- 无标题文档
查看论文信息

论文中文题名:

 液压支架油缸内壁熔覆层的组织与性能研究    

姓名:

 张海瑜    

学号:

 19211025008    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080503    

学科名称:

 工学 - 材料科学与工程 - 材料加工工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 材料科学与工程学院    

专业:

 材料加工工程    

研究方向:

 材料表面防护    

第一导师姓名:

 杜双明    

第一导师单位:

 西安科技大学    

第二导师姓名:

 刘二勇    

论文提交日期:

 2022-06-16    

论文答辩日期:

 2022-05-26    

论文外文题名:

 Study on Microstructure and Properties of Cladding Layer on Inner Wall of Hydraulic Support Cylinder    

论文中文关键词:

 液压支架油缸 ; 27SiMn ; 电弧熔铜 ; 激光熔覆 ; 腐蚀磨损    

论文外文关键词:

 Hydraulic support cylinder ; 27SiMn ; Arc cladding copper ; Laser cladding ; Corrosion and wear    

论文中文摘要:

       随着采煤智能化程度的不断提高和开采深度的不断增加,采煤设备服役环境越来越苛刻,液压支架油缸内壁腐蚀与磨损失效问题受到广泛关注,对油缸内壁进行强化、防护和修复已成为该领域的研究重点。本文采用电弧熔覆和激光熔覆技术在液压油缸用钢27SiMn表面分别制备了铜合金熔覆层和奥氏体不锈钢熔覆层、TiC增强奥氏体不锈钢熔覆层强化液压油缸内壁,对比分析了三种铜合金电弧熔覆层的微观结构和腐蚀磨损性能;研究了扫描速度和 TiC颗粒添加量对奥氏体不锈钢激光熔覆层的微观结构和腐蚀磨损行为的影响;探讨了 200 ℃预热和 420 ℃后热处理对激光熔覆层和基材热影响区的显微组织和力学性能的影响。本文的主要结论如下: 
(1)三种铜合金电弧熔覆层主要由 α-Cu基体相、枝晶状 κ-AlFe3和少量球形 γ-Fe相组成。富含 Ni元素的 X2熔覆层的显微组织分布更均匀,耐蚀性最好;富含 Al、Zn的 X3熔覆层中的 κ相量增多,晶粒也变粗,耐蚀性最差,但耐磨性最好。三种熔覆层中的 Al、Fe先于 Cu元素发生腐蚀,在乳化液润滑条件下的磨损机制为磨粒磨损。 
(2)激光熔覆不锈钢熔覆层的相组成为奥氏体,从熔合区到熔覆层表面的奥氏体晶粒形态依次为平面晶-胞状晶-柱状树枝晶和等轴树枝晶。增大扫描速度及预热或后热处理都可以显著提高熔覆层的耐蚀性和耐磨性。熔覆层经 3.5% NaCl溶液电化学腐蚀后出现均匀分布的点蚀坑,其微观形态呈蜂窝状。熔覆层在干摩擦条件下表现为粘着磨损和磨粒磨损,而在乳化液润滑条件下为磨粒磨损。奥氏体不锈钢激光熔覆层的腐蚀磨损性能明显优于电弧熔铜层。 
(3)激光熔覆态 27SiMn基材的热影响区显微组织由马氏体、贝氏体、铁素体和珠光体组成,近熔合区的马氏体含量较多,而近基材的铁素体和珠光体含量多。随着扫描速度增大,热影响区宽度变窄,马氏体含量增多,硬度升高。扫描速度为 7 mm/s时,熔覆样品的抗拉强度和伸长率均最大,冲击韧性较 27SiMn基材降低了 60.28%。 
(4)基材经过 200 ℃预热的熔覆试样热影响区中马氏体含量明显减少,硬度显著降低,抗拉强度提升。熔覆态试样经过 420 ℃退火处理以后,其热影响区组织为回火屈氏体,硬度显著下降,抗拉强度和冲击韧性分别提高了 6.07%和 42.92%。 
 (5)TiC增强奥氏体不锈钢复合熔覆层的组织主要由奥氏体、TiC及少量共晶体组成。随着 TiC含量的增加,TiC的晶体形状从花瓣状向块状、类球状转变;熔覆层的耐蚀性呈现先降低后升高的趋势,受 TiC熔解量以及由此引发的晶间腐蚀程度所控制。添加 TiC提高了熔覆层的硬度和耐磨性,20-TiC熔覆层在干摩擦和乳化液润滑下的磨损率分别降低了 76.34%和 89.49%。60-TiC熔覆层在干摩擦条件下磨损机制为粘着磨损,在乳化液润滑条件下磨损机制为磨粒磨损,耐磨性比干摩擦条件下显著提高。

论文外文摘要:

   With the increasing intelligence of coal mining and the increasing depth of mining, the service environment of coal mining equipment is becoming more and more harsh. The corrosion and wear failure of the inner wall of hydraulic support cylinders are widely concerned, and the strengthening, protection and repair of the inner wall of the cylinder have become the research focus in this field. In this paper, copper alloy cladding layer, austenitic 
stainless steel cladding layer and TiC-reinforced austenitic stainless steel cladding layer were prepared on the surface of 27SiMn steel for hydraulic cylinder by arc cladding and laser cladding technology respectively to strengthen the inner wall of hydraulic cylinder. The microstructure and corrosion wear properties of the arc cladding layer of three copper alloys were compared and analyzed; the effects of scanning speed and TiC particle addition on the microstructure and corrosion wear behavior of laser cladding layer of austenitic stainless steel were studied; the effects of 200 ℃ preheating and 420 ℃ post heat treatment on the 
microstructure and mechanical properties of laser cladding layer and substrate heat affected zone were discussed. The main conclusions of this paper are as follows: 
(1) The three copper alloy arc cladding layers mainly consist of α-Cu matrix phase, dendritic κ-AlFe3 and a small amount of spherical γ-Fe phase. The microstructure of the Ni-rich X2 cladding layer is more uniformly distributed and has the best corrosion resistance; 
the κ-phase in the Al and Zn-rich X3 cladding layer increases and the grains become coarser, which has the worst corrosion resistance but the best wear resistance. The Al and Fe in the 
three cladding layers corrode before the Cu elements, and the wear mechanism under the emulsion lubrication is abrasive wear. 
(2) The phase composition of laser cladding stainless steel cladding layer is austenite, and the austenite grain morphology from the fusion zone to the surface of cladding layer is in the 
order of planar crystals - cytosolic crystals - columnar dendrites and equiaxed dendrites. Increasing the scanning speed and preheating or post heat treatment can significantly improve 
the corrosion and wear resistance of the cladding layer. After electrochemical corrosion in 3.5% NaCl solution, uniformly distributed pitting pits appear in the cladding layer, and its 
microstructure is honeycomb. The cladding layer exhibits adhesive wear and abrasive wear under dry friction conditions, and abrasive wear under emulsion lubrication conditions. The corrosion and wear performance of the laser cladding layer of austenitic stainless steel is significantly better than that of the arc cladding copper layer. 
(3) The microstructure of heat affected zone of laser cladding 27SiMn substrate is composed of martensite, bainite, ferrite and pearlite, with more martensite content near the fusion zone 
and more ferrite and pearlite content near the base material. As the scanning speed increases, the heat affected zone width becomes narrower, the martensite content increases and the 
hardness increases. When the scanning speed is 7 mm/s, the tensile strength and elongation of the cladding sample are the largest, and the impact toughness is 60.28% lower than that of 
27SiMn substrate. 
(4) The martensite content in the heat affected zone of the substrate preheated at 200 ℃ is significantly reduced, the hardness is significantly reduced , and the tensile strength is improved. After the cladding specimens were annealed at 420 ℃, the heat affected zone is tempered brittleness, the hardness decreased obviously, and the tensile strength and impact toughness increased by 6.07% and 42.92%, respectively. 
(5) The microstructure of TiC-reinforced austenitic stainless steel composite cladding layer is mainly composed of austenite, TiC and a small amount of eutectic. With the increase of TiC content, the crystal shape of TiC changes from petal-like to massive and sphere-like; the corrosion resistance of the cladding layer decreases first and then increases, which is controlled by the amount of TiC melting and the degree of intergranular corrosion caused by it. The addition of TiC improves the hardness and wear resistance of the cladding layer, and the wear rates of 20-TiC cladding layer under dry friction and emulsion lubrication are reduced by 76.34% and 89.49% respectively. 60-TiC cladding layer under dry friction is subjected to adhesive wear, and under emulsion lubrication is subjected to abrasive wear, and the wear 
resistance is significantly improved compared with that under dry friction. 

参考文献:

[1] 王安. 新发展格局下煤炭行业高质量发展系统性分析[J]. 中国煤炭, 2020, 46(12): 1-5.

[2] 张盼盼, 吴凤彪, 张子英. 煤矿液压支架缸体漏液原因分析及对策[J]. 煤矿机械,

2019, 40(08): 166-168.

[3] 杜学芸, 田洪芳, 董仕营, 等. 大功率光纤激光内孔熔覆装备开发及应用[J]. 热喷涂技术, 2019, 11(02): 31-35.

[4] 张美美. 煤机设备液压支柱高性能耐磨耐蚀层激光熔覆制备技术的研究[D]. 太原:

中北大学, 2018.

[5] 程瑞珍, 袁训华. 煤矿工程设备防护[M]. 北京: 化学工业出版社, 2014.

[6] 赵永美. 煤矿液压支架立柱、千斤顶失效分析及解决方案[J]. 山东煤炭科技, 2020(05): 145-146.

[7] 臣阳, 兰志宇, 程相榜, 等. 液压支架立柱千斤顶失效分析及预防措施[J]. 煤矿机械, 2020, 41(2): 146-148.

[8] 马思雪. 液压支架平衡油缸的失效因素分析与研究[J]. 煤炭科技, 2022, 43(1): 39-42.

[9] 肖俊钧, 周卫东, 周健峰, 等. 液压支架立柱表面处理工艺[J]. 煤矿机械, 2018,

39(10): 92-95.

[10] 时婧, 王秋月. 煤矿液压支架立柱内孔表面用不锈钢防护涂层及涂覆工艺[P]. 中国: CN201510933338.7, 2015-12-14.

[11] 张超. 针对煤矿机械设备表面性能失效的改性研究[J]. 矿业装备, 2020(03): 186-187.

[12] 菅含含. 液压支架立柱材料 27SiMn钢表面激光熔覆实验研究[D]. 西安: 西安科技大学, 2017.

[13] 刘鸣放. 激光熔覆和内壁熔铜技术在液压支架上的应用[J]. 能源与环保, 2018, 40(11): 163-166.

[14] 马忠昌. 熔覆铜合金再制造技术修复立柱缸体的研究与应用[J]. 中国煤炭, 2020, 46(10): 92-95.

[15] 杨庆东, 苏伦昌, 董春春, 等. 液压支架立柱 27SiMn激光熔覆铁基合金涂层的性能[J]. 中国表面工程, 2013, 26(06): 42-47.

[16] 王秀云, 孙金兰. 液压支架油缸内壁熔铜工艺[J]. 煤矿机械, 2018, 39(08): 92-94.

[17] 张媛媛. 熔铜技术在矿用液压支架油缸中的应用研究[J]. 矿业装备, 2021, 02:

226-227.

[18] 栗靖, 董小波, 黄泉清, 等. 液压支架油缸内壁熔铜新工艺分析[J]. 中国设备工程, 2019, 19: 153-154.

[19] 王孝杰, 陈凯, 吴传印. 一种油缸内孔修复工艺研究[J]. 中国设备工程, 2018, 24: 178-179.

[20] 刘利云. 内壁熔铜及外壁熔覆的叠加再制造技术应用研究[J]. 中国金属通报, 2020, 12: 103-104.

[21] QI H, LIU Z. Modeling of crystal orientations in laser powder deposition of single crystal material[J]. Physics Procedia, 2012, 39: 903-912.

[22] MIRROW W, QI H, KIM I, et al. Environmental aspects of laser-based and conventional tool and die manufacturing[J]. Journal of Cleaner Production, 2007, 15(10): 932-943.

[23] SIDDIQUI A A, DUBEY A K. Recent trends in laser cladding and surface alloying[J]. Optics & Laser Technology, 2021, 134: 1-20.

[24] HALDAR B, SAHA P . Identifying defects and problems in laser cladding and suggestions of some remedies for the same[J]. Materials Today: Proceedings, 2018, 5(5): 13090-13101.

[25] LIU K, LI Y , W ANG J, et al. Effect of high dilution on the in situ synthesis of Ni–Zr/Zr–Si(B,C) reinforced composite coating on zirconium alloy substrate by laser cladding[J]. Materials & Design, 2015, 87: 66-74.

[26] SONG B, YU T, JIANG X, et al. Development mechanism and solidification morphology of molten pool generated by laser cladding[J]. International Journal of Thermal Sciences, 2021, 159: 1-12.

[27] 刘立君, 王晓陆, 沈秀强, 等. 耐热钢表面激光熔覆陶瓷工艺[J]. 哈尔滨理工大学学报, 2020, 25(01): 127-133.

[28] AKASH V , JYOTI M. Parametric investigation of laser assisted cladding process: A review[J]. Materials Today: Proceedings, 2021, 44.

[29] SHU F, ZHANG B, LIU T, et al. Effects of laser power on microstructure and properties of laser cladded CoCrBFeNiSi high-entropy alloy amorphous coatings[J]. Surface & Coatings Technology, 2019, 358: 667-675.

[30] ZHANG L, W ANG C, HAN L, et al. Influence of laser power on microstructure and properties of laser clad Co-based amorphous composite coatings[J]. Surfaces and Interfaces, 2017, 6: 18-23.

[31] ZHU L, XU Z, GU Y . Effect of laser power on the microstructure and mechanical properties of heat treated Inconel 718 superalloy by laser solid forming[J]. Journal of Alloys and Compounds, 2018, 746: 159-167.

[32] LEI J, SHI C, ZHOU S, et al. Enhanced corrosion and wear resistance properties of carbon fiber reinforced Ni-based composite coating by laser cladding[J]. Surface & Coatings Technology, 2018, 334: 274-285.

[33] W ANG H, CHENG Y , ZHANG X, et al. Effect of laser scanning speed on microstructure and properties of Fe based amorphous/nanocrystalline cladding coatings[J]. Materials Chemistry and Physics, 2020, 250: 1-10.

[34] LI Y , SU K, BAI P , et al. Microstructure and property characterization of Ti/TiBCN reinforced Ti based composite coatings fabricated by laser cladding with different scanning speed[J]. Materials Characterization, 2020, 159: 1-9.

[35] LIU Y, DING Y, Y ANG L, et al. Research and progress of laser cladding on engineering alloys: A review[J]. Journal of Manufacturing Processes, 2021, 66(1): 341-363.

[36] SUSHEEL P, RAJEEV S, RAKESH N. Study on the effect of powder feed rate on direct metal deposition layer of precipitation hardened steel[J]. Materials Today: Proceedings, 2020, 26: 1-5.

[37] LIU J L, YU H J, CHEN C Z, et al. Research and development status of laser cladding on magnesium alloys: A review[J]. Optics and Lasers in Engineering, 2017, 93: 195-210.

[38] 张津超, 石世宏, 龚燕琪, 等. 激光熔覆技术研究进展[J]. 表面技术, 2020, 49(10): 1-11.

[39] CHEN L, ZHAO Y , SONG B X, et al. Modeling and simulation of 3D geometry prediction and dynamic solidification behavior of Fe-based coatings by laser cladding[J]. Optics & Laser Technology, 2021, 139: 1-14.

[40] ERTUGRUL O, ENRICI T, HAKAN P , et al. Laser cladding of TiC reinforced 316L stainless steel composites: Feedstock powder preparation and microstructural evaluation[J]. Powder Technology, 2020, 375: 384-396.

[41] ALAM M, MEHDI M, URBANIC R, et al. Electron Backscatter Diffraction (EBSD) analysis of laser-cladded AISI 420 martensitic stainless steel[J]. Materials Characterization, 2020, 161: 1-29.

[42] 黎文强. 液压支架激光熔覆强化层的组织与性能[J]. 金属热处理, 2019, 44(5): 83-86.

[43] 杜博睿, 王淼辉, 申博文. 液压支架立柱激光熔覆不锈钢的组织与性能[J]. 热加工工艺, 2021, 50(16): 71-74.

[44] 丁紫阳, 曹伟, 康杰, 等. 激光熔覆制备高端液压支架表面涂层过程中显微气孔的研究[J]. 煤矿机械, 2019, 40(10): 48-50.

[45] 张跃楠, 汤文博, 黎文强, 等. 液压支架立柱激光熔覆铁基合金涂层的研究[J]. 煤炭技术, 2020, 39(01): 174-176.

[46] 曹青, 蔡志海, 杜学芸, 等. 27SiMn液压支架立柱的激光熔覆多道搭接工艺研究[J]. 电焊机, 2020, 50(7): 80-86.

[47] 曹鹏, 雷高峰, 苏成明, 等. 不同送料工艺对液压支架激光熔覆再制造的影响[J]. 材料导报, 2021, 35(S02): 424-427.

[48] 张国超, 雷丹, 王晓飚, 等. 液压支架液压缸缸筒内壁激光熔覆修复工艺研究[J]. 矿山机械, 2021, 49(5): 53-56.

[49] ZHU H, DONG K, W ANG H, et al. Reaction mechanisms of the TiC/Fe composite fabricated by exothermic dispersion from Fe-Ti-C element system[J], Powder Technology, 2013, 246: 456-461.

[50] ZHAO Y , FANG S, ZHAO Y , et al, In Situ Production of Locally Reinforced Steel-based Composites with TiC Particulates Using High-frequency Induction Process, ISIJ Int., 2006, 46 (4): 617-619.

[51] ZHU H, OUY ANG M, HU J, et al. Design and development of TiC-reinforced 410 martensitic stainless steel coatings fabricated by laser cladding[J]. Ceramics International, 2021.

[52] ZHANG Z, W ANG X, ZHANG Q, et al. Fabrication of Fe-based composite coatings reinforced by TiC particles and its microstructure and wear resistance of 40Cr gear steel by low energy pulsed laser cladding[J]. Optics and Laser Technology, 2019, 119: 1-9.

[53] LUO F, Y AO J, HU X, et al. Effect of Laser Power on the Cladding Temperature Field and the Heat Affected Zone[J]. Journal of Iron and Steel Research International, 2011, 18(01): 73-78.

[54] ZHU L, XUE P , LAN Q, et al. Recent research and development status of laser cladding: A review[J]. Optics & Laser Technology, 2021, 138: 1-26.

[55] ZHAO Y , GUAN C, CHEN L, et al. Effect of process parameters on the cladding track geometry fabricated by laser cladding[J]. Optik - International Journal for Light and Electron Optics, 2020, 223: 1-17.

[56] GUO W, LI X, DING N, et al. Microstructure characteristics and mechanical properties of a laser cladded Fe-based martensitic stainless steel coating[J]. Surface and Coatings Technology, 2021, 408: 1-15.

[57] ZHAN W, LIU L, ZHAO X, et al. Effect of cooling rates on dendrite spacings of directionally solidified DZ125 alloy under high thermal gradient. Rare Metals, 2009, 28(6): 633-638.

[58] 顾梦豪. 激光熔覆球磨 Cu-Fe涂层的显微结构与性能研究[D]. 南昌: 南昌航空大学, 2016.

[59] 戴安伦, 开绍东, 朱治愿. 铝青铜片与 Q345钢激光熔覆工艺与组织[J]. 特种铸造及有色合金, 2017, 37(2): 186-190.

[60] DHARMENDRA C, GURURAJ K, PRADEEP K G, et al. Characterization of

κ-precipitates in wire-arc additive manufactured nickel aluminum bronze: A combined transmission Kikuchi diffraction and atom probe tomography study[J]. Additive Manufacturing, 2021, 46: 1-15.

[61] 管红艳. 铁对亚快速凝固态高铝青铜合金组织和性能的影响[D]. 洛阳: 河南理工大学, 2012.

[62] DHARMENDRA C, RICE K, AMIRKHIZ B, et al. Atom probe tomography study of

κ-phases in additively manufactured nickel aluminum bronze in as-built and heat-treated conditions[J]. Materials & Design, 2021, 202(3): 1-17.

[63] 周志明, 唐丽文, 梁隆, 等. 合金元素对 ZQAl9-4合金显微组织和性能的影响[J]. 重庆工学院学报: 自然科学版, 2009, 23(7): 55-57.

[64] 王加运. 铜基合金废料处理过程中铁的去除及合金阳极的腐蚀特征研究[D]. 昆明: 昆明理工大学, 2019.

[65] QIN Z, XIA D, ZHANG Y, et al. Microstructure modification and improving corrosion resistance of laser surface quenched nickel-aluminum bronze alloy[J]. Corrosion Science, 2020, 174: 1-39.

[66] AMEGROUND H, GUENBOUR A, BELLAOUCHOU A, et al. A comprehensive

investigation of the electrochemical behavior of nickel-aluminum bronze alloy in alkaline solution: The effect of film formation potential[J]. Colloids and Surfaces A Physicochemical and Engineering Aspects, 2021, 614: 1-11.

[67] 黄湘湘. 碳钢表面激光熔覆铝青铜合金组织和性能研究[D]. 上海: 上海交通大学, 2019.

[68] WHARTON J A, STOKES K. The influence of nickel-aluminium bronze microstructure and crevice solution on the initiation of crevice corrosion[J]. Electrochimica Acta, 2008, 53(5): 2463-2473.

[69] 景媛, 黄晓飞, 杨荣, 等. 铝含量对镍铝青铜合金耐盐水腐蚀的影响[J]. 腐蚀与防护, 2020, 41(11): 43-49.

[70] 辛保亮, 张卫文, 罗宗强, 等. 两种铝青铜合金在中性盐雾中腐蚀行为比较[J]. 腐蚀与防护, 2011, 32(09): 712-715.

[71] GUO Y, LI C, ZENG M, et al. In-situ TiC reinforced CoCrCuFeNiSi0.2 high-entropy alloy coatings designed for enhanced wear performance by laser cladding[J]. Materials Chemistry and Physics, 2019, 242: 1-9.

[72] 徐杨. 碳钢表面堆焊铝青铜组织性能研究[D]. 镇江: 江苏科技大学, 2021.

[73] 马幼平, 崔春娟. 金属凝固理论及应用技术[M]. 北京: 冶金工业出版社, 2015.

[74] 孟丽. 钢轨表面激光-感应复合熔覆技术基础研究[D]. 武汉: 华中科技大学, 2019.

[75] 王爽. 新型奥氏体不锈钢微观组织及电化学腐蚀性能研究[D]. 秦皇岛: 燕山大学, 2020.

[76] KANEKO K, FUKUNAGE T, YAMADA K, et a1. Formation of M23C6-type precipitates and chromium depleted zones in austenite stainless steel[J]. Scripta Materialia, 2011, 65(6): 509-512.

[77] 武明雨, 胡凯, 李运刚. Cr-Ni奥氏体不锈钢的研究进展[J]. 铸造技术, 2016, 37(6): 1079-1084.

[78] 刘峰, 庞玉华, 罗远, 等. 基于 07MnNiMoDR钢热处理工艺窗口的热处理工艺[J]. 金属热处理, 2021, 46(10): 137-143.

[79] 文成, 田玉琬. 煤机用钢 27SiMn的冷却转变[J]. 钢铁研究学报, 2015, 27(2): 64-69.

[80] 毛裕, 陈文静, 唐思成. 热处理对激光熔覆 Fe314合金涂层组织和力学性能的影响[J]. 热加工工艺, 2022, 51(8): 119-128.

[81] 方洪渊, 董俊慧, 王文先, 等. 焊接结构学[M]. 北京: 机械工业出版社, 2017.

[82] 王岳亮, 钟永华, 李福海, 等. 激光熔覆沉积 H13钢组织及力学性能[J]. 热加工工艺, 2021.

[83] SUN X, ZHU H, LI J, et al. High entropy alloy FeCoNiCu matrix composites reinforced with in-situ TiC particles and graphite whiskers, Materials Chemistry and Physics, 2018, 220: 449-459.

[84] LIU X, W ANG H, LIU Y, et al. The effect of Nb content on microstructure and properties of laser cladding 316L SS coating[J]. Surface and Coatings Technology, 2021, 425, 127684.

[85] CHEN H, LU Y , SUN Y , et al. Coarse TiC particles reinforced H13 steel matrix composites produced by laser cladding[J], Surface and Coatings Technology, 2020, 395, 125867.

[86] WANG Z, LIN T, HE X, et al. Fabrication and properties of the TiC reinforced high-strength steel matrix composite[J], International Journal of Refractory Metals & Hard Materials, 2016, 58: 14-21.

[87] LU T, Y ANG J, SUO Z, et al. Matrix cracking in intermetallic composites caused by thermal expansion mismatch[J], Acta Metallurgica Et Materialia, 1991, 39(8): 1883-1890.

[88] YUSUKE T, TAKUY A I, TASTUY A O, et al. Crystallographic texture- and grain boundary density-independent improvement of corrosion resistance in austenitic 316 L stainless steel fabricated via laser powder bed fusion[J], Additive Manufacturing, 2021, 45, 102066.

[89] YIN Y , FAULKNER R G, MORETON P , et al. Grain boundary chromium depletion in austenitic alloys[J]. Journal of Materials Science, 2010, 45(21): 5872-5882.

[90] QIAN J, CHEN C, YU H, et al. The influence and the mechanism of the

precipitate/austenite interfacial C-enrichment on the intergranular corrosion sensitivity in 310S stainless steel[J]. Corrosion Science, 2016, 111: 352-361.

[91] W ANG W, GUAN B, LI X, et al. Corrosion behavior and mechanism of austenitic stainless steels in a new quaternary molten salt for concentrating solar power[J]. Solar Energy Materials and Solar Cells, 2019, 194: 36-46.

[92] ALMANGOUR B, GRZESIAK D, Y ANG Jenn-ming. Selective laser melting of TiC reinforced 316L stainless steel matrix nanocomposites: Influence of starting TiC particle size and volume content[J]. Materials & Design, 2016, 104: 141-151.

[93] Y ANG Y , ZHANG Y , ZHANG H, et al. Effect of TiC nanoparticle on friction and wear properties of TiC/AA2219 nanocomposites and its strengthening mechanism[J]. Journal of Central South University, 2022, 29: 767-779.

[94] GHAZANFARI H, BLAIS C, GARIEOY M, et al. Improving wear resistance of metal matrix composites using reinforcing particles in two length-scales: Fe3Al/TiC composites[J]. Surface and Coatings Technology, 2020, 386: 125502.

[95] BOIDI G, PROFITO F J, KADIRIC A, et al. The Use of Powder Metallurgy for Promoting Friction Reduction under Sliding-Rolling Lubricated Conditions[J]. Tribology International, 2021, 157: 106892.

中图分类号:

 TG174.4    

开放日期:

 2022-06-16    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式