- 无标题文档
查看论文信息

论文中文题名:

 考虑结构面震动劣化效应的危岩体动力稳定性分析    

姓名:

 刘拴    

学号:

 21204228085    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 085900    

学科名称:

 工学 - 工程 - 土木水利    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 土木水利    

研究方向:

 岩土力学与工程应用    

第一导师姓名:

 高丙丽    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-13    

论文答辩日期:

 2024-06-07    

论文外文题名:

 Dynamic stability analysis of dangerous rock masses considering the seismic degradation effect of rock structural planes under earthquake action    

论文中文关键词:

 地震 ; 循环剪切 ; 结构面劣化 ; 尺寸效应 ; 危岩体稳定性    

论文外文关键词:

 Earthquake ; Circular shearing ; Deterioration of structural planes ; Size effect ; Stability of dangerous rock mass    

论文中文摘要:

地震作用是诱发危岩体崩塌、滑落的重要影响因素之一,地震会使得危岩体结构面的抗剪强度强度减弱,导致其稳定性进一步降低,从而诱发大量的危岩体失稳崩塌,进而对工程建设和人民生命财产的安全构成了严重的威胁。地震不仅仅是一种动荷载,也是一种循环荷载,动荷载主要以地震惯性力的形式作用在危岩体上,循环荷载会使得危岩体的结构面不断磨损,从而引起其抗剪强度逐渐降低,最终致使危岩体的稳定性下降。因而危岩体结构面的强度对危岩体稳定性往往有着决定性作用,因此分析地震作用下岩质边坡危岩体稳定性的关键就是研究岩体结构面在地震作用下的强度变化特征。本文以云南鲁甸县王家坡岩质边坡危岩体为研究背景,结合室内试验、理论分析和数值模拟三种方法进行研究,在考虑结构面尺寸效应及震动劣化效应的基础上,深入研究地震作用下危岩体的动力稳定性。主要研究内容如下:

(1)通过文献搜集和现场调查,阐述分析影响岩质边坡危岩体结构面抗剪强度劣化的内部因素和外部因素,着重分析地震作用对结构面剪切应力的影响。

(2)基于颗粒流分析方法进行结构面循环剪切数值试验,研究循环剪切作用下结构面的抗剪强度劣化规律,分析循环剪切次数、剪切幅值、剪切速率、法向应力、充填物厚度对结构面剪应力的演化特征;同时结合回归分析法,建立综合考虑循环剪切次数、法向应力及充填厚度等影响因素的结构面抗剪强度震动劣化数学模型。

(3)基于上述提出的结构面抗剪强度震动劣化数学模型,研究结构面尺寸效应对其剪应力的影响规律,并且对提出的结构面抗剪强度震动劣化数学模型进行修正,建立修正后的考虑结构面尺寸效应的抗剪强度震动劣化数学模型,并对其合理性进行验证。

(4)基于极限平衡法,结合修正后的结构面抗剪强度震动劣化数学模型,针对滑移式危岩体、倾倒式危岩体及坠落式危岩体的失稳破坏模式,分别提出考虑结构面震动劣化效应的岩质边坡危岩体动力稳定性系数的计算公式;利用有限差分法,阐明地震波波动频率和振幅对危岩体动力稳定性系数的影响规律。

关 键 词:地震;循环剪切;结构面劣化;尺寸效应;危岩体稳定性

研究类型:应用基础研究

 

论文外文摘要:

ABSTRACT

Earthquake action is one of the important influencing factors that induce the collapse and rolling of dangerous rock masses. Earthquakes can weaken the shear strength of the structural planes of dangerous rock masses, further reducing their stability and inducing a large number of unstable collapses, posing a serious threat to engineering construction and the safety of people's lives and property. Earthquakes are not only dynamic loads, but also cyclic loads, which mainly act on dangerous rock masses in the form of seismic inertial forces; Cyclic loads can cause continuous wear and tear on the structural planes of hazardous rock masses, leading to a gradual decrease in their shear strength and ultimately a decrease in their stability. The strength of the structural plane in a dangerous rock mass often plays a decisive role in its stability. Therefore, the key to analyzing the stability of rock slopes under earthquake action is to study the strength variation characteristics of rock mass structural planes under earthquake action. This article takes the dangerous rock mass of Wangjiapo rock slope in Ludian County, Yunnan Province as the background, and uses three methods of indoor testing, theoretical analysis, and numerical simulation to study the dynamic stability of dangerous rock mass under earthquake action, considering the size effect of structural planes and seismic degradation effect. The main research content is as follows:

(1) Through literature collection and on-site investigation, this paper elaborates and analyzes the internal and external factors that affect the deterioration of shear strength of dangerous rock mass structural planes in rock slopes, with a focus on analyzing the impact of earthquake action on shear stress of structural planes.

(2) Based on the particle flow analysis method, numerical experiments were conducted on the cyclic shear strength of structural planes to study the degradation law of shear strength under cyclic shear action. The evolution characteristics of shear stress on structural planes were analyzed by analyzing the number of cyclic shear, shear amplitude, shear rate, normal stress, and filling thickness; Simultaneously combining regression analysis, establish a mathematical model for seismic degradation of structural plane shear strength considering the number of cyclic shear cycles, normal stress, and filling thickness.

(3) Based on the proposed mathematical model for seismic degradation of shear strength of structural planes, this study investigates the influence of size effects on shear stress of structural planes, and modifies the proposed mathematical model for seismic degradation of structural planes. A modified mathematical model for seismic degradation considering size effects of structural planes is established, and its rationality is verified.

(4) Based on the limit equilibrium method and combined with the revised mathematical model of seismic degradation, calculation formulas for the dynamic stability coefficient of rock slopes considering the seismic degradation effect of structural planes are proposed for the instability and failure modes of sliding, tilting, and falling hazardous rock masses; Using the finite difference method, clarify the influence of seismic wave frequency and amplitude on the dynamic stability coefficient of dangerous rock masses.

Key words :Earthquake; Circular shearing; Deterioration of structural planes; Size effect; Stability of dangerous rock mass

Thesis    : Application basic research

参考文献:

[1] 张倬元. 工程地质分析原理[M].地质出版社,1981.

[2] 汪茜. 地震作用下顺层岩质边坡变形破坏机理研究[D]. 吉林大学,2010.

[3] 钱洪,周荣军. 岷江断裂南段与1933年叠溪地震研究[J]. 中国地震,1999(04):41-46.

[4] 王卫民,赵连锋,李娟,等. 1999年台湾集集地震震源破裂过程[J].地球物理学报, 2005(01):135-150.

[5] 陈运泰,黄立人,林邦慧,等. 用大地测量资料反演的1976年唐山地震的位错模式[J].地球物理学报,1979 (03):201-217.

[6] 蔡晓光,范丽远. 地震液化引起地面侧向大变形研究评述[J].防灾科技学院学报,2010,12(01):11-16.

[7] 汪小刚,夏万仁. 水电工程高边坡稳定问题研究现状和发展方向[J].水力发电,1994 (05):15-18.

[8] 王思敬,张菊明. 边坡岩体滑动稳定的动力学分析[J].地质科学,1982(02):162–170.

[9] Jae Song. distribution-free method for estimating size distribution and volumetric frequency of rock joints[J]. International Journal of Rock Mechanics and Mining Sciences,2009,46(4):748-760

[10] 夏才初. 岩石结构面的表面形态特征研究[J].工程地质学报,1996,4(3):71-78.

[11] Jing L. Numerical modeling of jointed rock masses by distinct element method for two andthree-dimensional problems. Doctorial thesis,Lulea University of Technology,Lulea, Sweden,1990.

[12] Turk N, Dearman WR. Investigation of some rock joint properties: roughness angle determination and joint closure. Proceedings of the International Symposium on Fundamentals of Rock Joints,Bjrkliden,Sweden,1985:197-204.

[13] 雷鹏. 硬性接触型岩体结构面剪切特性及边坡稳定性分析[D].重庆大学,2014.

[14] Homand F,Belem T, Souley M. Friction and degradation of Rock Joint Surfaces under Shear Loads[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2001,25(10):973–999.

[15] Lee H S, Park Y J, Cho T F . Influence of asperity degradation on the mechanical behavior of rough rock joints undercyclic shear loading[J]. International Journal of Rock Mechanics and Mining Sciences,2001,38(7):967–980.

[16] Jafari M K,Hosseini K A, Pellet F,et al. Evaluation of shear strength of rock joints subjected to cyclic loading[J]. Soil Dynamics and Earthquake Engineering, 2003,23(7):619–630.

[17] 范文臣,曹平,龙龙. 循环剪切下节理表面形貌及节理力学特性劣化规律研究(英文)[J].Journal of Central South University,2018,25(03):653-661.

[18] 夏才初,宋英龙,唐志成,等. 反复直剪试验节理强度与粗糙度变化的研究[J].中南大学学报(自然科学版),2012,43(09):3589–3594.

[19] Premadasa W, Indraratna B, Mizargobanali A, et al. Shear behaviour of rock joints undercyclic loading[C]. Australia-New Zealand Conference on Geomechanics: Ground Engineeringin A Changing World ,2012.

[20] 刘博,李海波,朱小明. 循环剪切荷载作用下岩石节理强度劣化规律试验模拟研究[J].岩石力学与工程学报,2011,30(10):2033–2039.

[21] Mirzaghorbanali A, Nemcik J,Aziz N. Effects of shear rate on cyclic loading shear behaviour of rock joints under constant normal stiffness conditions[J]. Rock mechanics and rock engineering, 2014,47(5):1931-1938.

[22] Kana D ,Foxd J,Hsiung S M. Interlock/friction model for dynamic shear response in natural jointed rock[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1996,33(4):371–386.

[23] Belem T, Homand-etienne F, Souley M. Fractal analysis of shear joint roughness[J]. International Journal of Rock Mechanics and Mining Sciences,1997,34:3-4.

[24] Homand F, Belem T, Souley M. Friction and degradation of rock joints surfaces under shear loads[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2001,25(10):973–999.

[25] 陈占锋,向娟,范文臣. 循环剪切对岩石节理形貌与力学行为影响实验研究[J].中国科技论文,2019,14(02):221-225+238.

[26] 孙杰豪. 峰前循环加卸载作用下岩石节理剪切力学特性试验研究[D].河南理工大学,2024.

[27] 尹敬涵,崔臻,盛谦,等. 循环荷载作用下岩石劈裂结构面剪切力学特性演化与影响因素研究[J].岩土力学,2023,44(01):109-118.

[28] 夏才初,宋英龙,唐志成,等. 反复直剪试验节理强度与粗糙度变化的研究[J].中南大学学报(自然科学版),2012,43(09):3589–3594.

[29] Barton N R. The shear strength of rock and rock joints[J]. International Journal of rock mechanics and mining Science & Abstracts,1976,13:255−279.

[30] 许旭堂,陈翔龙,杨枫,等. 循环荷载对充填结构面岩体剪切特性的影响[J/OL].长安大学学报(自然科学版):1-14[2024-04-17].

[31] 瞿佳美. 循环荷载作用下结构面剪切特性试验研究[D]. 重庆大学,2018.

[32] 路雨明. 峰前循环剪切作用下岩石节理强度特性研究[D]. 重庆大学,2018.

[33] 刘新荣,邓志云,刘永权,等. 岩石节理峰前循环直剪试验颗粒流宏细观分析[J].煤炭学报,2019,44(07):2103–2115.

[34] Cundall P A. Numerical experiments on rough joints in shear using a bonded particlemodel[M]. [S.1.]: Springer Berlin Heidelberg,2000.

[35] 刘尧辉. 循环加载条件下岩石节理剪切破坏力学及声发射特性研究[D].重庆交通大学, 2022.

[36] Potyondy D, Cundall P A. A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004,41(8):1329-1364.

[37] 江浩,王岩,郇久阳.循环剪切荷载作用下岩石节理宏细观力学特性研究[J].现代矿业,2023,39(12):98-102.

[38] 高丙丽,张金厚,张路青. 地震作用下结构面劣化特征及高位危岩体动力失稳机制[J].地球科学,2022,47(12):4417-4427.

[39] 蒋宇静,张孙豪,栾恒杰,等. 循环载荷对岩石节理宏细观剪切特性影响的模拟研究[J].煤炭学报,2023,48(01):199-211.

[40] 周喻,MISRAA,吴顺川,等. 岩石节理直剪试验颗粒流宏细观分析[J].岩石力学与工程学报,2012,31(06):169-180.

[41] 曹日红,曹平,林杭,等. 不同粗糙度的节理直剪颗粒流分析[J].岩土力学,2013,34(s2):457-463.

[42] 石崇,徐卫亚. 颗粒流数值模拟技巧与实践[M].北京:中国建筑工业出版社,2015.

[43] Bahaaddini M, Sharrock G, Hebblewhite B K. Numerical direct shear tests to model the shear behaviour of rock joints[J]. Computers & Geotechnics, 2013,51(jun.):101-115.

[44] Liu X, Liu Y, Lu Y, et al. Experimental and numerical study on pre-peak cyclic shear mechanism of artificial rock joints[J]. Structural Engineering and Mechanics, 2020, 74(3): 407-423..

[45] 董杉. 地震荷载作用下顺层岩质斜坡结构面剪切特性及形变位移计算方法研究[D].成都理工大学,2020.

[46] Patton F D. Multiple Modes of shear failure in rock[C]//1st ISRM Congress. OnePetro, 1966.

[47] Barton N, Choubey V. The shear strength of rock joints in theory and practice[J]. Rock Mechanics,1977,10(1):1-54.

[48] 赵坚. 岩石节理剪切强度的JRC-JMC新模型[J].岩石力学与工程学报,1998(04):1-9.

[49] Kulatilake P H, Shou G, Huang T H, et al. New peak shear strength criteria for anisotropic rock joints[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1995,32(7):673-697.

[50] Qiu X, Plesha M E, Huang X, et al. An investigation of the mechanics of rock joints—Part II. Analytical investigation[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1993,30(3):271-287.

[51] Mroz Z, Giambanco G. A Interface Model for analysis of deformation behaviour of discontinuities[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1996,20:1-33.

[52] 尹显俊,王光纶,张楚汉. 岩体结构面切向循环加载本构关系研究[J].工程力学,2005(06):97-103+57.

[53] 王光纶,尹显俊. 岩体结构面三维循环加载本构关系[J].清华大学学报(自然科学版),2005(09):1193-1197.

[54] 尹显俊,王光纶.岩体结构面法向循环加载本构关系研究[J].岩石力学与工程学报,2005(07):1158-1163.

[55] 肖卫国. 节理岩体本构模型和其细观力学方法理论研究[D].北京:北京交通大学,2011.

[56] 刘婷婷,李建春,李海波,等. 剪切速率对平直充填节理的剪切力学特性影响研究

[J].岩土力学,2017,38(7):1967-1973.

[57] 史玲,蔡美峰,赵坚. 充填节理破坏机理及实验[J].北京科技大学学报,2012,34(3):253-259.

[58] MirzaghorbanaliA, NemcikJ, AzizN. Effects of cyclic loading on the shear behaviour of infilled rock joints under constant normal stiffness conditions[J]. Rock Mechanics & Rock Engineering, 2014,47(4):1373-1391

[59] Indraratna B, Welideniya H S, Broen E T. A shear strength model for idealised infilled joints under constant normal stiffness(CNS)[J]. Geotechnique, 2005,55(3):215–226.

[60] Du Shi Gui, Lin Hang, Yong Rui,et al. Characterization of joint roughness heterogeneity and its application in representative sample investigations[J]. Rock Mechanics and Rock Engineering. 2022,55(6).

[61] 罗战友,杜时贵,黄曼. 岩石结构面峰值摩擦角应力效应试验研究[J].岩石力学与工程学报,2014,33(6):1142–1148.

[62] 杜时贵,吕原君,罗战友,等. 岩体结构面抗剪强度尺寸效应联合试验系统及初级应用研究[J].岩石力学与工程学报,2021,40(7):1337–1349.

[63] 王培涛,任奋华,蔡美峰. 基于离散元方法的粗糙性节理岩体直剪力学及尺寸效应特性[J].煤炭学报,2018,43(4):976–983.

[64] 谷德振. 岩体工程地质力学基础[M].北京:科学出版社,1979:250–252.

[65] 孙广忠. 岩体结构力学[M].北京:科学出版社,1988:188–189.

[66] Bandis S, Lumsden A C, Barton N. Experimental studies of scales effects on the shear behaviour of rock joints[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1981,18(1):1–21.

[67] Yoshinaka R, Yoshida J, Arai H,et al. Scale effect in shear strength and deformation of rock joints[C]. In:Proceedings of 7th ISRM conference,Aachen,Germany,1991:371–378.

[68] Castelli M, Savia S, Zanineti A. Experimental evaluation of scale effect on the mechanical behavior of rock joints[C]. Proceedings of International Eurock Symposium,Espoo,Finland,2001:205–210.

[69] 乐慧琳,吴继敏,高晓兵,等. 尺寸效应对锯齿状结构面抗剪强度影响,2016,35(7):745-750.

[70] 黄曼,杜时贵,罗战友,等. 基于多尺度直剪试验的岩石模型结构面抗剪强度特征研究[J].岩土力学,2013,34(11):3180–3186.

[71] Hencher S R, Richards L R. Assessing the shear strength of rock discontinuities at laboratory and field scales[J].Rock Mechanics and Rock Engineering,2014,48(3):883–905.

[72] Barla G, Barla M, Martinotti M E. Development of a new direct shear testing apparatus[J]. Rock mechanics and rock engineering, 2010,43:117–122.

[73] Jiang Y, Xiao J, Tanabashi Y,et al. Development of an automated servo-controlled direct shear apparatus applying a constant normal stiffness condition[J].International Journal of Rock Mechanics and Mining Sciences,2004,41(2):275–286.

[74] Kim D Y,Chun B S,Yang J S. Development of a direct shear apparatus with rock joints and its verification tests[J].Geotechnical Testing Journal,2006,29(5):365–373.

[75] Shrivastava A K, Rao K S. Development of a large-scale direct shear testing machine for unfilled and in filled rock joints under constant normal stiffness conditions[J]. Geotechnical testing journal,2013,36(5):671–679.

[76] Rao K S, Shrivastava A K. Development of an automated large scale direct shear testing machine for rock[C]//Indian Geotechnical Congress 2009.Guntur,India:Indian Geotechnical Society,2009:238–244.

[77] 闵弘,刘小丽,魏进兵,等. 大型现场室内两用直剪仪研制(I):结构设计[J].岩土力学,2006,27(1):164–168.

[78] 刘小丽,罗锦添,闵弘,等. 大型现场室内两用直剪仪研制(II):试验测试[J].岩土力学,2006,27(2):336–340.

[79] 徐磊,任青文. 分形节理抗剪强度尺寸效应的数值试验[J].采矿与安全工程学报, 2007,24(4):405–408.

[80] Bahaaddini M, Hagan P, Mitra R,et al. Scale effect on the shear behaviour of rock joints based on a numerical study[J].Engineering Geology,2014,181:212–223.

[81] 洪海春,徐卫亚. 地震作用下岩质边坡稳定性分析综述.岩石力学与工程学报, 2005,27:4827-4836.

[82] 杨昕光,李永录. 中美边坡拟静力稳定分析方法的对比研究.工业建筑,2019,49(2):98-102

[83] 邬爱清. 基于关键危岩体理论的岩体稳定性分析方法及其在三峡工程中的应用.长江科学院院报,2019,36(2):1-7

[84] Tian Y, Wang L Jin, H.,et al. Dynamic response of seismic dangerous rock based on pfc and dynamics. Advances in civil engineering, 2020(2):1-19.

[85] Zhao T, Crosta G, Dattola G. Dynamic frag⁃ mentation of jointed rock blocks during rockslide⁃avalanches: Insights from discrete element analyses. Journal of geophysical research:solid earth,2018,123:3250-3269.

[86] 任磊,朱颖,崔天麟. 盾构超近距离侧穿铁路桥桩保护方案探讨. 地球科学,2021,46(6):2278-2286.

[87] 王思敬,张菊明. 边坡岩体滑动稳定的动力学分析.地质科学,1982,17(2):162-170.

[88] 王思敬,薛守义. 岩体边坡楔形体动力学分析.地质科学,1992,27(2):177-182.

[89] 罗刚,程谦恭,沈位刚,等. 高位高能岩崩研究现状与发展趋势.地球科学,2022,47(3):913-934.

[90] Crawford A M, Curran J H. The influence of rate⁃and displacement⁃dependent shear resistance on the response of rock slopes to seismic loads. International journal of rock mechanics and mining sciences & geo⁃mechanics abstracts, 1982, 19(1):1-8.

[91] Tsubota Y, Kunishi T, Iwakoke Y. Fundamen⁃tal studies on dynamic properties of rock joint under cyclic loading using mortar and ryoke gneiss. Rock dynamics and applications. crc press, switzerland, 2013.

[92] Cundall P A, Strack O D. A discrete numerical model for granular assemblies[J]. Geotechnique, 1979, 29(1): 47-65.

[93] 陈洪凯,唐红梅,王蓉. 三峡库区危岩稳定性计算方法及应用[J].岩石力学与工程学报,2004(04):614-619.

[94] 孙玉科,牟会宠,姚宝魁. 边坡岩体稳定性分析[M]. 北京:科学出版社,1988.

中图分类号:

 TU457    

开放日期:

 2025-06-14    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式