- 无标题文档
查看论文信息

论文中文题名:

 含偏心裂隙岩石的拉伸强度与劈裂破坏机理    

姓名:

 杨晚霞    

学号:

 19201106032    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0801    

学科名称:

 工学 - 力学(可授工学、理学学位)    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 理学院    

专业:

 力学    

研究方向:

 岩土工程    

第一导师姓名:

 黄耀光    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-21    

论文答辩日期:

 2022-06-07    

论文外文题名:

 Tensile strength and splitting failure mechanism of rock with eccentric fracture    

论文中文关键词:

 裂隙岩石 ; 劈裂破坏 ; 拉伸强度 ; 偏心距 ; 裂隙倾角 ; 应变演化    

论文外文关键词:

 Crack rock ; Splitting failure ; Tensile strength ; Eccentric distance ; Crack dip angle ; Strain evolution    

论文中文摘要:

岩石的抗拉强度远低于其抗压强度,而天然岩石体内部随机分布的孔裂隙等缺陷将显著影响岩石体的强度和破坏特征。因此,研究含偏心裂隙岩石的拉伸强度及破坏特征对岩体工程的稳定性具有重要意义。本文以含裂隙类岩石试样为研究对象,开展了平台巴西劈裂试验、VIC-3D试验及声发射试验。分析了预制裂隙的偏心距和倾角对试样拉伸强度、宏观劈裂破坏特征和微观损伤演化特征的影响规律。基于现有巴西劈裂理论和所得试验结果,建立了含偏心裂隙岩石试样的峰值载荷预测模型。并利用损伤理论,结合COMSOL数值软件再现了试样劈裂破坏过程,研究了裂隙的偏心距、倾角、位置和数量等对其强度和劈裂破坏的影响,揭示了偏心裂隙岩石劈裂破坏机理。获得主要研究结论如下:

(1) 不同偏心距和倾角下试样的荷载-位移曲线变化趋势相似,均具有压密阶段、弹性阶段、裂纹稳定扩展阶段及裂纹非稳定扩展阶段;预制裂隙的存在削弱了试样的强度,且试样的强度受裂隙偏心距及倾角的共同影响;不同偏心距下试样峰值荷载随着倾角的增加呈现不同的变化规律;随着偏心距的增大,试样的峰值荷载呈逐渐增加的趋势。

(2) 当裂隙倾角一定,在偏心距r为0mm、5mm时,试样破坏产生的裂纹主要由预制裂隙尖端向加载端扩展,当偏心距r为10mm时,试样裂纹主要沿加载轴线扩展。而在偏心距一定时,当裂隙倾角α为30°-90°时,试样劈裂破坏过程明显变化,且破坏模式相似;垂直方向劈裂裂纹的产生均是由于拉应力导致的,而水平方向裂纹主要由于压应力导致的;裂隙倾角对试样的声发射特征无明显影响,当偏心距r为0mm即无偏心时,声发射振铃计数呈现集中分布型,当裂隙存在偏心距时,其声发射振铃计数呈现均匀分布型。

(3) 基于试验结果,并结合含平台巴西圆盘完整试样的抗拉强度理论公式,建立了在偏心距一定时,不同裂隙倾角下岩石试样的峰值载荷预测模型。在此基础上,建立了裂隙偏心距和倾角双因素耦合作用下岩石试样的峰值荷载预测模型。并通过与增加的试验结果进行对比,证明了预测模型的正确性与合理性。

(4) 利用损伤理论,借助于COMSOL数值软件建立了含裂隙试样劈裂试验的数值模型,并与试验结果进行对比分析,验证了该数值模型的合理性;当裂隙在水平方向上时,随偏心距增加,裂隙对试样破坏影响越小,而峰值荷载呈递增的变化趋势;当裂隙在加载轴线上,随偏心距增加,裂隙对试样的破坏影响增加,而峰值荷载呈递减趋势。裂隙距离加载轴线越近,对试样破坏影响越显著,其峰值荷载越小;当试样含双裂隙时,裂隙倾角对试样的破坏影响较小,但其峰值荷载随倾角增加呈先减后增的趋势;当双裂隙在水平方向上时,随偏心距增加,对试样破坏影响越小,其峰值荷载却逐渐增加。

论文外文摘要:

The tensile strength of rock is much lower than its compressive strength. However, the random distribution of pore cracks and other defects in natural rock body will significantly affect the strength and failure characteristics of rock body. Therefore, the study of tensile strength and failure characteristics of rock with eccentric fractures is of great significance to the stability of rock mass engineering. In this paper, we carried out platform Brazilian splitting test, VIC-3D test, and acoustic emission test on rocks with cracks. We analyzed the influence of eccentricity and crack dip angle on tensile strength, macroscopic splitting failure characteristics, and microscopic damage evolution characteristics of specimens. Based on the existing Brazilian splitting theory and the obtained test results, the peak load prediction model of rock samples with eccentric cracks was established. Based on the damage theory and COMSOL numerical software, the splitting failure process of specimens was reproduced. The effects of eccentric distance, crack dip angle, position, and number of cracks on the strength and splitting failure are studied, and the splitting failure mechanism of eccentric fractured rock was revealed. The main conclusions are as follows:

(1) The variation trends of load-displacement curves of specimens are similar under different eccentric distance and crack dip angle, with compaction stage, elastic stage, stable crack growth stage, and unstable crack growth stage. The prefabricated cracks weaken the strength of the specimen, and the strength of the specimen is affected by the eccentricity and crack dip angle of the cracks. The peak load of the sample under different eccentric distances shows different variation laws with the increase of crack dip angle. With the increase of the eccentric distance, the peak load of the specimen shows a trend of increasing gradually.

(2) When the crack dip angle is constant and the eccentric distance r is 0 mm and 5 mm, the cracks caused by the failure of the sample mainly propagate from the prefabricated crack tip to the loading end. When the eccentric distance r is 10 mm, the crack propagates along the loading axis. When the eccentric distance is constant and the crack dip angle α is 30° - 90°, the splitting failure process of the sample changes obviously, and the failure mode is similar. Vertical splitting cracks are caused by tensile stress, while horizontal splitting cracks are mainly caused by compressive stress. The crack dip angle has no obvious effect on the acoustic emission characteristics of the sample. When r is 0 mm, i.e. no eccentric distance, the ringing count of acoustic emission presents a concentrated distribution pattern. When the crack has eccentric distance, the acoustic emission ringing count presents uniform distribution.

(3) Based on the test results and combined with the theoretical formula of the tensile strength of the complete Brazilian disc with the platform, we established a peak load prediction model for rock samples with different fracture inclinations when the eccentric distance is constant. On this basis, the peak load prediction model of rock samples is established under the coupling of two factors fracture eccentric distance and crack dip angle. The correctness and rationality of the prediction model are proved by comparing with the additional test results.

(4) Based on the damage theory and COMSOL numerical software, a numerical model for splitting test of specimens with cracks was established, and the numerical results were compared with the test results to verify the rationality of the numerical model. When the crack is in the horizontal direction, as the eccentric distance increases, the effect of the crack on the failure of the specimen is smaller, and the peak load shows an increasing trend. When the crack is on the loading axis, as the eccentric distance increases, the damage of the crack on the specimen increases, while the peak load shows a decreasing trend. The closer the crack is to the loading axis, the more significant the impact on the failure of the specimen, and the smaller the peak load. When the specimen contains double cracks, the crack dip angle of the crack has little effect on the failure mode of the specimen, but the peak load decreases first and then increases with the increase of the crack dip angle. When the double cracks are in the horizontal direction, as the eccentric distance increases, the influence on the failure of the specimen is smaller, but the peak load increases gradually.

参考文献:

[1] 袁媛, 潘鹏志, 赵善坤, 等. 基于数字图像相关法的含填充裂隙大理岩单轴压缩破坏过程研究[J]. 岩石力学与工程学报, 2018, 37(2): 339-351.

[2] 衡帅, 刘晓, 李贤忠, 等. 张拉作用下页岩裂缝扩展演化机制研究[J]. 岩石力学与工程学报, 2019, 38(10): 2031-2044.

[3] 黄达, 郭颖泉, 朱谭谭, 等. 法向卸荷条件下含单裂隙砂岩剪切强度与破坏特征试验研究[J]. 岩石力学与工程学报, 2019, 38(7): 1297-1306.

[4] 杨圣奇, 张鹏超, 滕尚永, 等. 含三裂隙巴西圆盘抗拉强度和裂纹特征试验研究[J]. 中国矿业大学学报, 2021, 50(1): 90-98.

[5] 曾昭飞. 双圆形孔洞-裂隙类岩石试样力学特性试验研究[D]. 衡阳: 南华大学, 2021.

[6] 陈敏. 冻融环境下节理岩体损伤力学特性及本构模型[D]. 西安: 西安科技大学, 2021.

[7] Hoek E, Martin C D. Fracture initiation and propagation in intact rock–a review[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6(4): 287-300.

[8] Aliabadian Z, Zhao G F, Russell A R. Crack development in transversely isotropic sandstone discs subjected to Brazilian tests observed using digital image correlation[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 119: 211-221.

[9] Zhao Z H, Zhang M Z, Ma Q, et al. Deviation Effect of Coaxiality on the Rock Brazilian Split [J]. Advances in Mathematical Physics, 2020, 2020: 1-8.

[10] 吴顺川, 马骏, 程业, 等. 平台巴西圆盘研究综述及三维启裂点研究[J]. 岩土力学, 2019, 40(4): 1239-1247.

[11] Zhong S, Zuo S Y, Mao L, et al. Mechanism of anisotropic characteristics of layered limestone and a constitutive model for different bedding angles based on a Brazilian tensile test[J]. Arabian Journal of Geosciences, 2020, 13(22): 1-9.

[12] 周辉, 孟凡震, 张传庆, 等. 不同位置和尺寸的裂隙对岩体破坏影响的试验研究[J]. 岩石力学与工程学报, 2015, 34(S1): 3018-3028.

[13] 尤明庆, 苏承东. 平台巴西圆盘劈裂和岩石抗拉强度的试验研究[J]. 岩石力学与工程学报, 2004, 23(18): 3106-3112.

[14] Mellor M, Hawkes I. Measurement of tensile strength by diametral compression of discs and annuli[J]. Engineering Geology, 1971, 5(3): 173-225.

[15] Bieniawski Z T, Hawkes I. Suggested methods for determining tensile strength of rock materials[J]. International Journal of Rock Mechanics and Mining Sciences, 1978, 15(3): 99-103.

[16] 杜广盛. 基于细观组构特征的岩石巴西劈裂试验研究[D]. 包头市: 内蒙古科技大学, 2020.

[17] Ripperger E A, Davis N. critical stresses in a circular ring[J]. Transaction of American Society for Civil Engineers, 1947, 112: 619-627.

[18] Hobba D W. The tensile strength of rocks[J]. International Journal of Rock Mechanical and Mining Sciences & Geomechanics Abstracts, 1964, 6(1): 91-97.

[19] 王杰, 陶俊林, 郭辉. 圆环巴西试验的抗拉强度建议公式[J]. 装备环境工程, 2019, 16(2): 42-46.

[20] 郭翔, 王学滨, 白雪元, 等. 加载方式及抗拉强度对巴西圆盘试验影响的连续-非连续方法数值模拟[J]. 岩土力学, 2017, 38(1): 214-220.

[21] Erarslan N, Liang Z Z, Williams D J. Experimental and numerical studies on determination of indirect tensile strength of rocks[J]. Rock Mechanics and Rock Engineering, 2012, 45(5): 739-751.

[22] 黄耀光, 王连国, 陈家瑞, 等. 平台巴西劈裂试验确定岩石抗拉强度的理论分析[J]. 岩土力学, 2015, 36(3): 739-748.

[23] 王启智, 贾学明. 用平台巴西圆盘试样确定脆性岩石的弹性模量、拉伸强度和断裂韧度——第一部分:解析和数值结果[J]. 岩石力学与工程学报, 2002, 21(9): 1285-1289.

[24] 王启智, 吴礼舟. 用平台巴西圆盘试样确定脆性岩石的弹性模量、拉伸强度和断裂韧度——第二部分:试验结果[J]. 岩石力学与工程学报, 2004, 23(2): 199-204.

[25] Wang Q Z, Li W, Xie H P. Dynamic split tensile test of flattened Brazilian disc of rock with SHPB setup[J]. Mechanics of Materials, 2009, 41(3): 252-260.

[26] Liu Y, Dai F, Xu N W, et al. Cyclic flattened Brazilian disc tests for measuring the tensile fatigue properties of brittle rocks[J]. Review of Scientific Instruments, 2017, 88(8): 083902.

[27] Patel S, Martin C D. Application of flattened Brazilian test to investigate rocks under confined extension[J]. Rock Mechanics and Rock Engineering, 2018, 51(12): 3719-3736.

[28] Pei P D, Dai F, Liu Y, et al. Dynamic tensile behavior of rocks under static pre-tension using the flattened Brazilian disc method[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 126: 104208.

[29] 叶剑红, 杨洋, 常中华, 等. 巴西劈裂试验应力场解析解应力函数解法[J]. 工程地质学报, 2009, 17(4): 528-532.

[30] 铁摩辛柯, 古地尔, 徐芝纶. 弹性理论[M]. 北京: 高等教育出版社, 1990.

[31] Н.И.Мусхелишьили, 赵惠元. 数学弹性力学的几个基本问题[M]. 北京: 科学出版社, 1958.

[32] Yu J H, Shang X C, Wu P F. Influence of pressure distribution and friction on determining mechanical properties in the Brazilian test: theory and experiment[J]. International Journal of Solids and Structures, 2019, 161: 11-22.

[33] Ma C C, Hung K M. Exact full-field analysis of strain and displacement for circular disks subjected to partially distributed compressions[J]. International Journal of Mechanical Sciences, 2008, 50(2): 275-292.

[34] Markides C F, Pazis D N, Kourkoulis S K. Closed full-field solutions for stresses and displacements in the Brazilian disk under distributed radial load [J]. International Journal of Rock Mechanics & Mining Sciences, 2010, 47(2): 227-237.

[35] Gutiérrez-Moizant R, Ramírez-Berasategui M, Santos-Cuadros S, et al. A novel analytical solution for the Brazilian test with loading arcs[J]. Mathematical Problems in Engineering, 2020, 2020: 1-19.

[36] Wang Q Z, Jia X M, Kou S Q, et al. The flattened Brazilian disc specimen used for testing elastic modulus, tensile strength and fracture toughness of brittle rocks: analytical and numerical results[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(2): 245-253.

[37] Wang Q Z, Xing L. Determination of fracture toughness KIC by using the flattened Brazilian disk specimen for rocks[J]. Engineering Fracture Mechanics, 1999, 64(2): 193-201.

[38] 张盛, 王千红, 樊鸿. 平台巴西圆盘抗拉强度公式修正系数的研究[J]. 东南大学学报(自然科学版), 2005 (S1): 109-114.

[39] Huang Y G, Wang L G, Lu Y L, et al. Semi-analytical and Numerical Studies on the Flattened Brazilian Splitting Test Used for Measuring the Indirect Tensile Strength of Rocks[J]. Rock Mechanics and Rock Engineering, 2015, 48(5): 1849-1866.

[40] Amadei B, Rogers J D, Goodman R E. Elastic constants and tensile strength of the anisotropic rocks[C]. proceedings of the Proceedings of the Fifth Congress of International Society of Rock Mechanics. 1983: 189-196.

[41] Bohloli B, Claesson J. Brazilian test: stress field and tensile strength of anisotropic rocks using an analytical solution[J]. International Journal of Rock Mechanics and Mining Sciences, 2002.

[42] 王莉. 初始裂隙对岩石抗拉特性的影响[J]. 煤炭科学技术, 2020, 48(S1): 66-70.

[43] 韩宇峰, 王兆会, 唐岳松. 劈裂实验中不同岩石力学行为特征[J]. 中国矿业大学学报, 2020, 49(5): 863-873.

[44] 徐燕飞, 赵伏军, 王国举, 等. 不同岩石巴西劈裂强度的尺寸效应[J]. 矿业工程研究, 2012, 27(4): 7-12.

[45] 苏海健, 靖洪文, 赵洪辉, 等. 高温处理后红砂岩抗拉强度及其尺寸效应研究[J]. 岩石力学与工程学报, 2015, 34(2): 879-887.

[46] 徐快乐, 刘聪颖, 倪鑫, 等. 砂岩巴西劈裂抗拉强度的尺寸效应研究[J]. 长江科学院院报, 2020, 37(2): 126-129.

[47] Dai Y J, Li Y W, Xu X F, et al. Fracture behaviour of magnesia refractory materials in tension with the Brazilian test[J]. Journal of the European Ceramic Society, 2019, 39(16): 5433-5441.

[48] Yan Z L, Dai F, Liu Y, et al. New insights into the fracture mechanism of flattened Brazilian disc specimen using digital image correlation[J]. Engineering Fracture Mechanics, 2021, 252: 107810.

[49] Li D Y, Li B, Han Z Y, et al. Evaluation on rock tensile failure of the Brazilian discs under different loading configurations by digital image correlation[J]. Applied Sciences, 2020, 10(16): 5513.

[50] Zhang N, Hedayat A, Sosa H G B, et al. Estimation of the mode I fracture toughness and evaluations on the strain behaviors of the compacted mine tailings from full-field displacement fields via digital image correlation[J]. Theoretical and Applied Fracture Mechanics, 2021, 114: 103014.

[51] Zhang N, Hedayat A, Sosa H G B, et al. Crack evolution in the Brazilian disks of the mine tailings-based geopolymers measured from digital image correlations: An experimental investigation considering the effects of class F fly ash additions[J]. Ceramics International, 2021, 47(22): 32382-32396.

[52] Yang J, Zhao K, Song Y F, et al. Acoustic emission characteristics and fractal evolution of rock splitting and failure processes under different loading rates[J]. Arabian Journal of Geosciences, 2022, 15(3): 1-14.

[53] 李果, 艾婷, 于斌, 等. 不同岩性巴西劈裂试验的声发射特征[J]. 煤炭学报, 2015, 40(4): 870-881.

[54] 刘运思, 傅鹤林, 饶军应, 等. 不同层理方位影响下板岩各向异性巴西圆盘劈裂试验研究[J]. 岩石力学与工程学报, 2012, 31(4): 785-791.

[55] 李二强, 张洪昌, 张龙飞, 等. 不同层理倾角炭质板岩巴西劈裂试验及数值研究[J]. 岩土力学, 2020, 41(9): 2869-2879.

[56] Cui Z, Qian S, Zhang G M, et al. An experimental investigation of the influence of loading rate on rock tensile strength and split fracture surface morphology[J]. Rock Mechanics and Rock Engineering, 2021, 54(4): 1969-1983.

[57] 王辉, 李勇, 曹树刚, 等. 含预制裂隙黑色页岩裂纹扩展过程及宏观破坏模式巴西劈裂试验研究[J]. 岩石力学与工程学报, 2020, 39(5): 912-926.

[58] 于庆磊, 唐春安, 杨天鸿, 等. 平台中心角对岩石抗拉强度测定影响的数值分析[J]. 岩土力学, 2008, 29(12): 3251-3255+3260.

[59] 孟京京, 曹平, 张科, 等. 基于颗粒流的平台圆盘巴西劈裂和岩石抗拉强度[J]. 中南大学学报(自然科学版), 2013, 44(6): 2449-2454.

[60] 严成增, 郑宏, 孙冠华, 等. 基于数字图像技术的岩土材料有限元-离散元分析[J]. 岩土力学, 2014, 35(8): 2408-2414.

[61] 谭鑫, Konietzky H. 含层理构造的非均质片麻岩巴西劈裂试验及离散单元法数值模拟研究[J]. 岩石力学与工程学报, 2014, 33(5): 938-946.

[62] Wu S C, Ma J, Cheng Y, et al. Numerical analysis of the flattened Brazilian test: Failure process, recommended geometric parameters and loading conditions[J]. Engineering Fracture Mechanics, 2018, 204: 288-305.

[63] Yang S Q, Huang Y H. Particle flow study on strength and meso-mechanism of Brazilian splitting test for jointed rock mass[J]. Acta Mechanica Sinica, 2014, 30(4): 547-558.

[64] Jiang Y L, Xu Z Z, He J. Investigation on the mechanical behaviors of pre-cracked Brazilian disks using a trigon-based numerical manifold method[J]. Arabian Journal of Geosciences, 2019, 12(3): 754.

[65] He B, Liu J, Zhao P, et al. PFC2D-based investigation on the mechanical behavior of anisotropic shale under Brazilian splitting containing two parallel cracks[J]. Frontiers of Earth Science, 2021, 15(4): 803-816.

[66] Bai Q S, Tu S H, Zhang C. DEM investigation of the fracture mechanism of rock disc containing hole(s) and its influence on tensile strength[J]. Theoretical and Applied Fracture Mechanics, 2016, 86: 197-216.

[67] Zhou S W, Xia C C. Propagation and coalescence of quasi-static cracks in Brazilian disks: an insight from a phase field model[J]. Acta Geotechnica, 2019, 14(4): 1195-1214.

[68] Zhou S W, Zhuang X Y, Zhou J M, et al. Phase Field Characterization of Rock Fractures in Brazilian Splitting Test Specimens Containing Voids and Inclusions[J]. International Journal of Geomechanics, 2021, 21(3): 04021006.

[69] Le H I, Wei J H, Sun S R, et al. Mechanical properties and cracking behaviors of limestone-like samples with two parallel fissures before and after grouting[J]. Journal of Central South University, 2021, 28(9): 2875-2889.

[70] Tian J J, Xu D J, Liu T H. An experimental investigation of the fracturing behaviour of rock-like materials containing two V-shaped parallelogram flaws[J]. International Journal of Mining Science and Technology, 2020, 30(6): 777-783.

[71] 杨圣奇, 李尧, 黄彦华, 等. 单孔圆盘劈裂试验宏细观力学特性颗粒流分析[J]. 中国矿业大学学报, 2019, 48(5): 984-992.

[72] Hobbs D. An assessment of a technique for determining the tensile strength of rock[J]. British journal of applied physics, 1965, 16(2): 259.

[73] 钱觉时, 王智, 罗晖. 混凝土应变软化关系及其确定[J]. 大连理工大学学报, 1997 (S1): 63-68.

[74] 宫凤强, 李夕兵. 巴西圆盘劈裂试验中拉伸模量的解析算法[J]. 岩石力学与工程学报, 2010, 29(5): 881-891.

[75] 张慧梅. 断裂力学[M]. 徐州: 中国矿业大学出版社, 2018.

[76] James A N. Tensile strength and failure criterion of analog lithophysal rock[J]. George Washington University, Washington, 2009

[77] Haeri H, Shahriar K, Fatehimarji M, et al. On the crack propagation analysis of rock like Brazilian disc specimens containing cracks under compressive line loading[J]. Latin American journal of solids and structures, 2014, 11(8): 1400-1416.

中图分类号:

 TU452    

开放日期:

 2022-06-24    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式