- 无标题文档
查看论文信息

论文中文题名:

 矿用风致驰振型压电俘能系统设计与性能研究    

姓名:

 郭岩    

学号:

 20205108039    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0804    

学科名称:

 工学 - 仪器科学与技术    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 机械工程学院    

专业:

 仪器科学与技术    

研究方向:

 智能检测与控制    

第一导师姓名:

 张旭辉    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-17    

论文答辩日期:

 2023-06-03    

论文外文题名:

 Mine Wind-Induced Vibration Piezoelectric Energy Harvesting System Design and Performance Research    

论文中文关键词:

 环境能量收集 ; 系统双稳态 ; 优化设计 ; 动力学响应特性    

论文外文关键词:

 Environmental energy harvesting ; Bistability ; Optimized design ; Dynamic response characteristics    

论文中文摘要:

煤矿井下通风系统的安全监测有力保障了作业环境安全。由于布线难度和续航时间短等因素,实时监控井下通风风筒状态存在监测节点少,监测系统供电难等问题。为解决感知数据传输难、传感器安装困难等问题,本文提出一种利用井下风筒内风能的自供电无线传感器网络监测技术,以达到通风系统的监测节点灵活布置目标。根据《煤矿安全规程》所规定的风速限制以及矿井特殊的工作环境,大型涡轮旋转式风能收集器在风筒内的小型化应用受到了限制。因此,本文研究风致振动式风能收集器,选定薄膜聚合物(PVDF)作为换能材料,通过COMSOL有限元模拟,优化压电振子拱形曲率结构,设计出适用于矿井的风致驰振型压电能量收集器。

针对当前井下尾流风致振动的有效气动载荷理论研究不足,导致建模不精准的问题,本文采用FLUENT软件在确认网格精度后,首先研究不同风速下固定双圆柱的尾流特征。随后,通过采用流固耦合方法,编写UDF文件,并利用动网格技术对定风速下的串联圆柱进行研究。根据数值模拟结果,对下游圆柱所受气动力进行拟合,从而得到相应的气动载荷模型。

针对矿用风致驰振型压电俘能器的非线性机理及其与系统响应之间的变化规律不明确问题,利用磁偶极子模型建立非线性磁模型,分析不同磁距对系统势能和磁力的影响。利用COMSOL软件和曲线拟合,获得组合梁的非线性恢复力模型,并采用基于广义Hamilton原理的分布式参数法得到系统理论模型。最后采用四五阶Runge-Kutta法对系统在不同磁铁间距时响应幅值进行分析,讨论结构参数对系统响应特性的影响。

针对井下布线困难的问题,本文在确定尾流驰振能量收集器结构参数后,进行自供能无线监测节点软硬件设计。首先分析井下风筒内数据监测需求,然后根据尾流驰振能量收集器的功率选择所需硬件模块。接下来分别对硬件模块进行程序设计,实现井下风筒内的风速,风量的采集、存储、查询和报警功能。

为验证上述研究的正确性与有效性,首先制作悬臂梁拱形曲率为40m-1的压电振子,并搭建振动测试平台,测试简谐激励下压电振子的谐振频率及最大输出电压;之后制作矿用风致尾流驰振俘能器,并搭建风致振动测试平台,测试风速为2.5m/s时,俘能器在不同磁铁间距下的响应位移,并进行充电实验;最后制作风致振动自俘能无线监测节点,测试10m内节点通信性能,并进行整机实验。实验结果验证了本文理论仿真的正确性以及无线监测节点的有效性,初步实现了自俘能、低功耗及设备在线监测的使用要求。

论文外文摘要:

The safety monitoring of underground coal mine ventilation systems effectively ensures the safety of the working environment. Due to factors such as wiring difficulties and short battery life, real-time monitoring of the ventilation duct status underground faces challenges such as a limited number of monitoring nodes and difficulties in supplying power to the monitoring system. To address issues related to data transmission and sensor installation, this paper proposes a self-powered wireless sensor network monitoring technology utilizing wind energy within underground ventilation ducts to achieve flexible deployment of monitoring nodes for the ventilation system. Considering the wind speed limits specified in the "Coal Mine Safety Regulations" and the unique working environment of mines, the miniaturization of large-scale turbine-based wind energy collectors within ducts is constrained. Therefore, this study investigates aerodynamically-induced vibration-based wind energy collectors, selecting polyvinylidene fluoride (PVDF) as the transduction material, optimizing the curvature structure of piezoelectric vibrators through COMSOL finite element simulations, and designing a resonant-type piezoelectric energy collector suitable for mines.

In light of the current inadequacy of effective aerodynamic load theories for the study of tail-flow-induced vibrations in underground environments, leading to imprecise modeling, this paper employs the FLUENT software to investigate the wake characteristics of fixed double cylinders under different wind speeds after verifying the grid accuracy. Subsequently, using fluid-structure coupling methods, UDF files are written and dynamic mesh technology is applied to study the tandem cylinders under a constant wind speed. Based on numerical simulation results, the aerodynamic forces acting on the downstream cylinder are fitted to obtain the corresponding aerodynamic load model.

Regarding the unclear relationship between the nonlinear mechanism of wind-induced vibration piezoelectric energy harvesters for mining applications and their system response, a nonlinear magnetic model is established using a magnetic dipole model to analyze the influence of different magnetic distances on system potential energy and magnetic forces. The nonlinear restoring force model of the composite beam is obtained using COMSOL software and curve fitting, and the system's theoretical model is derived using the distributed parameter method based on the generalized Hamilton principle. Finally, the fourth-fifth order Runge-Kutta method is used to analyze the response amplitudes of the system under different magnet spacings, discussing the influence of structural parameters on system response characteristics.

In response to the challenge of wiring in underground environments, after determining the structural parameters of the tail-flow-induced vibration energy harvester, this paper proceeds with the design of hardware and software for self-powered wireless monitoring nodes. First, the data monitoring requirements in underground air ducts are analyzed, followed by the selection of required hardware modules based on the power output of the tail-flow-induced vibration energy harvester. Next, the hardware modules are programmed separately to implement the collection, storage, inquiry, and alarm functions for wind speed and volume in underground air ducts.

To verify the accuracy and validity of the aforementioned research, we first fabricated a piezoelectric cantilever beam oscillator with an arch curvature of 40 m-1 and established a vibration testing platform to measure the resonant frequency and maximum output voltage of the piezoelectric oscillator under simple harmonic excitation. Subsequently, we produced a mining-induced aerodynamic wake vibration energy harvester and set up an aerodynamic vibration testing platform to examine the response displacement at different magnet spacings when the wind speed was 2.5 m/s, and conducted charging experiments. Lastly, we developed an aerodynamic vibration self-powered wireless monitoring node and tested its communication performance within a range of 10 meters, followed by a comprehensive system evaluation. The experimental results confirmed the accuracy of the theoretical simulations presented in this study and the effectiveness of the wireless monitoring node, preliminarily meeting the requirements of self-powered, low power consumption, and online monitoring of the equipment.

参考文献:

[1]滕吉文,王玉辰,司芗,刘少华,王祎然.煤炭、煤层气多元转型是中国化石能源勘探开发与供需之本[J].科学技术与工程,2021,21(22):9169-9193.

[2]武福生,卜滕滕,王璐.煤矿安全智能化及其关键技术[J].工矿自动化,2021,47(09):108-112.DOI:10.13272/j.issn.1671-251x.17833.

[3]付恩三,白润才,刘光伟,赵浩,杨传沓.“十三五”期间我国煤矿事故特征及演变趋势分析[J].中国安全科学学报,2022,32(12):88-94.DOI:10.16265/j.cnki.issn1003-3033.2022.12.0076.

[4]薛光辉,王斌,沈博闻等. 无线传感器网络在煤矿设备状态监测中的应用研究[J].机电产品开发与创新, 2017, 30(02): 87-88+121.

[5]Qisheng He, ChuanDong, Keli Li, et al. A multiple energy-harvester combination for pattern-recognizable power-free wireless sensing to vibration event [J] Sensors and Actuators A: Physical, 2018, 279:229-239.

[6]Yildirim, Tanju, et al. "A review on performance enhancement techniques for ambient vibration energy harvesters." Renewable and Sustainable Energy Reviews 71 (2017): 435-449.

[7]Abdelkefi A, Scanlon J M, McDowell E, et al. Performance enhancement of piezoelectric energy harvesters from wake galloping[J]. Applied Physics Letters, 2013, 103(3): 033903.

[8]Lallart M, Wang L, Petit L. Enhancement of electrostatic energy harvesting using self-similar capacitor patterns. J. Intell. Mater. Syst. Struct. 27, 2385–2394 (2016)

[9]Perez M, Boisseau S, Gasnier P, et al. A cm scale electretbased electrostatic wind turbine for low-speed energy harvesting applications. Smart Mater. Struct. 25, 045015 (2016)

[10]S J Cho, J H Kim, Linear electromagnetic electric generator for harvestingvibration energy at frequencies more than 50 Hz, Adv. Mech. Eng. 9 (2017),168781401771900.

[11]Morgado M L, Morgado L F, Silva N, et al. Mathematical modelling of cylindrical electromagnetic vibration energy harvesters. Int. J. Comput. Math. 92, 101–109 (2015)

[12]Moss S D, Payne O R, Hart G A, et al. Scaling and power density metrics of electromagnetic vibration energy harvesting devices. Smart Mater. Struct. 2015,24, 023001.

[13]F Cerini, M Ferrari, V Ferrari, A Russo, M Azpeitia Urquia, R Ardito, B DeMasi, R I P Sedmik, Electro-mechanical modelling and experimental characterization of a high-aspect-ratio electrostatic-capacitive MEMSdevice, Sensors Actuators A Phys. 266 (2017) 219–231.

[14]Karadag C V, Ertarla S, Topaloglu. et al. Optimization of beam profiles for improved piezoelectric energy harvesting efficiency. Structural and Multidisciplinary Optimization. 2021, 63, 631-643.

[15]M Khazaee, A Rezaniakolaie, A. Moosavian, L. Rosendahl, A novel methodfor autonomous remote condition monitoring of rotating machines usingpiezoelectric energy harvesting approach, Sensors Actuators A Phys.2019, 295, 37–50.

[16]M S Woo, J H Ahn, J H Eom, W.S. Hwang, J.H. Kim, C.H. Yang, G.J. Song, S. DoHong, J.P. Jhun, T.H. Sung, Study on increasing output current ofpiezoelectric energy harvester by fabrication of multilayer thick film,Sensors Actuators A Phys. 269 2018, 269, 524–534.

[17]Zou H X, Zhao L C, Gao Q H. et al. Mechanical modulations for enhancing energy harvesting: Principles, methods and applications. Applied Energy. 2019, 255, 113871.

[18]H Liu, J Zhong, C. Lee, Seung-Wuk, L. Lin, A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications, Applied Physics Reviews. 5 (2018) 041306.

[19]赵兴强,王军雷,蔡骏,郭颖.基于风致振动效应的微型风能收集器研究现状[J].振动与冲击,2017,36(16):106-112.DOI:10.13465/j.cnki.jvs.2017.16.017.

[20]孔晓峰,方玉群,赵俊杰,陈杰涛,江道灼.防雷防冰灾架空地线系统方案研究[J].高压电器,2021,57(07):154-161.DOI:10.13296/j.1001-1609.hva.2021.07.021.

[21]祖国强,郑悦,姚瑛,杨磊,王志会,刘勇.强风覆冰环境下10kV架空线路舞动特性[J/OL].电力系统及其自动化学报:1-6[2022-03-22].DOI:10.19635/j.cnki.csu-epsa.000892.

[22]寻凯,尹洪,刘海英.不同绞向组合覆冰分裂导线稳定性及其舞动特性[J].高电压技术,2021,47(07):2506-2513.DOI:10.13336/j.1003-6520.hve.20210117.

[23]刘辉,马增泰,林济铿,田宏强,严波,左晨亮.覆冰架空导线舞动跳闸概率计算新方法[J/OL].中国电力:1-8[2022-03-22].

[24]王剑,毕继红,关健,乔浩玥,邵倩,周燕,管青海.风雨激振中斜拉索表面水线运动的三维数值模拟[J].振动工程学报,2020,33(03):559-569. DOI:10.16385/j.cnki.issn.1004-4523.2020.03.015.

[25]Zhan Xueping,Liu Bin,Wang Jingchao,Ji Kunpeng. Study on Galloping Characteristics of Large-section Carbon Fiber Composite Core Conductor[J]. IOP Conference Series: Materials Science and Engineering,2020,740.

[26]Anqi Zhou,Xijun Liu,Suxia Zhang,Fujiang Cui,Peng Liu. Wind tunnel test of the influence of an interphase spacer on the galloping control of iced eight-bundled conductors[J]. Cold Regions Science and Technology,2018,155.

[27]Yang Kai,Wang Junlei,Yurchenko Daniil. A double-beam piezo-magneto-elastic wind energy harvester for improving the galloping-based energy harvesting[J]. Applied Physics Letters,2019,115(19).

[28]Andrew N. Hoover,Roger J. Hawks. Role of Turbulence in Wake-Induced Galloping of Transmission Lines[J]. AIAA Journal,2012,15(1).

[29]李清,李梦丽,杨晓辉,黄珏,晏致涛,赵爽.原型输电线路综合试验基地八分裂导线舞动模拟及防舞分析[J].建筑结构,2019,49(22):113-116+129. DOI:10.19701

[30]Cheng L, Zhou Y, Zhang M M. Perturbed interaction between vortex shedding and induced vibration[J]. Journal of Fluids and Structures, 2003, 17(7):887–901.

[31]Xavier Amandolèse, Pascal Hémon. Vortex-induced vibration of a square cylinder in wind tunnel[J]. Comptes Rendus de l'Academie des Sciences Serie II b/Mecanique, 2010, 338(1):12-17.

[32]Den Hartog J P. Transmission line vibration due to sleet[J]. Transactions of the AmericanInstitute of Electrical Engineers,1932,51 (4): 1076-1084 .

[33]Parkinson G V, Smith J D. The square prism as an aeroelastic nonlinear oscillator[J]. Journal of Mechanics and Applied Mathematics,1964,17 (2): 225-239.

[34]Den Hartog J P. Mechanical vibrations[M], New York: McGraw-Hill,1956.

[35]Nigol O,Buchan P G, Conductor galloping part I. Den Hartog mechanism[J]. IEEE Transmission on Power Apparatus and Systems,1981,100(2):699-707.

[36]Nigol O, Buchan P G. Conductor galloping part Ⅱ: Torsional mechanism [J].Power Apparatus and Systems, 1981,100(2): 708~720.

[37]Yu P, Desai Y M, Shah A H, et al. Three-degree-of-freedom model for galloping. Part I:Formulation[J]. Journal of Engineering Mechanics, 1993,119(12): 2404-2425.

[38]Yu P, Desai Y M, et al. Three-degree-of-freedom model for galloping. Part Ⅱ:Solutions[J].Journal of engineering mechanics,1993,119(12):2426-2448.

[39]Ruscheweyh H. Aeroelastic interference effects between slender structures[J]. Journal of wind Engineering and Industrial Aerodynamics,1983,14: 129-140.

[40]Shiraishi N, Matsum oto M, Shirato H. On aerodynamic instabilities of tandem structures[J].Journal of Wind Engineering and Industrial Aerodynamics, 1986,23: 437-447.

[41]Tokoro S,Komatsu H,Nakasu M,et al. A study on wake-galloping employing full aeroelastic twin cable model[J]. Journal of Wind Engineering and Industrial Aerodynamics,2000,88: 247-261.

[42]Jung H J, Lee S w. The experimental validation of a new energy harvesting system based on the wake galloping phenomenon[J]. Smart Materials and Structures,2011,20:055022

[43]Hobbs W B, Hu D L. Tree-inspired piezoelectric energy harvesting[J]. Journal of Fluids andStructures,2012,28:103-114.

[44]Akaydin H D, Elvin N, Andreopoulos Y. The performance of a self-excited fluidic energy harvester[J]. Smart Materials & Structures, 2012, 21(2):025007.

[45]王军雷, 冉景煜, 张智恩, 等. 外界载荷对圆柱涡激振动能量转换的影响[J]. 浙江大学学报(工学版), 2015, 49(6):1093-1100.

[46]Barrero-Gil A, Alonso G, Sanz-Andres A. Energy harvesting from transverse galloping[J]. Journal of Sound and Vibration, 2010, 329(14):2873-2883.

[47]Sirohi J, Mahadik R. Piezoelectric wind energy harvester for low-power sensors[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(18): 2215-2228.

[48]Kwon S D. A T-shaped piezoelectric cantilever for fluid energy harvesting[J]. Applied Physics Letters, 2010, 97(16):164102-164102-3.

[49]Liu F R, Zou H X, Zhang W M, et al. Y-type three-blade bluff body for wind energy harvesting[J]. Applied Physics Letters, 2018, 112(23): 233903.

[50]Kumar T, Kumar R, Chauhan V S, et al. Finite‐Element Analysis of a Varying‐Width Bistable Piezoelectric Energy Harvester[J]. Energy Technology, 2015, 3(12): 1243-1249

[51]Nabavi S, Zhang L. MEMS piezoelectric energy harvester design and optimization based on Genetic Algorithm[C]//2016 IEEE International Ultrasonics Symposium (IUS). IEEE, 2016: 1-4.

[52]T C de Godoy, M A Trindade, J.-F. Topological Optimization ofPiezoelectric Energy Harvesting Devices for Improved ElectromechanicalEfficiency and Frequency Range, 2014, pp. 4003–4016.

[53]Karadag C V, Ertarla S, Topaloglu N, et al. Optimization of beam profiles for improved piezoelectric energy harvesting efficiency[J]. Structural and Multidisciplinary Optimization, 2021, 63(2): 631-643.

[54]Hajheidari P, Stiharu I, Bhat R. Performance of tapered cantilever piezoelectric energy harvester based on Euler–Bernoulli and Timoshenko Beam theories[J]. Journal of Intelligent Material Systems and Structures, 2020, 31(4): 487-502.

[55]刘祥建,陈仁文.Rainbow型压电换能结构的有限元分析与实验[J].光学精密工程,2011,19(04):789-796.

[56]Xie X, Wang Z, Liu D, et al. An experimental study on a novel cylinder harvester made of L-shaped piezoelectric coupled beams with a high efficiency[J]. Energy. 212 (2020): 118752.

[57]B. Wang, X Luo, Y. Liu, Z. Yang, Thickness-variable Composite Beams for Vibration Energy Harvesting, Composite Structures. 244 (2020) 112232.

[58]Ertur A, Hoffmann J, Inrman D. A piezomagnetoelastic structure for broadband vibration energy harvesting, Applied Physics Letters, 2009, 94(25): 254102.

[59]Shebeeb A, Salleh H. Effect of cantilever shape on the power output of a piezoelectric bimorph generator. 2010 IEEE Int Conf Semicond Electron 2010:275–8.

[60]Yang Z, Zhou S, Zu J, et al. High-Performance Piezoelectric Energy Harvesters and Their Applications[J]. Joule. 2.4 (2018): 642-697.

[61]D. Cao, Y. Gao, W. Hu, Modeling and power performance improvement of a piezoelectric energy harvester for low-frequency vibration environments, Acta Mechanica Sinica. 35 (2019) 894-911.

[62]Zhang X, Zuo M, Yang W, et al. A Tri-Stable Piezoelectric Vibration Energy Harvester for Composite Shape Beam: Nonlinear Modeling and Analysis[J]. Sensors, 2020, 20(5): 1370.

[63]Wang G, Liao W H, Zhao Z, et al. Nonlinear magnetic force and dynamic characteristics of a tri-stable piezoelectric energy harvester[J]. Nonlinear Dynamics, 2019, 97(4):2371-2397

[64]Raju S S, Umapathy M, Uma G. Design and analysis of high output piezoelectric energy harvester using non uniform beam[J]. Mechanics of Advanced Materials and Structures, 2020, 27(3): 218-227.

[65]Kumar A, Ali S F, Arockiarajan A. Influence of piezoelectric energy transfer on the interwell oscillations of multistable vibration energy harvesters[J]. Journal of Computational and Nonlinear Dynamics, 2019, 14(3).

[66]Masana R, Daqaq M F. Electromechanical modeling and nonlinear analysis of axially loaded energy harvesters[J]. Journal of vibration and acoustics, 2011, 133(1).

[67]卢新明,尹红.矿井通风智能化理论与技术[J].煤炭学报,2020,45(06):2236-2247.DOI:10.13225/j.cnki.jccs.ZN20.0365.

[68]王国法,王虹,任怀伟,赵国瑞,庞义辉,杜毅博,张金虎,侯刚.智慧煤矿2025情景目标和发展路径[J].煤炭学报,2018,43(02):295-305.DOI:10.13225/j.cnki.jccs.2018.0152.

[69]鹿广利,张梦寒,樊聪奇.基于CFD的定点风速测定法的分析[J].煤炭技术,2015,34(05):156-157.DOI:10.13301/j.cnki.ct.2015.05.059.

[70]邹云龙,徐雪战.超声波传感技术的矿用多通道智能风速风向仪[J].传感器与微系统,2017,36(06):108-111.DOI:10.13873/j.1000-9787(2017)06-0108-04.

[71]王恩,张浪,李伟,桑聪.多点移动式测风装置及关键技术[J].煤矿安全,2016,47(06):97-99+103.DOI:10.13347/j.cnki.mkaq.2016.06.026.

[72]张浪.巷道测风站风速传感器平均风速测定位置优化研究[J].煤炭科学技术,2018,46(03):96-102.DOI:10.13199/j.cnki.cst.2018.03.016.

[73]罗永豪. 巷道断面风速分布与煤矿通风系统实时诊断理论研究[D].太原理工大学,2015.

[74]郝玉双.2003—2021年中国煤矿安全生产事故统计及研究热点分析[J].能源技术与管理,2023,48(01):192-196.

[75]Wu B, Wang J, Zhong M, et al. Multidimensional Analysis of Coal Mine Safety Accidents in China–70 Years Review[J]. Mining, Metallurgy & Exploration, 2022: 1-10.

[76]Chen X, Zhang X, Wang L, et al. An arch-linear composed beam piezoelectric energy harvester with magnetic coupling: Design, modeling and dynamic analysis[J]. Journal of Sound and Vibration, 2021, 513: 116394

中图分类号:

 TD723    

开放日期:

 2023-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式