- 无标题文档
查看论文信息

论文中文题名:

 关中平原城市群大气污染物浓度模拟及人口暴露研究    

姓名:

 王睿哲    

学号:

 18210013008    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 070503    

学科名称:

 理学 - 地理学 - 地图学与地理信息系统    

学生类型:

 硕士    

学位级别:

 理学硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 测绘科学与技术学院    

专业:

 地图学与地理信息系统    

研究方向:

 地理信息系统应用    

第一导师姓名:

 胡荣明    

第一导师单位:

 西安科技大学    

论文提交日期:

 2021-06-15    

论文答辩日期:

 2021-06-01    

论文外文题名:

 Research on Air Pollutant Concentration Simulation and Population Exposure in Guanzhong Plain Urban Agglomeration    

论文中文关键词:

 LUR模型 ; 关中平原城市群 ; 大气污染物 ; 空间分布模拟 ; 人口暴露风险    

论文外文关键词:

 LUR model ; Guanzhong Plain urban agglomeration ; air pollutants ; spatial distribution simulation ; Population exposure risk    

论文中文摘要:

大气污染物通常是指由于人类活动或自然过程排入大气,并对人和环境造成有害影响的物质。随着我国城市化进程的加快,城市扩张所引发的大气污染等一系列环境问题,已成为制约城市系统健康、平稳、有序发展的重要因素之一。尤其近年来,在“一带一路”等国家战略支持下,关中平原城市群地区经济高速发展的同时,其所造成的大气污染问题也日益严峻。但目前我国针对大气污染的监测,大多还是依靠分布稀疏且不均匀的国控监测站,这给大气污染物浓度空间分布特征分析及人口暴露风险评估等造成一定影响。因此,开展关中平原城市群地区大气污染物浓度的模拟研究具有重要意义,通过模拟结果也可更加全面的分析关中平原城市群大气污染物时空变化特征,为该地区大气污染防治及人口暴露风险评估提供科学合理的建议。

本文选取2017年关中平原城市群内54个国控空气质量监测站的实时监测数据,并结合气象、地形、土地利用、植被指数、道路交通、工业污染源、人口密度及夜间灯光等多源数据,构建LUR模型,模拟关中平原城市群大气污染物浓度的空间分布情况,并根据最佳模拟结果对关中平原城市群人口PM2.5暴露风险进行评估及驱动力分析。主要研究内容及结论如下:

(1)基于最小二乘(OLS)、地理加权(GWR)算法,分别构建不同季节、不同种类的大气污染物LUR模型,对研究区大气污染物浓度的空间分布进行模拟。结果表明:①关中平原城市群大气污染物浓度受地形的影响最为显著;②各模型的R2adj均在0.7以上,可对该地区6种主要大气污染物浓度进行有效模拟;③通过模型适用性及精度对比发现,两类模型均更适用于污染严重的秋冬季,以及颗粒污染物PM2.5、PM10浓度的模拟。相比于OLS-LUR模型,GWR-LUR模型的R2adj、线性拟合度R2分别提高了2.54%、2.49%,平均相对误差(MRE)、均方根误差(RMSE)分别降低了19.88%、20.35%,AICc及Res Moran’sⅠ值也显著减小,模型性能总体得到提高;④模拟结果图显示,关中平原城市群6种主要大气污染物浓度空间分布大致相同,浓度高值多集中在汾渭平原等低海拔地区,浓度低值则多集中在秦岭山地等高海拔地区,总体呈现出东部北部高、西部南部低的特征,模拟结果与实际情况相吻合。

(2)基于最佳的PM2.5浓度模拟结果,结合人口密度数据,分别从PM2.5浓度、人口暴露强度、人口加权PM2.5浓度等3项指标,全面评估关中平原城市群人口PM2.5暴露风险。结果表明:①PM2.5浓度指标下,关中平原城市群人口PM2.5暴露风险总体呈现东高西低的特征;②人口暴露强度指标下,关中平原城市群人口PM2.5暴露风险分布特征与人口密度分布高度相似,各市、县中心城区为高暴露风险区。风险分级显示,研究区有约10%的地区处于高风险等级水平,且零星分布在“临汾—运城—关中”一线。从城市尺度分析,各城市的人口PM2.5暴露风险差异性明显,西安为暴露风险最高的城市,其高风险等级区面积占比超过70%;③人口加权PM2.5浓度指标下,关中平原城市群PM2.5污染对居民的健康危害和实际影响要远大于其平均浓度水平,且人口明显集中于PM2.5浓度高值区。结合空间自相关检验可知,咸阳、西安、晋陕交界为高暴露风险聚集区,对这些城市及地区应进行重点防控。

(3)基于地理探测器的因子探测功能,对关中平原城市群人口PM2.5暴露风险的驱动因素进行分析。结果表明:关中平原城市群人口PM2.5暴露风险的空间分异受自然及社会经济因素的共同影响。其中自然因素的影响程度依次为:高程>植被指数>降水>气温>相对湿度;社会经济因素的影响程度依次为:人口密度>第二产业占比>工业废气排放量>机动车保有量>GDP>人均能源消耗量>建成区面积。整体看来,人类活动是造成关中平原城市群人口PM2.5暴露风险分异的主要驱动力,其次受高程因子的影响。

论文外文摘要:

Air pollutants generally refer to substances that are discharged into the atmosphere due to human activities or natural processes and have harmful effects on people and the environment. With the acceleration of my country's urbanization process, a series of environmental problems such as air pollution caused by urban expansion have become one of the important factors restricting the healthy, stable and orderly development of the urban system. Especially in recent years, with the support of national strategies such as the “One Belt, One Road”, while the rapid economic development of the Guanzhong Plain urban agglomeration area, the problem of air pollution caused by it has become increasingly severe. However, the current monitoring of air pollution in my country mostly relies on sparsely and unevenly distributed nationally controlled monitoring stations, which has a certain impact on the analysis of the spatial distribution of air pollutant concentrations and the assessment of population exposure risks. Therefore, it is of great significance to carry out a simulation study on the concentration of air pollutants in the Guanzhong Plain urban agglomeration. The simulation results can also more comprehensively analyze the temporal and spatial characteristics of air pollutants in the Guanzhong Plain urban agglomeration, and provide air pollution control and population exposure risk evaluation Provide scientific and reasonable suggestions.

This paper selects the real-time monitoring data of 54 state-controlled air quality monitoring stations in the Guanzhong Plain urban agglomeration in 2017, and combines multi-source data such as meteorology, topography, land use, vegetation index, road traffic, industrial pollution sources, population density, and night lights. The LUR model is constructed to simulate the spatial distribution of atmospheric pollutant concentrations in the Guanzhong Plain urban agglomeration, and the PM2.5 exposure risk of the population in the Guanzhong Plain urban agglomeration is evaluated and driving force analysis based on the best simulation results. The main research contents and conclusions are as follows:

(1) Based on the least squares (OLS) and geographic weighting (GWR) algorithms, build LUR models of air pollutants in different seasons and types, and simulate the spatial distribution of air pollutant concentrations in the study area. The results show that: ①The concentration of air pollutants in the Guanzhong Plain urban agglomeration is most significantly affected by the terrain; ②The R2adj of each model is above 0.7, which can effectively simulate the concentration of six major air pollutants in the region; ③The applicability of the model and Accuracy comparison shows that both types of models are more suitable for the severely polluted autumn and winter, as well as the simulation of the concentration of particulate pollutants PM2.5 and PM10. Compared with the OLS-LUR model, the R2adj and linear fit R2 of the GWR-LUR model are increased by 2.54% and 2.49%, respectively. MRE and RMSE are reduced by 19.88% and 20.35%, respectively. The values of AICc and Res Moran’s I are also significantly reduced, and the overall model performance is improved. ④The simulation result graph shows that the spatial distribution of the six major air pollutants in the Guanzhong Plain urban agglomeration is roughly the same. The high concentrations are mostly concentrated in low-altitude areas such as the Fenwei Plain, while the low concentrations are more. Concentrated in high-altitude areas such as the Qinling Mountains, it generally presents the characteristics of high in the north of the east and low in the south of the west. The simulation results are consistent with the actual situation.

(2) Based on the best simulation results of PM2.5 concentration, combined with population density data, a comprehensive assessment of the PM2.5 exposure risk of the population in the Guanzhong Plain urban agglomeration from three indicators: PM2.5 concentration, population exposure intensity, and population-weighted PM2.5 concentration. The results show that: ①Under the PM2.5 concentration index, the PM2.5 exposure risk of the population in the Guanzhong Plain urban agglomeration is generally higher in the east and lower in the west; ②Under the index of population exposure intensity, the distribution characteristics of PM2.5 exposure risk of the population in the Guanzhong Plain urban agglomeration are highly similar to the distribution of population density, and the central urban areas of cities and counties are high exposure risk areas. The risk classification shows that about 10% of the study area is at a high risk level, and they are scattered in the front line of "Linfen-Yuncheng-Guanzhong". From the analysis of the city scale, the population PM2.5 exposure risk of each city is obviously different. Xi'an is the city with the highest exposure risk, and its high-risk area accounts for more than 70%; ③Under the population-weighted PM2.5 concentration index, the Guanzhong Plain The health hazards and actual impacts of PM2.5 pollution in urban agglomerations are far greater than their average concentration levels, and the population is obviously concentrated in areas with high PM2.5 concentrations. Combined with the spatial autocorrelation test, it can be known that the borders of Xianyang, Xi'an, and Shanxi-Shaanxi are high-risk areas, and these cities and regions should be focused on prevention and control.

(3) Based on the factor detection function of the geographic detector, analyze the driving factors of the PM2.5 exposure risk of the population in the Guanzhong Plain urban agglomeration. The results show that the spatial differentiation of PM2.5 exposure risk of the population in the Guanzhong Plain urban agglomeration is jointly affected by natural and socio-economic factors. The order of influence of natural factors is as follows: elevation>vegetation index>precipitation>temperature>relative humidity; the order of influence of socioeconomic factors is: population density>proportion of secondary industry>industrial waste gas emissions>vehicle ownership>GDP>Per capita energy consumption>Built-up area. On the whole, human activities are the main driving force that causes the population PM2.5 exposure risk differentiation of the Guanzhong Plain urban agglomeration, followed by the influence of the elevation factor.

参考文献:

[1]张丹.我国城市大气污染现状及防治对策[J].中国资源综合利用,2019,37(12):156-158.

[2] 齐丹丹,周枫,张晟昊.浅谈大气污染的危害及防治[J].上海节能,2020(05):438-442.

[3] 刘勇,芦茜,黄志军,等.大气污染物对人体健康影响的研究[J].中国现代医学杂志,2011,21(1):87-91.

[4] Lii P, Arden C. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution[J].Journal of American Medicine Association.2002,287(9):1132-1141.

[5]中华人民共和国国务院.国务院公报:国务院关于印发打赢蓝天保卫战三年行动计划的通知[R].北京:中华人民共和国国务院,2018.

[6]庄欣,黄晓锋,陈多宏,等.基于日变化特征的珠江三角洲大气污染空间分布研究[J].中国环境科学,2017,37(6):2001-2006.

[7] 陈优良,陶天慧,丁鹏.长江三角洲城市群空气质量时空分布特征[J].长江流域资源与环境,2017,26(5):687-697.

[8] 齐梦溪,赵文慧,孙爽,等.2014~2016年北京市PM2.5污染时空分布特征[J].生态环境学报,2019,28(1):97-105.

[9] 沈楠驰,周丙锋,李珊珊,等.2015~2019年天津市大气污染物时空变化特征及成因分析[J].生态环境学报,2020,29(9):1862-1873.

[10]李敏,何红弟,郝杨杨.上海市大气环境中PM2.5/PM10时空分布特征[J].云南大学学报(自然科学版),2019,41(2):323-332.

[11]高正旭,王晓玲,向华,等.武汉市2014~2017年大气污染物分布特征及其潜在来源分析[J].环境科学学报,2018,38(11):4440-4453.

[12]南国卫,孙虎,朱一梅.陕西省PM2.5时空分布规律及其影响因素[J].环境科学研究,2018,31(5):834-843.

[13]杨显双,伍丽梅.重庆市大气污染特征及影响因素分析[J].环境与可持续发展,2015,40(4):173-175.

[14]柳钦火,吴俊君,李丽,等.“一带一路”区域可持续发展生态环境遥感监测[J].遥感学报,2018,22(4):686-708.

[15]郭娅琦.城市化进程对城市生态环境的影响研究[D].长沙:湖南大学,2007.

[16]Rose N, Cowie C, Gillett R, et al. Validation of a spatiotemporal land use regressi-on model incorporating fixed site monitors[J].Environmental Science& Technology,2011,45(1):294-299.

[17]Allen R W, Gombojav E, Barkhasragchaa B, et al. An assessment of air pollution and its attributable mortality in Ulaanbaatar,Mongolia[J].Air Quality, Atmosphere&Health,2013,6(1):137-150.

[18]姜澒月,闫亚琛,李海蓉.中国2013年城市大气污染现状及探索性空间数据分析[J].安全与环境学报,2016,16(2):352-357.

[19]苏英,郭玲霞,刘宇峰.关中5市环境空气质量特征与成因分析[J].南京信息工程大学学报(自然科学版),2018,10(5):616-622.

[20]张佳音,郭云飞,李养养,等.关中地区城市空气质量特征及影响因素分析[J].地球与环境,2017,45(04):441-446.

[21]王叶琳,程燕,严璐,等.2010~2018年西安市大气污染物变化特征分析[J].地球环境学报,2020,11(1):99-111.

[22]于英翠,李利敏,左亚杰,等.西安市大气污染物时空分布特征及其趋势评估[J].环境工程,2018,36(10):165-169.

[23]Hoek G, Beelen R, Hoogh K D, et al. A review of land-use regression models to assess spatial variation of outdoor air pollution[J].Atmospheric Environment,2008,42(33):7561-7578.

[24]沈劲,钟流举,何芳芳,等.基于聚类与多元回归的空气质量预报模型开发[J].环境科学与技术,2015,38(2):63-66.

[25]刘杰,杨鹏,吕文生.北京大气颗粒物污染特征及空间分布插值分析[J].北京科技大学学报,2014,36(9):1269-1279.

[26]蒋超,龚建周,孙家仁,等.2013~2016年珠三角地区PM2.5分布时空演变[J].生态环境学报,2018,27(9):1698-1705.

[27]Zhang H, Wang Z, Zhang W. Exploring spatiotemporal patterns of PM2.5 in China based on ground-level observations for 190 cities[J].Environmental Pollution,2016,216:559-567.

[28]孙兆彬,安兴琴,陶燕,等.基于GIS和大气数值模拟技术评估兰州市PM10的人群暴露水平[J].中国环境科学,2012,32(10):1753-1757.

[29]Xu H H, Chen H. Impact of urban morphology on the spatial and temporal distribution of PM2.5 concentration: A numerical simulation with WRF/CMAQ model in Wuhan, China[J].Journal of Environmental Management,2021,290.

[30]朱文德,徐澍,郑逢斌,等.基于MODIS数据的郑州地区PM2.5时空分布特征分析[J].河南大学学报(自然科学版),2018,48(2):172-178.

[31]Wang W, Mao F, Du L. Deriving hourly PM2.5 concentrations from Himawari-8 AODs over Beijing-Tianjin-Hebei in China[J].Remote Sensing,2017,9(8):858.

[32]王敏,邹滨,郭宇.基于BP人工神经网络的城市PM2.5浓度空间预测[J].环境污染与防治,2013,35(9):63-66.

[33]Huang K, Xiao Q, Meng X, et al. Predicting monthly high resolution PM2.5 conce-ntrations with random forest model in the North China Plain[J].Environmental Pollu-tion,2018,242(Pt A):675.

[34]Ciocǎnea A, Dragomirescu A. Modular ventilation with twin air curtains for reducing dispersed pollution[J].Tunnelling and Underground Space Technology,2013,37:180-198.

[35]Lee J H, Wu C F, Hoek G, et al. LUR models for particulate matters in the Taipei metropolis with high densities of roads and strong activities of industry, commerce and construction[J].Science of The Total Environment,2015,514:178-184.

[36]吴健生,谢舞丹,李嘉诚.土地利用回归模型在大气污染时空分异研究中的应用[J].环境科学,2016,37(2):413-419.

[37]Briggs D J, Collins S, Elliott P, et al. Mapping urban air pollution using GIS: a r-egression based approach[J].International Journal of Geographical Information Scie-nce,1997,11(7):699-718.

[38]Ho C C, Chan C C,Cho C W, et al. Land use regression modeling with vertical distribution measurements for fine particulate matter and elements in an urban area [J].ic Environment,2015,104:256-263.

[39]Henderson S B, Beckerman B, Jerrett M, et al. Application of land use regression to estimate long-term concentrations of traffic-related nitrogen oxides and fine particulate matter[J].Environmental Science&Technology,2007,41(7):2422-2428.

[40]Kashima S, Yorifuji T, Tsuda T, et al. Application of land use regression to regulatory air quality data in Japan[J].Science of the Total Environment,2009,407(8):3055-3062.

[41]Mao L, Qiu Y, Kusano C, et al. Predicting regional space-time variation of PM2.5 with land-use regression model and MODIS data.[J].Environmental Science and Pollution Research,2012,19(1):128-138.

[42]陈莉,白志鹏,苏笛,等.利用LUR模型模拟天津市大气污染物浓度的空间分布[J].中国环境科学,2009,29(7):685-691.

[43]Chen L, Du S Y, Bai Z P, et al. Application of land use regression for estimating concentrations of major outdoor air pollutants in Jinan, China[J].Journal of Zhejiang University Science,2010,11(1):857-867.

[44]Chen L, Wang Y, Li P, et al. A land use regression model incorporating data on industrial point source pollution[J].Journal of Environmental Sciences.2012,24(7):1251-1258.

[45]吴健生,廖星,彭建,等.重庆市PM2.5浓度空间分异模拟及影响因子[J].环境科学,2015,36(3):759-767.

[46]汉瑞英,陈健,王彬.利用LUR模型模拟杭州市PM2.5质量浓度空间分布[J].环境科学学报,2016,36(9):3379-3385.

[47]阳海鸥,陈文波,梁照凤.LUR模型模拟的南昌市PM2.5浓度与土地利用类型的关系[J].农业工程学报,2017,33(6):232-239.

[48]赵佳楠,徐建华,卢德彬,等.基于RF-LUR模型的PM2.5空间分布模拟——以长江三角洲地区为例[J].地理与地理信息科学,2018,34(1):18-23.

[49]李爽,翟亮,桑会勇,邹等.基于改进LUR模型的大区域PM2.5浓度空间分布模拟[J].武汉大学学报(信息科学版),2018,43(10):1574-1579+1587.

[50]刘泽宇.西安市PM2.5来源及基于LUR模型的时空分布特征[D].兰州:兰州大学,2019.

[51]江笑薇,任志远,孙艺杰.基于LUR和GIS的西安市PM2.5的空间分布模拟及影响因素[J].陕西师范大学学报(自然科学版),2017,45(3):80-87+106.

[52]Tao T, Zhao W, Gong H, et al. GIS spatial analysis of population exposure to fine particulate air pollution in Beijing, China[J].Environmental Geosciences,2010, 17(1):1-16.

[53]同丽嘎,李雪铭,黄哲,等.包头市人口PM2.5暴露风险研究[J].干旱区资源与环境,2017,31(11):50-54.

[54]Zhao L, Xie M, Tian K, et al. GIS-based analysis of population exposure to PM2.5air pollution—A case study of Beijing[J].Journal of Environmental Sciences,2017,59(9):48-53.

[55]邹雨轩,吴志峰,曹峥.耦合土地利用回归与人口加权模型的PM2.5暴露风险评估[J].地球信息科学学报,2019,21(7):1018-1028.

[56]赵辉,郑有飞,张誉馨,等.京津冀大气污染的时空分布与人口暴露[J].环境科学学报,2020,40(1):1-12.

[57]Chen M X, Guo S S, Hu M G, et al. The spatiotemporal evolution of population exposure to PM2.5 within the Beijing-Tianjin-Hebei urban agglomeration, China[J].Journal of Cleaner Production,2020,265.

[58]张亮林,潘竟虎.中国PM2.5人口暴露风险时空格局[J].中国环境科学,2020,40(1):1-12.

[59]Li X, Xu H, Chen X, et al. Potential of NPP-VIIRS night-time light imagery for modeling the regional economy of China[J].Remote Sensing,2013,5(6):3057-3081.

[60]胡云锋,赵冠华,张千力.基于夜间灯光与LUC数据的川渝地区人口空间化研究[J].地球信息科学学报,2018,20(1):68-78.

[61]HJ633-2012.环境空气质量指数(AQI)技术规定(试行)[S].北京:中国环境科学出版社,2012.

[62]贾俊平,何晓群,金勇.统计学(第四版)[M].北京:中国人民大学出版社,2009.

[63]何春雄,龙卫江,朱锋峰.概率论与数理统计[M].北京:高等教育出版社,2012.

[64]付宏臣,孙艳玲,陈莉,等.基于AOD数据与GWR模型的2016年新疆地区PM2.5和PM10时空分布特征[J].环境科学学报,2020,40(1):27-35.

[65]慕建利,梁生俊,侯明全,等.近40年陕西省扬沙和沙尘暴天气[J].西北大学学报(自然科学版),2005(1):109-112.

[66]张远航,邵可声,唐孝炎,等.中国城市光化学烟雾污染研究[J].北京大学学报(自然科学版),1998(Z1):3-5.

[67]苏英,郭玲霞,刘宇峰.关中5市环境空气质量特征与成因分析[J].南京信息工程大学学报(自然科学版),2018,10(5):616-622.

[68]邢雅婷,王帅,赵玲.呼和浩特市城区大气污染物浓度变化特征分析[J].环境化学,2019,38(5):1139-1149.

[69]于洲,刘寿东,王咏薇,等.杭州市2014年城区大气污染物浓度变化特征观测分析[J].科学技术与工程,2016,16(16):95-104.

[70]王涛,何浩奇,夏忠欢,等.2015年南京市SO2、NO2、CO和O3的污染特征分析[J].环境工程学报,2017,11(7):4155-4161.

[71]熊桂洪,刘姣姣,蒋昌潭,等.重庆市大气主要污染物特征分析[J].环境工程,2019,37(2):109-113.

[72]唐文苑,赵春生,耿福海,等.上海地区臭氧周末效应研究[J].中国科学(D辑:地球科学),2009,39(1):99-105.

[73]陈涛.江苏省PM2.5时空特征研究[D].南京:南京大学,2017.

[74]李小飞,张明军,王圣杰,等.中国空气污染指数变化特征及影响因素分析[J].环境科学,2012,33(6):1936-1943.

[75]折远洋,李忠勤,王芳龙,等.秦巴山地西部地区2015~2018年大气污染物变化特征及潜在来源分析[J].环境科学学报,2020,40(6):1987-1997.

[76]Cleveland W S,Graedel T E, Kleiner B,et al. Sunday and workday variations in photochemical air pollutants in New Jersey and New York[J].Science,1974,186(4168):1037-1038.

[77]Xia X, Eck T F, Holben B N, et al. Analysis of the weekly cycle of aerosol opti-cal depth using AERONET and MODIS data[J]. Journal of Geophysical Research Atmospheres,2008,113(D14).

[78]王占山,李云婷,董欣,等.北京城区大气污染物“周末效应”分析[J].中国科学院大学学报,2015,32(6):843-850.

[79]沈利娟,王红磊,吕升,等.嘉兴市春季PM、主要污染气体和气溶胶粒径分布的周末效应[J].环境科学,2015,36(12):4348-4357.

[80]Lebron F. A comparison of weekend-weekday ozone and hydrocarbon concentration-s in the Baltimore-Washington metropolitan area[J].Atmospheric Environment,1975,9(9):861-863.

[81]Vukovich F M.The spatial variation of the weekday/weekend differences in the Baltimore area[J].Journal of the Air & Waste Management Association,2000,50(12):2067-2072.

[82]潘春梅,朱翔,王健,等.云南省2019年臭氧污染特征及影响因素研究[J].环境科学与技术,2020,43(10):156-164.

[83]雷瑜,张小玲,唐宜西,等.北京城区PM2.5及主要污染气体“周末效应”和“假日效应”研究[J].环境科学学报,2015,35(5):1520-1528.

[84]史海琪,曾胜兰,李浩楠.四川盆地大气污染物时空分布特征及气象影响因素研究[J].环境科学学报,2020,40(3):763-778.

[85]杨开放,魏游.臭氧污染形成机制及影响因素的研究进展[J].环境研究与监测,2019,32(4):1-4.

[86]蒋宁洁,王繁强,刘学春,等.武汉市下垫面变化对大气污染物扩散和气象要素影响的数值模拟[J].安全与环境学报,2016,16(6):270-276.

[87]万炜,魏伟,钱大文,等.土地利用/覆被变化的环境效应研究进展[J].福建农林大学学报(自然科学版),2017,46(4):361-372.

[88]吴海龙,余新晓,师忱,等.PM2.5特征及森林植被对其调控研究进展[J].中国水土保持科学,2012,10(6):116-122.

[89]李玉玲,刘红玉,娄彩荣,等.江苏省PM2.5时空变化及土地利用影响研究[J].环境科学与技术,2016,39(8):10-15+21.

[90]孙爽,李令军,赵文吉,等.京津冀大气污染变化规律及其与植被指数相关性分析[J].环境科学,2019,40(4):1585-1593.

[91]申莉.谈谈大气污染来源与影响及控制措施[J].民营科技,2009(6):99.

[92]陈亿.近十年中国北方沙尘天气变化特征及其成因研究[D].兰州:兰州大学,2013.

[93]周文华,王如松,张克锋.人类活动对北京空气质量影响的综合生态评价[J].生态学报,2005(9):2214-2220.

[94]付宏臣,孙艳玲,王斌,等.基于AOD数据和GWR模型估算京津冀地区PM2.5浓度[J].中国环境科学,2019,39(11):4530-4537.

[95]李琛,刘瑾,王彦民.气象因素对西安市城区空气质量的影响[J].干旱区资源与环境,2017,31(3):83-88.

[96]付丹,王冬明,韩维峥.冬季供暖对大气环境的影响及改善措施[J].环境生态学,2020,2(1):76-78.

[97]程念亮,李云婷,张大伟,等.2013~2014年北京市NO2时空分布研究[J].中国环境科学,2016,36(1):18-26.

[98]杨文涛,谯鹏,刘贤赵,等.2011~2017年中国PM2.5多尺度时空分异特征分析[J].环境科学,2020,41(12):5236-5244.

[99]周敏丹,匡耀求,云国梁.基于地理探测器的广州市大气PM2.5浓度驱动因素分析[J].环境科学研究,2020,33(2):271-279.

[100]王劲峰,徐成东.地理探测器:原理与展望[J].地理学报,2017,72(1):116-134.

[101]黄光球,雷哲.西安市大气颗粒物PM2.5的输送路径和潜在源分析[J].云南大学学报(自然科学版),2019,41(6):1191-1200.

[102]王睿哲,胡荣明,李朋飞,等.基于LUR模型的PM2.5浓度空间分布监测及分析[J].环境工程学报,2020,14(10):2843-2852.

中图分类号:

 P208.2    

开放日期:

 2021-06-15    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式