论文中文题名: | 基于深度学习的异常用电检测方法研究 |
姓名: | |
学号: | 19208049003 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 0812 |
学科名称: | 工学 - 计算机科学与技术(可授工学、理学学位) |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 异常检测 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2022-06-22 |
论文答辩日期: | 2022-06-07 |
论文外文题名: | Research on Abnormal Power Consumption Detection Method Based on Deep Learning |
论文中文关键词: | |
论文外文关键词: | Missing value imputation ; Electricity theft detection ; Spatial characteristics ; Multi-scale sliding window ; Generative Adversarial Network ; Convolutional Autoencoder ; Long-short Term Memory. |
论文中文摘要: |
随着经济的快速增长和科学技术水平的飞速发展,居民对电力的需求不断增长,电网容量不断扩大,智能电网发展速度也与日俱增。然而,用户的异常用电行为越来越频繁,及时有效地检测电力系统中的异常用电行为对于发现恶意的异常用电用户、减少经济损失,从而确保电力系统安全可靠地运行、维护国民经济平稳发展至关重要。随着高级计量基础设施的部署,积累了海量的大规模高维复杂电力能耗数据,但存在数据缺失和异常用电检测精度低等问题。如何对电力能耗数据的缺失值进行有效填补以提高数据质量,并从数据层面对异常用电用户进行有效的检测,近年已受到广泛关注。论文研究的目的是提高电力能耗数据缺失值的填补准确度和异常用电行为检测的精度。 考虑到高维电力能耗数据邻近特征之间的相关性以及潜在的时空特征,本文利用深度学习,对电力能耗数据进行了分析,提高了异常用电检测精度,主要工作内容如下: (1)针对现有的对时序数据的缺失值填补模型中,未考虑到邻近数据特征相关性,且缺失数据拟合值不符合真实数据分布规律的问题,在缺失值填补算法的基础上引入多尺度滑动窗口,自适应地提取时序数据的特征,捕捉邻近数据中潜在的相关性,提出一种多尺度滑动窗口的生成对抗网络模型(MSW-GAN)进行缺失值填补。在MSW-GAN的生成器输入中引入提示矩阵以加快模型训练,抑制判别器能力。在多个包含时序特性的数据上进行了实验,验证了提出的模型对电力能耗数据的缺失值填补更精确。 (2)针对现有的电力盗窃检测模型中,未考虑到电力能耗数据集的时序特征和空间特征,对提取的特征表征能力不足的问题,提出了一种混合卷积自编码器和长短期记忆网络的深度学习模型(CAEs-LSTM)检测有异常用电行为的用户。通过长短期记忆网络学习电力能耗数据全局的时序特征,卷积自编码器学习空间特征,并进行高斯白噪声处理以提高模型抗噪能力。通过由国家电网公布的真实数据集进行实验,结果表明混合模型有效提高了检测精度。 |
论文外文摘要: |
With the rapid growth of the economy and the rapid development of scientific and technical, residents have grown to electricity, and the power grids capacity is expanding. The development speed of power grids is also increasing. However, in recent years, the user's abnormal electrical behavior is increasingly frequent, and it is timely and effectively detect an abnormal electrical behavior in the power system to discover malicious abnormal electrical users, reducing economic losses, ensuring that the power system is safe and reliable, maintaining the steady development of national economies is critical. With the deployment of senior metering infrastructure, massive large-scale high-dimensional complex power consumption data is accumulated, but there are problems of missing value and low abnormal electrical detection accuracy. How to effectively impute the missing value of electricity consumption data to improve data quality, and effectively detect the exceptional electricity user, has been widely concerned in recent years. The purpose of the paper is to improve the accuracy of imputing the power consumption data missing value and the accuracy of detection. Considering the correlation between high-dimensional power energy data proximity features and potential spatial characteristics, this paper analyzes the electricity consumption data in combination with deep learning, improves abnormal electricity detection accuracy, the main work content is as follows: (1) Focusing on the problem that the existing missing data imputation model lacks considering neighboring data characteristic correlation, and the missing data imputation value does not meet the real data distribution, the multi-scale sliding window is introduced on the basis of the missing value imputation algorithm. The multi-scale sliding window aims to adaptively extract the characteristics of timing data, capture potential correlation in the neighboring data. We propose a generative adversarial network model with a multi-scale sliding window (MSW-GAN) for missing value imputation. We introduce a prompt matrix in the MSW-GAN generator input to speed up the model training, suppress the discriminator capability. The experiment is carried out on a plurality of data containing timing characteristics, verifying that the proposed model is more accurate to impute the missing value of electricity consumption data. (2) For the existing electricity theft detection model, the timing characteristics and spatial characteristics of the electricity consumption data set are not taken into account, a mixed deep learning model (CAEs-LSTM) combined of convolutional autoencoder and long short-term memory network is proposed to detect users with abnormal electrical behaviors. The model learns the timing characteristics of electricity consumption data through long short-term memory networks, spatial characteristics through convolutional autoencoder, and perform Gaussian white noise processing to improve model anti-noise capacity. The experiment is conducted by the real data set published by the Power Grids, and the results show that the mixed model effectively improves the detection accuracy. |
参考文献: |
[1] 张瑶, 王傲寒, 张宏. 中国智能电网发展综述[J]. 电力系统保护与控制, 2021, 49(5): 180-187. [4] 国家发展改革委,国家能源局. 电力发展“十四五”规划[R]. 2021. [5] 赵文清, 沈哲吉, 李刚. 基于深度学习的用户异常用电模式检测[J]. 电力自动化设备, 2018, 38(9): 34-38. [14]谢桃枫, 李宗学. 基于SAS对缺失数据的处理——以新药试验为例[J]. 内蒙古大学学报: 自然科学版, 2017, 48(1): 47-54. [16]蒋辉, 马超群, 许旭庆, 等. 仿EM的多变量缺失数据填补算法及其在信用评估中的应用[J]. 中国管理科学, 2019, (3): 11-19. [18]郑智泉, 王孟孟, 田维琦. 基于加权K近邻算法的缺失数据填补研究[J]. 智能计算机与应用, 2021, 11(11):31-33+42. [38]简富俊, 曹敏, 王磊, 等. 基于SVM 的AMI 环境下用电异常检测研究[J]. 电测与仪表, 2014, 51(6): 64-69. |
中图分类号: | TP391.1 |
开放日期: | 2022-06-23 |