- 无标题文档
查看论文信息

论文中文题名:

 基于全局动力学特征的转子/定子碰摩失稳响应早期预警    

姓名:

 董心心    

学号:

 21201221065    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 025200    

学科名称:

 经济学 - 应用统计    

学生类型:

 硕士    

学位级别:

 经济学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 理学院    

专业:

 应用统计    

研究方向:

 非线性动力学    

第一导师姓名:

 梁飞    

第一导师单位:

 西安科技大学    

第二导师姓名:

 李自刚    

论文提交日期:

 2024-06-14    

论文答辩日期:

 2024-06-04    

论文外文题名:

 Global Dynamics Based Methods for Early Warning of Stability Lossing in a Rotor/Stator Rubbing System    

论文中文关键词:

 全局动力学特征 ; 转子/定子碰摩 ; 临界慢化现象 ; 早期预警 ; 数据驱动    

论文外文关键词:

 Global Dynamical Characteristics ; Rotor/Stator Rubbing ; Critical Slowing Down Phenomenon ; Early Warning ; Data-Driven    

论文中文摘要:

       随着科学技术与现代工业的发展,对于旋转机械高速、高效、重载的需求迫使动静件间隙减小而诱发转子碰摩失稳响应。即使初始设计处于正常工况,装备也可能在长期运行下产生部件老化这样参数慢变而导致系统内在动力学结构改变的情况,促使系统向干摩擦反向涡动这一危险的全局分岔失稳响应过渡。立足于工业大数据状态响应数据充足但预警信息匮乏的现状,对系统非线性全局动力学分析可以揭示系统在失稳响应发生前的全局结构属性,有效识别系统失稳的前兆信号,并结合数据驱动技术为潜在的运行失稳风险提供切实可靠的早期预警方法。因此,基于全局动力学特征的转子/定子碰摩失稳响应早期预警方法的研究具有重要的工程实际意义。本研究主要内容如下:

       首先,对转子/定子碰摩系统开展全局动力学分析,研究了系统在全局分岔点前后内在动力学结构和响应的关系,其全局动态特性呈现出无碰周期一运动和干摩擦反向涡动准周期运动双稳态共存以及随参数变化稳定解个数发生改变的全局分岔行为。结合非线性分岔理论,在转子/定子碰摩系统状态空间内揭示了响应临界慢化现象。结果表明:靠近分岔点的无碰吸引域尺寸比远离临界点情况更小,其吸引子的稳定性和吸引性更弱,且受微小扰动后恢复至平衡点的时间会更长,短时间恢复速率则更小。

       其次,在认识系统全局动力学特性的基础上,综合考虑相空间动力学和临界慢化现象,提出了转子系统从稳定运行到失稳响应的一系列早期预警关键指标体系。在早期预警信号的有效性分析中,考虑外部扰动和采样周期因素进行多样化数值模拟,通过划分正负类样本对预警信号进行比较,发现正类样本相较于负类样本其预警特征呈现明显的上升趋势。同时,通过设置多级预警机制及肯德尔秩相关系数量化发展趋势,以便于更全面地评估预警指标的效能,进一步验证了预警信号的有效性,为构建故障预警模型提供了高质量特征集。

       最后,将前述早期预警特征作为深度学习框架的输入数据,系统是否发生失稳作为输出标签,以此构建数据驱动的失稳响应早期预警模型,并进行超参数调优和模型拟合度检测,得到较为精确且具有良好泛化能力的预警模型。此外,通过滑动窗口方式实现了对响应失稳概率的动态预测,并基于3σ统计准则设置动态阈值自学习来进行分级故障预报。同时,通过分析预警信号提前周期数分布来评估数据驱动早期预警方法的时效性,以期在工程实际中能够及时发现系统失稳迹象,为实现转子碰摩失稳响应早期预警提供了理论和方法支持。

       综上所述,本研究通过结合全局动力学特征和深度学习框架,提出了有效的转子/定子碰摩失稳响应的早期预警方法,不仅在理论上深化了对转子/定子碰摩失稳响应机理的全局认识,而且在实践方面提供了数据驱动的早期预警手段,为工程实践的故障预警和预测性维修提供重要的方法支持,具有重要的学术和工程意义。

论文外文摘要:

      With the advancement of science, technology, and modern industry, the demand for high-speed, high-efficiency, and heavy-load rotating machinery has led to a reduction in the clearance between the rotor and stator, triggering rotor rub-induced instability responses. Long-term operation of equipment can cause component aging, even under normal operating conditions, resulting in slow changes in intrinsic dynamic parameters of systems. This prompts the system to transition towards dangerous global bifurcation, such as instability responses for dry friction backward whirl. In the current state of rich state response data but limited early warning information within industrial big data fields, nonlinear global dynamic analysis of systems can effectively identify precursor signals of system instability by revealing the global structural attributes prior to instability responses occurring. Additionally, merging data-driven approaches provides practical and reliable early warning methods for potential instability responses. Therefore, there is significant engineering practical value to research on early warning methods for rotor/stator rubbing instability responses based on global dynamic characteristics. The main research contributions of this thesis are as follows:

      Firstly, a global dynamical analysis of the rotor/stator rub system is conducted, investigating the relationship between the intrinsic dynamical structure and response of the system before and after global bifurcation points. The global dynamic characteristics exhibit the coexistence of motion without rub periods and quasi-periodic motion with dry friction backward whirl, as well as global bifurcation behavior where the number of stable solutions changes with parameter variations. Combining nonlinear bifurcation theory, critical slowing down phenomenon is revealed within the state space of rotor/stator rub system: the no-rub basin of attraction near the bifurcation point is smaller compared to situations farther from the critical point, with weaker stability and basin of attractors, and longer recovery times to equilibrium solutions under small perturbations, indicating slower rates of returning to equilibrium points in a short time frame.

      Secondly, taking into account both phase space dynamics and critical slowing down phenomena, a set of early warning indications for the rotor system's shift from stable operation to unstable response are given, based on the understanding of global dynamical properties. Various numerical simulations are carried out taking into account external disturbances and sampling intervals in order to analyze the efficacy of early warning signals. When positive and negative samples are separated, it is evident that the positive samples' early warning characteristics are trending increasing in comparison to the negative samples. The effectiveness of warning indicators is thoroughly assessed by creating a multi-level warning mechanism and quantifying the development trend using Kendall’s tau rank correlation coefficients. This further validates the efficacy of warning signals and offers a superior feature set for creating fault warning models.

      Finally, the aforementioned early warning features are used as input data for deep learning algorithms, with the occurrence of system instability as the output label, to construct a data-driven early warning model for instability response. Hyperparameter tuning and model fit testing are conducted to obtain a more accurate and well-generalized warning model. Additionally, dynamic prediction of the probability of instability in response data is achieved through a sliding window approach, and a dynamic threshold based on the 3σ statistical criterion is set for self-learning to perform graded fault prediction. Furthermore, the timeliness of the data-driven early warning method is evaluated by analyzing the distribution of lead time of graded warning signals, aiming to promptly detect signs of system instability in engineering practice and provide theoretical and methodological support for achieving early warning of instability response.

      In summary, this thesis proposes an effective early warning method for rotor/stator rub-induced instability by integrating global dynamical characteristics and deep learning algorithms. It not only deepens the global understanding of the mechanism of rotor/stator rub-induced instability response theoretically but also provides data-driven early warning means in practice, offering important methodological support for fault warning and predictive maintenance in engineering practice, with significant academic and engineering implications.

参考文献:

[1] Jiang J. Determination of the global responses characteristics of a piecewise smooth dynamical system with contact [J]. Nonlinear Dynamics, 2009, 57: 351-361.

[2] Li Z, Jiang J, Hong L. Noise-induced transition in a piecewise smooth system by generalized cell mapping method with evolving probabilistic vector [J]. Nonlinear Dynamics, 2017, 88: 1473-1485.

[3] Fan S, Hong L, Jiang J. Blue-Sky Catastrophic Bifurcations Behind Emergence and Disappearance of Quasiperiodic Rubbing Oscillations in a Piecewise Smooth Rotor–Stator System [J]. International Journal of Bifurcation and Chaos, 2022, 32(13): 2250221.

[4] Min J H, Kim D-W, Park C-Y. Demonstration of the validity of the early warning in online monitoring system for nuclear power plants [J]. Nuclear Engineering and Design, 2019, 349: 56-62.

[5] Wang Z, Yang J, Guo Y, et al. Positive role of bifurcation on stochastic resonance and its application in fault diagnosis under time-varying rotational speed [J]. Journal of Sound Vibration, 2022, 537: 117210.

[6] Ugwiri M A, Carratú M, Paciello V, et al. Benefits of enhanced techniques combining negentropy, spectral correlation and kurtogram for bearing fault diagnosis [J]. Measurement, 2021, 185: 110013.

[7] Wang Q, Wu W, Zhang F, et al. Early rub-impact fault detection of rotor systems via deterministic learning [J]. Control Engineering Practice, 2022, 124: 105190.

[8] Jungblut J, Haas J, Rinderknecht S, et al. Active vibration control of an elastic rotor by using its deformation as controlled variable [J]. Mechanical Systems, 2022, 165: 108371.

[9] Sha H, Yu T, He Y, et al. Rotor dynamics design and test of 700 kW magnetic levitation turbo blower [J]. Chin J Turbomach, 2019, 61: 45-47.

[10] Ma J, Liu Q, Xu Y, et al. Early warning of noise-induced catastrophic high-amplitude oscillations in an airfoil model [J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2022, 32(3).

[11] Abdalla H B. A brief survey on big data: technologies, terminologies and data-intensive applications [J]. Journal of Big Data, 2022, 9(1): 107.

[12] 金晓航, 王宇. 工业大数据驱动的故障预测与健康管理 [J]. 计算机集成制造系统, 2022, 28(5): 1314.

[13] Jiang J. The analytical solution and the existence condition of dry friction backward whirl in rotor-to-stator contact systems [J]. Journal of Vibration and Acoustics, 2007, 129(2): 260-264.

[14] Pirani M, Jafarpour S. Network Critical Slowing Down: Data-Driven Detection of Critical Transitions in Nonlinear Networks [J]. IEEE Transactions on Control of Network Systems, 2023.

[15] Nazarimehr F, Jafari S, Perc M, et al. Critical slowing down indicators [J]. Europhysics Letters, 2020, 132(1): 18001.

[16] Scheffer M, Bascompte J, Brock W A, et al. Early-warning signals for critical transitions [J]. Nature, 2009, 461(7260): 53-59.

[17] Van Nes E H, Scheffer M. Slow recovery from perturbations as a generic indicator of a nearby catastrophic shift [J]. The American Naturalist, 2007, 169(6): 738-747.

[18] Arnoldi J-F, Bideault A, Loreau M, et al. How ecosystems recover from pulse perturbations: A theory of short-to long-term responses [J]. Journal of theoretical biology, 2018, 436: 79-92.

[19] Ghanavati G, Hines P D, Lakoba T I, et al. Understanding early indicators of critical transitions in power systems from autocorrelation functions [J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2014, 61(9): 2747-2760.

[20] Scheffer M, Carpenter S R, Lenton T M, et al. Anticipating critical transitions [J]. science, 2012, 338(6105): 344-348.

[21] Dakos V, Scheffer M, Van Nes E H, et al. Slowing down as an early warning signal for abrupt climate change [J]. Proceedings of the National Academy of Sciences, 2008, 105(38): 14308-14312.

[22] 吴浩, 侯威, 颜鹏程, 等. 基于临界慢化现象的气候突变前兆信号的初步研究 [J]. 物理学报, 2012, 61(20): 561-569.

[23] Ismail M S, Hussain S I, Noorani M S M. Detecting early warning signals of major financial crashes in bitcoin using persistent homology [J]. IEEE Access, 2020, 8: 202042-202057.

[24] Dablander F, Pichler A, Cika A, et al. Anticipating critical transitions in psychological systems using early warning signals: Theoretical and practical considerations [J]. Psychological Methods, 2022.

[25] Mcsharry P E, Smith L A, Tarassenko L. Prediction of epileptic seizures: are nonlinear methods relevant? [J]. Nature medicine, 2003, 9(3): 241-242.

[26] Shalalfeh L, Alshalalfeh A. Early warning signals for bearing failure using detrended fluctuation analysis [J]. Applied Sciences, 2020, 10(23): 8489.

[27] 樊盼盼, 袁逸萍, 马占伟, 等. 基于预警控制限自学习的滚动轴承早期故障预测 [J]. 计算机集成制造系统, 2024, 30(1): 227.

[28] 张添佑, 陈智, 温仲明, 等. 陆地生态系统临界转换理论及其生态学机制研究进展 [J]. 应用生态学报, 2022, 33(3).

[29] Nazarimehr F, Jafari S, Hashemi Golpayegani S M R, et al. Predicting tipping points of dynamical systems during a period-doubling route to chaos [J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2018, 28(7).

[30] Lenton T, Livina V, Dakos V, et al. Early warning of climate tipping points from critical slowing down: comparing methods to improve robustness [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 370(1962): 1185-1204.

[31] Jin X, Fan J, Chow T W S. Fault Detection for Rolling-Element Bearings Using Multivariate Statistical Process Control Methods [J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(9): 3128-3136.

[32] Cerrada M, Sánchez R-V, Li C, et al. A review on data-driven fault severity assessment in rolling bearings [J]. Mechanical Systems and Signal Processing, 2018, 99: 169-196.

[33] 王万良, 张兆娟, 高楠, 等. 基于人工智能技术的大数据分析方法研究进展 [J]. 计算机集成制造系统, 2019, 25(03): 529-547.

[34] 王庆锋, 卫炳坤, 刘家赫, 等. 一种数据驱动的旋转机械早期故障检测模型构建和应用研究 [J]. 机械工程学报, 2020, 56(16): 22-32.

[35] 韦祥, 李本威, 张赟. 采用符号时间序列分析的轴承早期微弱故障预警 [J]. 西安交通大学学报, 2018, 52(6): 84-90.

[36] Ruiz-Sarmiento J-R, Monroy J, Moreno F-A, et al. A predictive model for the maintenance of industrial machinery in the context of industry 4.0 [J]. Engineering Applications of Artificial Intelligence, 2020, 87: 103289.

[37] Lei Y, Ja F, Zhou X, et al. A deep learning-based method for machinery health monitoring with big data [J]. Journal of mechanical engineering, 2015, 51(21): 49-56.

[38] Zhang Y, Li X, Gao L, et al. Intelligent fault diagnosis of rotating machinery using a new ensemble deep auto-encoder method [J]. Measurement, 2020, 151: 107232.

[39] 毛文涛, 田思雨, 窦智, 等. 一种基于深度迁移学习的滚动轴承早期故障在线检测方法 [J]. 自动化学报, 2022, 48(1): 302-314.

[40] Li X, Jiang H, Wang R, et al. Rolling bearing fault diagnosis using optimal ensemble deep transfer network [J]. Knowledge-Based Systems, 2021, 213: 106695.

[41] Füllsack M, Kapeller M, Plakolb S, et al. Training LSTM-neural networks on early warning signals of declining cooperation in simulated repeated public good games [J]. MethodsX, 2020, 7: 100920.

[42] Deb S, Sidheekh S, Clements C F, et al. Machine learning methods trained on simple models can predict critical transitions in complex natural systems [J]. Royal Society Open Science, 2022, 9(2): 211475.

[43] 卫炳坤, 王庆锋, 刘家赫, 等. 基于动态长短期记忆网络的设备性能退化预测方法 [J]. 北京化工大学学报 (自然科学版), 2020, 47(6): 92-99.

[44] 李自刚. 含有随机因素的非线性转子—轴承系统动力学行为研究 [D]. 西安: 西安交通大学, 2016.

[45] Jiang J. The analytical solution and the existence condition of dry friction backward whirl in rotor-to-stator contact systems [J]. 2007.

[46] 周杜, 乐源, 李高磊, 等. 两自由度齿轮传动系统全局动力学研究 [J]. 动力学与控制学报, 2019, 17(6): 514-519.

[47] Andonovski N, Lenci S. Six-dimensional basins of attraction computation on small clusters with semi-parallelized SCM method [J]. International Journal of Dynamics and Control, 2020, 8: 436-447.

[48] Silva F M, Gonçalves P B. The influence of uncertainties and random noise on the dynamic integrity analysis of a system liable to unstable buckling [J]. Nonlinear Dynamics, 2015, 81: 707-724.

[49] Lenci S, Rega G, Ruzziconi L. The dynamical integrity concept for interpreting/predicting experimental behaviour: from macro-to nano-mechanics [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2013, 371(1993): 20120423.

[50] Jafari S, Nazarimehr F, Alsaadi F, et al. Investigating bifurcation points of an impact oscillator [J]. Indian Journal of Physics, 2021, 95: 925-933.

[51] 高俊杰. 混沌时间序列预测研究及应用 [D]. 上海: 上海交通大学, 2013.

[52] 陈艳华, 江俊. 转子/定子碰摩系统的非线性模态及其在干摩擦反向涡动响应预测中的应用 [J]. 西安交通大学学报, 2014, 48(5): 82-88.

[53] Donangelo R, Fort H, Dakos V, et al. Early warnings for catastrophic shifts in ecosystems: Comparison between spatial and temporal indicators [J]. International Journal of Bifurcation and Chaos, 2010, 20(02): 315-321.

[54] Dakos V, Van Nes E H, Donangelo R, et al. Spatial correlation as leading indicator of catastrophic shifts [J]. Theoretical Ecology, 2010, 3: 163-174.

[55] Guttal V, Jayaprakash C. Spatial variance and spatial skewness: leading indicators of regime shifts in spatial ecological systems [J]. Theoretical Ecology, 2009, 2: 3-12.

[56] Chen S, O’dea E B, Drake J M, et al. Eigenvalues of the covariance matrix as early warning signals for critical transitions in ecological systems [J]. Scientific reports, 2019, 9(1): 2572.

[57] Drake J M, Griffen B D. Early warning signals of extinction in deteriorating environments [J]. Nature, 2010, 467(7314): 456-459.

[58] Prabith K, Krishna I P. The numerical modeling of rotor–stator rubbing in rotating machinery: a comprehensive review [J]. Nonlinear Dynamics, 2020, 101(2): 1317-1363.

[59] Shiekh R H A, El-Hashash E F. A comparison of the pearson, spearman rank and kendall tau correlation coefficients using quantitative variables [J]. Asian Journal of Probability and Statistics, 2022: 36-48.

[60] Van Den Heuvel E, Zhan Z. Myths about linear and monotonic associations: Pearson’sr, Spearman’s ρ, and Kendall’s τ [J]. The American Statistician, 2022, 76(1): 44-52.

[61] Zhang S, Cheng D, Deng Z, et al. A novel kNN algorithm with data-driven k parameter computation [J]. Pattern Recognition Letters, 2018, 109: 44-54.

[62] 周志华. 机器学习 [M]. 北京: 清华大学出版社, 2016.

[63] Zhi-Lin Y, Yi L, Hai-Feng W. Identification accuracy evaluation of optimized random subspace method based on database [J]. Engineering Mechanics, 2023, 40(4): 116-128+192.

[64] Sherstinsky A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network [J]. Physica D: Nonlinear Phenomena, 2020, 404: 132306.

[65] 杨杏丽. 分类学习算法的性能度量指标综述 [J]. 计算机科学, 2021, 48(8): 209-219.

[66] Zhang X, Liu C-A. Model averaging prediction by K-fold cross-validation [J]. Journal of Econometrics, 2023, 235(1): 280-301.

中图分类号:

 O322    

开放日期:

 2024-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式