- 无标题文档
查看论文信息

论文中文题名:

 煤矿矩形巷道锚杆作用机理及工程应用研究    

姓名:

 王盼    

学号:

 18204054011    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081401    

学科名称:

 工学 - 土木工程 - 岩土工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 岩土工程    

研究方向:

 岩层控制与锚杆加固    

第一导师姓名:

 谷拴成    

第一导师单位:

  西安科技大学    

论文提交日期:

 2021-06-16    

论文答辩日期:

 2021-05-31    

论文外文题名:

 Study on Action Mechanism and Engineering Application of Anchor Rod in Rectangular Roadway of Coal Mine    

论文中文关键词:

 矩形巷道 ; 围岩变形 ; 弹塑性力学 ; 锚杆支护设计 ; 围岩稳定性评价    

论文外文关键词:

 Rectangular roadway ; Surrounding rock deformation ; Elastoplastic mechanics ; Bolt support design ; Stability evaluation    

论文中文摘要:

随着巷道开采规模和深度的不断增加,所处的工程地质条件越来越复杂,巷道事故频发使得研究合理的支护参数成为确保巷道安全生产的关键。由于施工方便,在煤矿开拓中大量采用矩形巷道,传统锚杆支护设计方法通过将矩形巷道等效为圆形巷道对围岩变形进行分析进而确定支护参数,但圆形巷道围岩变形规律与矩形巷道不同,使得锚杆受力特性存在差异。本文在分析与总结现有锚杆支护理论、锚杆锚固作用机理研究现状及存在问题的基础上,依据矩形巷道围岩变形规律,建立矩形巷道结构模型,采用弹塑性力学理论分析得到矩形巷道围岩变形表达式,进一步对锚杆受力进行分析,提出锚杆支护设计方法。同时,建立围岩加固体模型,分析加固体围岩的力学特性并提出评价围岩稳定性的方法。最后以柠条塔煤矿S12001胶运顺槽巷道为工程依托,提出合理的锚杆支护设计方案,结合数值模拟及现场监测验证理论的合理性,并对巷道围岩的稳定进行评价。论文主要研究成果如下:

(1)分析矩形巷道围岩变形规律,建立矩形巷道结构模型。按平面应变问题分析结构模型受力,采用弹塑性力学分析得到围岩变形表达式。通过算例并结合FLAC3D数值模拟软件分析巷道围岩变形规律及围岩变形量,并与理论计算结果进行对比从而验证理论的合理性,为考虑巷道围岩变形的锚杆支护设计提供理论支撑。

(2)基于锚杆与围岩的协调变形分别建立全长粘结锚杆及局部锚固锚杆受力模型,求得锚杆锚固段剪应力及轴向应力表达式。分析总结锚杆锚固段受力规律,提出巷道锚杆支护设计方法。结合算例对巷道进行支护设计并分析锚固段受力的主要影响因素。

(3)考虑锚杆对围岩力学状态改变,建立围岩加固体模型,得到加固后巷道围岩力学特性表达式,并分析不同锚杆支护参数对围岩力学特性的影响。在保证锚杆所受轴向应力及剪应力不超过应力容许值的前提下,以加固体所能承担的极限荷载与承担荷载的比值做为判断围岩稳定性的条件,提出评价围岩稳定性的方法。

(4)将研究成果应用于柠条塔煤矿S12001胶运顺槽巷道的支护设计中,结合数值模拟以及现场监测结果对比原支护方案及新支护方案下巷道的加固效果并进行稳定性评价,结果表明,在保证巷道的稳定性前提下,基于围岩变形进行锚杆支护设计可以更好的发挥锚杆加固围岩的作用及提高围岩自承能力,节约锚杆用量。

论文外文摘要:

With the increasing of mining scale and depth of roadway, the engineering geological conditions are becoming more and more complex, and the frequent accidents of roadway make the study of reasonable supporting parameters become the key to ensure the safety of roadway production.Because of the convenience of construction, rectangular roadway is widely used in coal mine development. By equivalent rectangular roadway to circular roadway,the traditional bolt support design method determines the supporting parameters and analyses the deformation of surrounding rock.However, the deformation law of surrounding rock based on circular roadway is different from that of rectangular roadway, which makes the stress characteristics of anchor rod different. Based on the analysis and summary of the existing theory of bolt support, the research status and existing problems of anchor mechanism, the structural model of rectangular roadway is established according to the deformation law of surrounding rock of rectangular roadway.The deformation expression of surrounding rock of rectangular roadway is obtained by elastic-plastic theory analysis, the force of bolt is analyzed, and the design method of bolt support is put forward.At the same time, the model of surrounding rock reinforcement is established, the mechanical characteristics of surrounding rock are analyzed, and the method of evaluating the stability of surrounding rock is put forward. Based on the S12001 of NING TIAO TA coal mine, a reasonable design scheme of bolt support is put forward, combined with numerical simulation and field monitoring to verify the rationality of the theory, and the stability of surrounding rock of roadway is evaluated. The main research results are as follows:

(1) The deformation law of surrounding rock of rectangular roadway is analyzed, and the structure model of rectangular roadway is established.According to the plane strain problem, the stress of the structural model is analyzed, and the deformation expression of surrounding rock is obtained by elastic-plastic theory. By example and combined with FLAC3D numerical simulation software, the deformation law of roadway surrounding rock and the deformation amount of surrounding rock are obtained, and compared with the theoretical calculation results, so as to verify the rationality of the theory. It provides theoretical support for bolt support design considering roadway surrounding rock deformation.

(2) Based on the coordinated deformation of anchor rod and surrounding rock, the stress models of full length bond anchor rod and local anchor rod are established, and the expressions of shear stress and axial stress in anchor section are obtained.The stress law of anchor section is analyzed and summarized, and the design method of roadway bolt support is put forward. Combined with an example, the supporting design of roadway and the main influencing factors of anchoring section are analyzed.

(3) Considering the change of the mechanical state of the surrounding rock, the model of the surrounding rock reinforcement is established, the expression of the mechanical characteristics of the surrounding rock after reinforcement is obtained, and the influence of different bolt support parameters on the mechanical characteristics of the surrounding rock is analyzed.On the premise that the axial stress and shear stress of anchor rod do not exceed the allowable value of stress,the method of evaluating the stability of the surrounding rock is put forward based on the ratio of the ultimate load to the bearing load of the reinforced body as the condition to judge the stability of the surrounding rock.

(4) Applying the research results to the support design of the roadway of NING TIAO TA coal mine S12001 ,by using the numerical simulation and field monitoring results ,this paper compared the reinforcement effect of roadway under original support scheme and new support scheme,and also evaluate the roadway stability.The results show that under the premise of ensuring the stability of roadway, the bolt support design based on the deformation of surrounding rock can better play the role of bolt strengthening surrounding rock, improve the self-bearing capacity of surrounding rock, and save the amount of anchor rod.

参考文献:

[1]于远祥.矩形巷道围岩变形破坏机理及在王村矿的应用研究[D].西安科技大学,2013.

[2]李久云.锚索支护在煤矿开采中的应用[J].机械管理开发,2018,33(06):109-111.

[3]程良奎.岩土锚固的现状与发展[J].土木工程学报,2001(03):7-12+34.

[4]王毅.黄土地层预应力锚索(杆)的锚固机理试验研究[D].西安科技大学,2009.

[5]周志炎,张汉华,张凤姚.岩体锚固施工技术分析[J].黄河水利职业技术学院学报,2010,22(03):27-29.

[6]鞠文君.我国煤矿锚杆支护技术的发展与展望[J].煤矿开采,2014,19(06):1-6.

[7]苗国航.我国预应力岩土锚固技术的现状与发展[J].地质与勘探,2003(3):91~94.

[8]刘中华.“三小”技术在常村煤矿的应用[J].煤,2003(02):17-18.

[9]康红普,王金华,林健.煤矿巷道支护技术的研究与应用[J].煤炭学报,2010,35(11):1809-1814.

[10]WANG Xiangyu, BAI Jianbiao, GUO Guanlong, et al.Test and application of hydraulic expansion bolts in a roadway under goaf with ultra-close separation[J]. Interational Journal of Mining Science and Technology 2014,24(6):839-846.

[11]康红普.我国煤矿巷道锚杆支护技术发展60年及展望[J].中国矿业大学学报,2016,45(06):1071-1081.

[12]付玉凯,王涛,孙志勇,等.复合软岩巷道长短锚索层次控制技术及实践[J].采矿与安全工程学报,2021,38(02):237-245.

[13]康红普,王金华,林健.煤矿巷道锚杆支护应用实例分析[J].岩石力学与工程学报,2010,29(04):649-664.

[14]潘锐.深部巷道破碎围岩锚注机制及控制技术研究[J].岩石力学与工程学报,2021,40(04):864.

[15]董维武.锚杆支护新进展[J].中国煤炭,1997(02):44-47.

[16]于辉,唐仁学,孔令根.围岩松动圈支护理论在煤巷支护设计中的应用[J].中国矿业,2014,23(8):115~118.

[17]Zhengzheng Xie , et al. Investigation on the evolution and control of surrounding rock fracture under different supporting conditions in deep roadway during excavation period[J]. International Journal of Rock Mechanics and Mining Sciences,2019,123(C): 104122-104122.

[18]何满潮,苏永华,孙晓明,等.锚杆支护煤巷稳定性可靠度分析[J].岩石力学与工程学报,2002(12):1810-1814.

[19]C. Chunlin Li. Rock support design based on the concept of pressure arch[J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(7) : 1083-1090.

[20]Xiaojie Yang , et al. A Case Study on the Control of Large Deformations in a Roadway Located in the Du’erping Coal Mine in China[J]. Advances in Materials Science and Engineering, 2019, 2019 : 1-13.

[21]Lang TA.Theory and practice of rock bolting[J].Trans AIME 1961,220:333-48.

[22]Hoek E,Brown ET. Underground excavations in rock[J].London:Institution of Mining and Metallurgy,1980,527.

[23]Krauland N.Rock bolting and economy. In:Stephansson O,editor. Rock bolting theory and applications in mining and underground construction[J].Rotterdam:Balkema,1983.499-507.

[24]靖洪文,孟庆彬,朱俊福,等.深部巷道围岩松动圈稳定控制理论与技术进展[J].采矿与安全工程学报,2020,37(03):429-442.

[25]黄锋,朱合华,李秋实,等.隧道围岩松动圈的现场测试与理论分析[J].岩土力学,2016,37(S1):145-150.

[26]侯朝炯,王襄禹,柏建彪,等.深部巷道围岩稳定性控制的基本理论与技术研究[J].中国矿业大学学报,2021,50(01):1-12.

[27]侯朝炯,勾攀峰.巷道锚杆支护围岩强度机理研究[J].岩石力学与工程学报,2000,19(3):342-345.

[28]周桥,高谦.基于DDA理论对超前锚杆加固在破碎带工程围岩起销钉作用机理研究[J].煤炭工程,2009(08):109-111.

[29]汪小刚,周纪军,贾志欣,等.加锚节理面的抗剪试验研究[J].岩土力学,2016,37(S2):250-256.

[30]陈玉祥,王霞,刘少伟.锚杆支护理论现状及发展趋势探讨[J].西部探矿工程,2004,10(1):155~157.

[31]姚强岭,王伟男,孟国胜,等.树脂锚杆不同锚固长度锚固段受力特征试验研究[J].采矿与安全工程学报,2019,36(04):643-649.

[32]韦四江,勾攀峰.锚杆预紧力对锚固体强度强化的模拟实验研究[J].煤炭学报,2012,37(12):1987-1993.

[33]李刚,梁冰,张国华.高应力软岩巷道变形特征及其支护参数设计[J].采矿与安全工程学报,2009,26(02):183-186.

[34]Philips SHE. Factors affecting the design of anchorages in rock[R].London:Cementation Research Ltd,1970.

[35]蒋忠信.拉力型锚索锚固段剪应力分布的高斯曲线模式[J].岩土工程学报,2001,2(36):696~699.

[36]肖世国,周德培.非全长粘结型锚索锚固段长度的一种确定方法[J].岩石力学与工程学报,2004,23(9):1530~1534.

[37]李铀,白世伟,方昭茹,等.预应力锚索锚固体破坏与锚固力传递模式研究[J].岩土力学,2003,24(5): 655~690.

[38]曹金国,姜弘道.一种确定拉力型锚杆支护长度的方法[J].岩石力学与工程学报,2003, 22(7):1141~1145.

[39]尤春安,站玉宝.预应力锚索锚固段的应力分布规律分析[J].岩石力学与工程学报,2005,24(6): 925~928.

[40]尤春安.压力型锚索锚固段的受力分析[J].岩土工程学报,2004(06):828-831.

[41]尤春安.全长黏结式锚杆的受力分析[J].岩石力学与工程学报,2000,19(3):339~341.

[42]张季如,唐保付.锚杆荷载传递机理分析的双曲函数模型[J].岩土工程学报,2002,24(2):188~192.

[43]杨庆,朱训国.全长注浆岩石锚杆双曲线模型的建立及锚固效应的参数分析[J].岩石力学与工程学报,2007,26(4):692~698.

[44]刘泉声,邓鹏海,毕晨,等.深部巷道软弱围岩破裂碎胀过程及锚喷-注浆加固FDEM数值模拟[J].岩土力学,2019,40(10):4065-4083.

[45]王文杰,万浩.高应力软岩巷道全长锚固玻璃钢锚杆受力特征研究[J].采矿与安全工程学报,2019,36(03):482-490.

[46]乔伟.沿空留巷锚杆受力及围岩变形数值模拟分析[J].内蒙古煤炭经济,2019(05):62-64+88.

[47]王其洲,李宁,叶海旺,等.单自由面锚固体单向加载破坏特征和锚杆荷载规律研究[J].采矿与安全工程学报,2020,37(04):665-673.

[48]黄庆享.公路隧道TZL预应力锚杆支护效果对比试验研究[J].西安公路交通大学学报,2000,20(4):39~42.

[49]徐干成,郑颖人.地下工程支护结构[M].中国水利水电出版社,2002:103-114.

[50]刘国庆,肖明,陈俊涛,等.地下洞室全长粘结式锚杆受力分析方法[J].华中科技大学学报(自然科学版),2017,45(06):113-119.

[51]谷拴成,周攀,黄荣宾.锚杆–围岩承载结构支护下隧洞稳定性分析[J].岩土力学,2018,39(S1):122-130.

[52]Charlie C. Li. Analysis of Inflatable Rock Bolts[J]. Rock Mechanics and Rock Engineering, 2016, 49(1) : 273-289.

[53]Hao Zhou, Ming Xiao,Juntao Chen. Analysis of a numerical simulation method of fully grouted and anti-seismic support bolts in underground geotechnical engineering[J]. Computers and Geotechnics, 2016, 76 : 61-74.

[54]Tao Z,Chen J X. Behavior of rock bolting as tunneling support[C].Proceedings of the International Symposium on Rock Bolting. Rotterdam: Balkema A A, 1984: 87~92.

[55]王明恕,何修仁,郑雨天.全长锚固锚杆的力学模型及其应用[J].金属矿山,1983(04):24-29.

[56]C.Li, B.Stillborg. Analytical models for rock bolts[J]. International Journal of RockMechanics and Mining Sciences, 1999,(36):1013~1029

[57]蓝航,齐庆新,潘俊锋,等.我国煤矿围岩变形破坏特点及防治技术分析[J].煤炭科学技术,2011,39(1):11-15.

[58]张国华.矿井围岩控制于灾害防治[M].徐州:中国矿业大学出版社,2009:44-56.

[59]孙训方.材料力学(I)[M].5版.北京:高等教育出社,2009:157-159.

[60]谷拴成,王盼,杨超凡.中浅埋深矩形巷道顶板围岩弹塑性变形[J].科学技术与工程,2021,21(03):952-957.

[61]王明恕.全长锚固锚杆机理的探讨[J].煤炭学报,1983(01):40-47.

[62]GB 50010-2010.混凝土结构设计规范[S],2010.

[63]王明恕.局部粘结锚杆内力分析[C].中国金属学会、中国岩石力学与工程学会.第三届岩石力学学术会议论文集(上).中国金属学会、中国岩石力学与工程学会:中国岩石力学与工程学会,1985:162-171.

[64]丁潇.巷道围岩离层下锚杆荷载传递机理及支护设计研究[D].西安科技大学,2016.

[65]徐芝纶.弹性力学简明教程[M].北京:高等教育出版社,2002:84-87.

[66]杨双锁,张百胜.锚杆对岩土体作用的力学本质[J].岩土力学,2003,24(S1):279-282.

中图分类号:

 TD353    

开放日期:

 2021-06-16    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式