the soil bacterial community structure and composition of natural and constructed wetlands [J]. Science of the Total Environment, 2014, 473: 63-71.

[144] Gabarró J, Amo EH-d, Gich F, et al. Nitrous oxide reduction genetic potential from the microbial community of an intermittently aerated partial nitritation SBR treating mature landfill leachate [J]. Water Research, 2013, 47(19): 7066-7077.

[145] Lim EY, Tian H, Chen Y, et al. Methanogenic pathway and microbial succession during start-up and stabilization of thermophilic food waste anaerobic digestion with biochar [J]. Bioresource Technology, 2020, 314: 123751.

[146] Doll Hannah M, Armitage David W, Daly Rebecca A, et al. Utilizing novel diversity estimators to quantify multiple dimensions of microbial biodiversity across domains [J]. BMC microbiology, 2013, 13(1): 259.

[147] 吴义诚, 邓全鑫, 王泽杰. 开闭路条件下沉积物微生物燃料电池阳极细菌群落差异解析 [J]. 环境科学, 2016, 37(12): 4768-4772.

[148] Luengo JM, Olivera ER. Catabolism of biogenic amines in Pseudomonas species [J]. Environmental Microbiology, 2020, 22(4): 1174-1192.

[149] Sheiko SS, Sun FC, Randall A, et al. Adsorption-induced scission of carbon–carbon bonds [J]. Nature, 2006, 440(7081): 191-194.

[150] Kieber RJ, Hartrey LM, Felix D, et al. Photorelease of microcystin-LR from resuspended sediments [J]. Harmful Algae, 2017, 63: 1-6.

[151] Drakesmith H, Prentice A. Viral infection and iron metabolism [J]. Nature Reviews Microbiology, 2008, 6(7): 541-552.

[152] Meng L, Turner APF, Mak WC. Soft and flexible material-based affinity sensors [J]. Biotechnology Advances, 2020, 39: 107398.

[153] Knapp JLA, Osenbrück K, Brennwald MS, et al. In-situ mass spectrometry improves the estimation of stream reaeration from gas-tracer tests [J]. Science of the Total Environment, 2019, 655: 1062-1070.

中图分类号:

 X703    

开放日期:

 2025-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式