- 无标题文档
查看论文信息

论文中文题名:

 氩气等离子体预处理强化含碳酸盐赤铁矿石浮选分离研究    

姓名:

 赵博辉    

学号:

 23213077024    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0819    

学科名称:

 工学 - 矿业工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2025    

培养单位:

 西安科技大学    

院系:

 化学与化工学院    

专业:

 矿业工程    

研究方向:

 等离子体矿物表面改性    

第一导师姓名:

 朱张磊    

第一导师单位:

 西安科技大学    

论文提交日期:

 2025-06-23    

论文答辩日期:

 2025-05-25    

论文外文题名:

 Ar Plasma Pretreatment for Flotation Separation of Carbonate-Bearing Hematite    

论文中文关键词:

 铁矿石 ; 氩气等离子体 ; 浮选分离 ; 团聚    

论文外文关键词:

 iron ore ; Ar plasma ; flotation separation ; particle aggregation    

论文中文摘要:

         我国作为全球最大的铁矿石消费国,对外依存度持续攀升导致资源保障能力面临严峻挑战,已严重制约钢铁工业的稳定发展。含碳酸盐赤铁矿石浮选过程中菱铁矿泥化严重,易罩盖赤铁矿与石英,导致铁精矿品位和回收率降低。为提升铁矿资源利用效率,本研究创新引入氩气等离子体技术调控矿物表面性质,强化含碳酸盐赤铁矿石的浮选分离。

         通过单矿物浮选试验,系统考察了在油酸钠用量、pH 值、淀粉用量、氯化钙用量等参数下,氩气等离子体预处理对菱铁矿、赤铁矿和石英可浮性的影响。结果表明:在优化药剂制度下,预处理30 min后,菱铁矿回收率显著提升,赤铁矿回收率大幅降低,石英回收率基本不变,有效扩大了不同矿物间的可浮性差异。

         混合矿浮选试验进一步验证了分离效果:预处理30 min后,菱铁矿-石英、菱铁矿-赤铁矿及赤铁矿-石英的分离指数均提升。针对菱铁矿-赤铁矿-石英(三元混合矿)的两段浮选中,预处理后,一段的菱铁矿回收率提高了,二段泡沫产品的石英回收率增加,赤铁矿回收率降低,而沉物产品产率提高了,其TFe品位也提高了,分离效率整体提高。

         颗粒间相互作用行为研究表明,氩气等离子体预处理选择性调控了矿物间相互作用:菱铁矿颗粒团聚增强,沉降速度、絮团粒径与絮团密实度增大;赤铁矿团聚减弱,沉降速度、絮团粒径与絮团密实度减小;石英行为稳定。同时,菱铁矿在赤铁矿和石英表面的罩盖现象明显削弱。

         机理分析揭示:氩气等离子体预处理通过选择性改变了矿物的表面粗糙度,从而影响了矿物表面的元素组成与表面特性。菱铁矿表面疏水性增强、Zeta电位正移、诱导时间缩短;赤铁矿则呈现疏水性减弱、Zeta电位负移、诱导时间增大;石英性质稳定。颗粒间相互作用能计算证实:菱铁矿颗粒间相互作用能降低,赤铁矿颗粒间相互作用能增加,而石英不变,进一步解释了团聚行为差异及可浮性分化的本质。

         本研究为含碳酸盐赤铁矿石的高效利用提供了新的思路。通过提升国内铁矿资源的综合利用率,有望降低对进口铁矿石的依赖,保障钢铁工业的稳定发展,对我国资源安全和工业可持续发展具有重要意义。

论文外文摘要:

         As the world's largest consumer of iron ore, China faces a severe challenge in resource security due to the continuously increasing dependence on imports, which has seriously restricted the stable development of the steel industry. During the flotation process of carbonate-bearing hematite ore, the severe mud formation of siderite tends to cover hematite and quartz, resulting in a decrease in the grade and recovery rate of iron concentrate. To improve the utilization efficiency of iron ore resources, this study innovatively introduces Ar plasma technology to regulate the surface properties of minerals and enhance the flotation separation of carbonate-bearing hematite ore.

         Single mineral flotation tests were systematically conducted to investigate the effects of Ar plasma pretreatment on the floatability of siderite, hematite, and quartz under various parameters, including sodium oleate dosage, pH value, starch dosage, and calcium chloride dosage. The results showed that under the optimized reagent system, after 30 minutes of pretreatment, the recovery rate of siderite was significantly increased, the recovery rate of hematite was greatly reduced, and the recovery rate of quartz remained almost unchanged, effectively widening the floatability differences among different minerals.

         Mixed mineral flotation tests further verified the separation effect: after 30 minutes of pretreatment, the separation indices of siderite-quartz, siderite-hematite, and hematite-quartz were all improved. In the two-stage flotation of siderite-hematite-quartz (ternary mixed ore), after pretreatment, the recovery rate of siderite in the first stage was increased, the recovery rate of quartz in the second stage froth product was increased, the recovery rate of hematite was reduced, the yield of the underflow product was increased, and its TFe grade was also increased, resulting in an overall improvement in separation efficiency.

         The study on interparticle interaction behavior revealed that Ar plasma pretreatment selectively regulated the interactions among minerals: the aggregation of siderite particles was enhanced, with increased settling velocity, floc size, and floc compactness; the aggregation of hematite was weakened, with decreased settling velocity, floc size, and floc compactness; and the behavior of quartz remained stable. Meanwhile, the covering phenomenon of siderite on the surfaces of hematite and quartz was significantly weakened.

         Mechanistic analysis revealed that Ar plasma pretreatment selectively altered the surface roughness of minerals, thereby affecting the elemental composition and surface properties of the mineral surfaces. The surface hydrophobicity of siderite was enhanced, the zeta potential shifted positively, and the induction time was shortened; hematite exhibited decreased hydrophobicity, negative zeta potential shift, and increased induction time; while quartz remained stable. The calculation of interparticle interaction energy confirmed that the interaction energy among siderite particles decreased, the interaction energy among hematite particles increased, and that of quartz remained unchanged, further explaining the essence of the differences in aggregation behavior and floatability differentiation.

         This study provides a new approach for the efficient utilization of carbonate-bearing hematite ore. By improving the comprehensive utilization rate of domestic iron ore resources, it is expected to reduce the dependence on imported iron ore, ensure the stable development of the steel industry, and is of great significance to China's resource security and industrial sustainable development.

参考文献:

[1] 李楠希. 我国铁矿资源现状与可持续发展对策分析 [J]. 科技展望, 2016, 26(28): 308.

[2] 夏书娟, 高赫, 尹继洁, 等.山东港口铁矿石混矿业务发展前景分析[J].中国工程咨询,2021,65-69.

[3] 杨光, 苏兴国, 马自飞, 等.东鞍山贫杂铁矿石选矿技术研究进展[J].矿产保护与利用,2021,140-148.

[4] 邵安林. 东鞍山含碳酸盐赤铁矿石浮选试验 [J]. 中南大学学报(自然科学版), 2013, 44(02): 456-460.

[5] 刘树永, 杨光, 袁立宾, 等.东鞍山铁矿石工艺矿物学特征及选矿实验[J].矿产综合利用,2024,175-181.

[6] 荆茂晨, 安登极, 王纪镇. 赤铁矿与石英浮选溶液化学与药剂作用机制研究进展 [J]. 矿产保护与利用, 2023, 43(06): 120-129.

[7] 张明. 东鞍山含碳酸盐铁矿石浮选行为研究[D]. 沈阳: 东北大学, 2009.

[8] 张明, 刘明宝, 印万忠, 等.东鞍山含碳酸盐难选铁矿石分步浮选工艺研究[J].金属矿山,2007,62-64.

[9] 吴文红, 梅灿国, 刘盛辰, 等.东鞍山碳酸盐贫赤铁矿选别工艺优化研究[J].矿业工程,2019,14-17.

[10] 韩会丽, 印万忠, 姚金. 东鞍山含碳酸盐磁选混合精矿分步与分散浮选协同工艺研究 [J]. 金属矿山, 2016, (12): 71-76.

[11] 冀秀荣, 杨光, 印万忠, 等.东鞍山含菱铁矿中矿浮选再利用研究[J].矿冶,2014,21-24.

[12] 左倩, 张芹, 邓冰, 等.3种调整剂对微细粒赤铁矿分散行为的影响[J].金属矿山,2011,54-56.

[13] 冀秀荣. 东鞍山含菱铁矿中矿浮选利用研究[D]. 沈阳: 东北大学, 2011.

[14] 姚金, 李东, 印万忠, 等.柠檬酸在含碳酸盐赤铁矿浮选体系中的分散机理[J].东北大学学报(自然科学版),2017,720-724.

[15] 罗溪梅, 印万忠, 姚金, 等.含碳酸盐赤铁矿石磁选精矿的强化分散浮选[J].中国有色金属学报,2013,238-246.

[16] 卢冀伟, 王乃玲, 印万忠. 分散剂NM-3对东鞍山含碳酸盐中矿浮选的影响 [J]. 矿冶工程, 2014, 34(05): 43-45+49.

[17] 王乃玲, 卢冀伟, 印万忠, 等.有机分散剂对含碳酸盐铁矿石浮选的影响[J].矿冶,2014,23-27.

[18] Wang D, Xu M, He J, et al. Flotation of low rank coal using dodecane after pretreatment by dielectric barrier discharge (DBD) air plasma [J]. Fuel, 2019, 251: 543-550.

[19] 王本英, 刘文刚, 徐新阳, 等.甲基取代基对阳离子捕收剂浮选性能的影响[J].工程科学学报,2023,1247-1253.

[20] 李琛光, 王大鹏, 胥萌, 等.低温等离子体改性技术对煤泥浮选效果的影响[J].煤炭科学技术,2019,256-261.

[21] 王大鹏, 李文秀, 王振飞, 等.复配-等离子体协同制备低阶煤捕收剂[J].煤炭学报,2023,713-719.

[22] Zhen K, Zhang H, Li C, et al. Effect of oxidized diesel oil on the flotation response of the low-rank coal by plasma oxidation method [J]. Fuel, 2019.

[23] Kelsea KM, Shancita I, Sanjoy KB, et al. Surface modifications of plasma treated aluminum particles and direct evidence for altered reactivity [J]. Materials & Design, 2021.

[24] Phuong Viet P. Cleaning of graphene surfaces by low-pressure air plasma [J]. Royal Society Open Science, 2018, 5(5).

[25] Stefanova M, Kamenarov Z. Using atmospheric pressure plasma as a tool in the cleaning of icon paintings [J]. IOP Conference Series: Materials Science and Engineering, 2020.

[26] 张怀瑶, 田付强, 李亚超, 等.等离子体的产生及其在矿物浮选中的应用[J].矿产保护与利用,2023,60-65.

[27] Hou J, Zhang F, Cheng D, et al. Mineralization of a superficially porous microsphere scaffold via plasma modification [J]. RSC Advances, 2017.

[28] Wang D, Xu M, He J, et al. Effects of low-temperature air plasma pretreatment on the surface properties of low-rank coal [J]. Powder Technology, 2018.

[29] Hirajima T, Mori M, Ichikawa O, et al. Selective flotation of chalcopyrite and molybdenite with plasma pre-treatment [J]. Minerals Engineering, 2014.

[30] 安晓明, 苟立, 何琨, 等.微波等离子体改性对金刚石薄膜表面亲水性的影响[J].表面技术,2009,14-16+47.

[31] Ran J, Kong D, Li Y, et al. New insights into the effects of particle size on the surface modification by low-temperature plasma from a perspective of surface oxidation degree [J]. Advanced Powder Technology, 2022.

[32] Tamargo-Martínez K, Villar-Rodil S, Martínez-Alonso A, et al. Surface modification of high-surface area graphites by oxygen plasma treatments [J]. Applied Surface Science, 2021.

[33] Ran J, Qiu X, Hu Z, et al. Selective Flotation of Pyrite from Arsenopyrite by Low Temperature Oxygen Plasma Pre-Treatment [J]. Minerals, 2018.

[34] Yue Z, Fengrong H, Linyi G, et al. Flotation separation of hazardous polyvinyl chloride from waste plastics based on green plasma modification [J]. Journal of Cleaner Production, 2021.

[35] Ran J, Sun M, Ji P, et al. Effects of mineral species transformation driven by surface dielectric barrier discharge plasma modification on the flotation performances: Perspective of critical oxidation degree [J]. Advanced Powder Technology, 2025.

[36] Zimin SP, Amirov II, Naumov VV, et al. The Formation of Hollow Lead Structures on the Surface of PbSe Films Treated in Argon Plasma [J]. Technical Physics Letters, 2018.

[37] 卢通, 吴桂叶, 朱阳戈, 等.方铅矿新型抑制剂BK508C作用机理研究[J].有色金属(选矿部分),2023,158-165.

[38] 宋飞, 韩辉, 秦宏钢, 等.含非晶相样品的X射线衍射快速定量分析[J].湖南科技大学学报(自然科学版),2020,100-106.

[39] Zhu Z, Wang D, Yang B, et al. Effect of nano-sized roughness on the flotation of magnesite particles and particle-bubble interactions [J]. Minerals Engineering, 2020.

[40] 李振, 刘洋, 朱张磊, 等.复配捕收剂强化煤气化细渣浮选试验研究[J].金属矿山,2023,111-118.

[41] Yang B, Zhu Z, Sun H, et al. Improving flotation separation of apatite from dolomite using PAMS as a novel eco-friendly depressant [J]. Minerals Engineering, 2020.

[42] Yang B, He J. New insights into selective depression mechanism of Tamarindus indica kernel gum in flotation separation of fluorapatite and calcite [J]. Separation and Purification Technology, 2024.

[43] Zhu Z, Zhao B, Tian C, et al. Plasma pretreatment to enhance the sedimentation of ultrafine kaolinite particles: Experiments and mechanisms [J]. Journal Of Water Process Engineering, 2024, 59.

[44] Zhu Z, Zhang Y, Wang S, et al. Effect of plasma-activated water on the settling characteristics of ultrafine kaolinite [J]. Process Safety and Environmental Protection, 2024.

[45] Han S, Zhang Y, Wang S, et al. Regulation of plasma-activated water on the settling of ultrafine coal slime [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024.

[46] Cai X, Zhang M, Yang L, et al. Quantification of interfacial interactions between a rough sludge floc and membrane surface in a membrane bioreactor [J]. Journal of Colloid and Interface Science, 2016.

[47] van Oss CJ. Acid—base interfacial interactions in aqueous media [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1993.

[48] Mishchuk NA. The model of hydrophobic attraction in the framework of classical DLVO forces [J]. Advances in Colloid and Interface Science, 2011.

[49] Hong H, Peng W, Zhang M, et al. Thermodynamic analysis of membrane fouling in a submerged membrane bioreactor and its implications [J]. Bioresource Technology, 2013.

[50] van Oss CJ, Giese RF, Costanzo PM. DLVO and Non-DLVO Interactions in Hectorite [J]. Clays and Clay Minerals, 1990.

[51] Hwang G, Ahn I-S, Mhin BJ, et al. Adhesion of nano-sized particles to the surface of bacteria: Mechanistic study with the extended DLVO theory [J]. Colloids and Surfaces B: Biointerfaces, 2012.

[52] Yu G, Cai X, Shen L, et al. A novel integrated method for quantification of interfacial interactions between two rough bioparticles [J]. Journal of Colloid and Interface Science, 2018.

[53] 王钰赛, 赵俊吉, 刘晓康, 等.新型复合捕收剂强化细粒低阶煤浮选机理研究[J].矿业研究与开发,2022,48-53.

[54] Luo X-m, Yin W-z, Wang Y-f, et al. Effect and mechanism of dolomite with different size fractions on hematite flotation using sodium oleate as collector [J]. Journal of Central South University, 2016.

[55] Larsen E, Kowalczuk PB, Kleiv RA. Non-HF collectorless flotation of quartz [J]. Minerals Engineering, 2019.

[56] Luo X-m, Yin W-z, Wang Y-f, et al. Effect and mechanism of siderite on reverse anionic flotation of quartz from hematite [J]. Journal of Central South University, 2016.

[57] Xie Y, Ban X, Yin W, et al. The influence of hydrochloric acid corrosion pretreatment on the flotation performance of hematite and its surface acid corrosion mechanism [J]. Advanced Powder Technology, 2024.

[58] Yang S, Wang L. Structural and functional insights into starches as depressant for hematite flotation [J]. Minerals Engineering, 2018.

[59] Li W, Ma Z, Zhao L, et al. Mechanism of Quartz Flotation Enhanced by Calcium Ion [J]. JOM, 2025.

[60] Yin W-z, Han Y-x, Xie F. Two-step flotation recovery of iron concentrate from Donganshan carbonaceous iron ore [J]. Journal of Central South University, 2010.

[61] Luo X, Lin Q, Wang Y, et al. New insights into the activation mechanism of calcium species to quartz: ToF-SIMS and AFM investigation [J]. Minerals Engineering, 2020.

[62] 罗溪梅. 含碳酸盐铁矿石浮选体系中矿物的交互影响研究[D]. 沈阳: 东北大学, 2014.

[63] Luo X, Wang Y, Wen S, et al. Effect of carbonate minerals on quartz flotation behavior under conditions of reverse anionic flotation of iron ores [J]. International Journal of Mineral Processing, 2016.

[64] Nailing W, Jiwei L, Wanzhong Y, et al. Innovative flotation for the utilisation of carbonate-bearing (siderite) iron ore using MS-2 as a dispersant [J]. Powder Technology, 2021.

[65] Yang B, Song S, Lopez-Valdivieso A. KINETICS OF HYDROPHOBIC AGGLOMERATION OF MOLYBDENITE FINES IN AQUEOUS SUSPENSIONS [J]. Physicochemical Problems Of Mineral Processing, 2015, 51(1): 181-189.

[66] Yi H, Zhao Y, Rao F, et al. Hydrophobic agglomeration of talc fines in aqueous suspensions [J]. Colloids And Surfaces a-Physicochemical And Engineering Aspects, 2018, 538: 327-332.

[67] Yang Y, Wang YP, Li C, et al. On the variability of near-bed floc size due to complex interactions between turbulence, SSC, settling velocity, effective density and the fractal dimension of flocs [J]. Geo-Marine Letters, 2016.

[68] Yin W, Xie Y, Zhu Z. Literature overview of basic characteristics and flotation laws of flocs [J]. International Journal of Minerals Metallurgy and Materials, 2024, 31(5): 943-958.

[69] Gmachowski L. Aggregation with fractal trajectories of changing dimensionality [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008.

[70] Spencer KL, Wheatland JAT, Bushby AJ, et al. A structure–function based approach to floc hierarchy and evidence for the non-fractal nature of natural sediment flocs [J]. Scientific Reports, 2021.

[71] Wang Y, Lu J, Baiyu D, et al. Fractal analysis of polyferric chloride-humic acid (PFC-HA) flocs in different topological spaces [J]. Journal of Environmental Sciences, 2009.

[72] 丁亚卓, 卢冀伟, 印万忠, 等.低品位石英矿浮选提纯的试验研究[J].金属矿山,2009,84-87.

[73] 蔡立政, 印万忠. 超声处理改善赤铁矿浮选体系中菱铁矿交互影响的研究 [J]. 金属矿山, 2023, (04): 86-91.

[74] Zhou Y, Albijanic B, Tadesse B, et al. Surface hydrophobicity of sub-bituminous and meta-bituminous coal and their flotation kinetics [J]. Fuel, 2019.

[75] Liu X, Li J, Huang Y, et al. The Adsorption, Aggregation and Deposition Behaviors of Carbon Dots on Minerals [J]. Environmental Science & Technology, 2017.

[76] Uysal T, Guven O, Ozdemir O, et al. Contribution of particle morphology on flotation and aggregation of sphalerite particles [J]. Minerals Engineering, 2021.

[77] Chen Y, Xia W, Xie G. Contact angle and induction time of air bubble on flat coal surface of different roughness [J]. Fuel, 2018.

[78] Cheng Y, Min F, Li H, et al. Research of reagent interaction on induction time during bubble–particle interaction [J]. International Journal of Coal Preparation and Utilization, 2022.

中图分类号:

 TD951    

开放日期:

 2025-06-26    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式