论文中文题名: | 基于FPGA的超声波换能器恒振幅控制系统设计 |
姓名: | |
学号: | 21206223067 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085400 |
学科名称: | 工学 - 电子信息 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2024 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 超声波换能器控制研究 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2024-06-20 |
论文答辩日期: | 2024-06-05 |
论文外文题名: | Design of Constant Amplitude Control System for Ultrasonic Transducers Based on FPGA |
论文中文关键词: | |
论文外文关键词: | Ultrasonic power supply ; FPGA ; Frequency tracking ; vibration control |
论文中文摘要: |
功率超声技术在诸如切割、焊接、清洗、医疗等多个生产领域得到了广泛应用。在负载剧烈变化且加工精度要求高的应用场景中,稳定且精确的振幅输出是决定加工效果和效率的关键,因此对功率超声输出控制的研究具有重要意义。振幅控制的前提是换能器处于谐振状态,目前基于并联谐振的功率超声振幅控制方案存在输出精度不足、线性度较差、结构复杂等问题。本文通过研究功率超声控制方式并对相应软硬件进行设计,旨在实现超声波电源的恒振幅输出控制。本文的主要研究内容如下: 首先,对常见的换能器的等效模型进行分析,通过导纳圆曲线得出其阻抗特性。在此基础上,对换能器机电耦合模型进行分析,通过模型的等效转换,推导换能器输入电能与输出振幅关系。对变负载情况下换能器阻抗特性进行分析,并搭建超声电源主电路仿真模型,以此确立频率与振幅控制策略。 其次,设计并实现了超声波电源控制系统。在满足控制精度与响应速度的前提下,设计可适用于不同谐振频率换能器的控制系统硬件电路。为提高控制系统数字化程度,基于FPGA设计针对高频电压电流的数字信号处理模块,如IIR滤波器、数字鉴相器、有效值计算等。根据变负载情况下换能器阻抗特性,采用以电压电流相位差为被控量,以扫频所得谐振频率为起始频率的变步长频率跟踪算法;采用以换能器并联谐振模型中动态电阻端电压为被控量的PID振幅控制算法。控制系统输出两路频率移相角可调的高精度PWM波驱动逆变电路,实现换能器的频率振幅双闭环控制。 最后,通过实验对振幅控制策略进行验证。在负载变化情况下,记录并观测换能器输入电气参数与输出振幅间关系。实验结果表明,换能器振幅与并联等效模型中动态电阻端电压保持了良好的线性关系。 在频率振幅双闭环控制模式下运行超声波电源,负载剧烈变化时,频率输出能跟踪至并联谐振频率,使换能器保持在谐振状态;功率输出能自适应调节,使换能器振幅保持稳定。设计成功运用于实际功率超声切割中,为功率超声波电源的恒振幅控制提供了一种可行性方案。 |
论文外文摘要: |
Power ultrasonic technology has been widely used in many production fields such as cutting, welding, cleaning, medical treatment, etc. In application scenarios with drastic load changes and high processing accuracy requirements, stable and accurate amplitude output is the key to determining the processing effect and efficiency. Therefore, the research on power ultrasonic output control is of great significance. The premise of amplitude control is that the transducer is in a resonant state. The current power ultrasonic amplitude control scheme based on parallel resonance has problems such as insufficient output accuracy, poor linearity, and complex structure. This article aims to realize constant amplitude output control of ultrasonic power supply by studying the power ultrasonic control method and designing the corresponding software and hardware. The main research contents of this article are as follows: First, the equivalent model of a common transducer is analyzed, and its impedance characteristics are obtained through the admittance circle curve. On this basis, the electromechanical coupling model of the transducer is analyzed, and through the equivalent conversion of the model, the relationship between the input electric energy and the output amplitude of the transducer is deduced. Analyze the impedance characteristics of the transducer under variable load conditions, and build a simulation model of the main circuit of the ultrasonic power supply to establish the frequency and amplitude control strategy. Secondly, the ultrasonic power control system is designed and implemented. On the premise of satisfying the control accuracy and response speed, design the control system hardware circuit applicable to transducers with different resonant frequencies. In order to improve the digitalization of the control system, digital signal processing modules for high-frequency voltage and current are designed based on FPGA, such as IIR filters, digital phase detectors, effective value calculations, etc. According to the impedance characteristics of the transducer under variable load conditions, a variable step frequency tracking algorithm is adopted that uses the voltage and current phase difference as the controlled quantity and the resonant frequency obtained by frequency sweep as the starting frequency; the dynamic in the parallel resonance model of the transducer is used The voltage at the resistor terminal is the PID amplitude control algorithm of the controlled quantity. The control system outputs two high-precision PWM waves with adjustable frequency and phase shift angles to drive the inverter circuit to realize double closed-loop control of the frequency and amplitude of the transducer. Finally, the amplitude control strategy is verified through experiments. Under load changes, record and observe the relationship between the input electrical parameters of the transducer and the output amplitude. Experimental results show that the transducer amplitude maintains a good linear relationship with the dynamic resistor terminal voltage in the parallel equivalent model. When the ultrasonic power supply is operated in the frequency-amplitude double closed-loop control mode, when the load changes drastically, the frequency output can track to the parallel resonant frequency to keep the transducer in the resonant state; the power output can be adaptively adjusted to keep the transducer amplitude stable. The design has been successfully used in actual power ultrasonic cutting, providing a feasible solution for constant amplitude control of power ultrasonic power supply. |
参考文献: |
[1]顾勇, 徐立, 贾本红, 等. 超声技术的应用现状及其发展趋势分析[J]. 产业与科技论坛, 2022, 21(10): 48-49. [3]王应彪, 刘传绍, 赵波. 功率超声技术的研究现状及其应用进展[J]. 机械研究与应用, 2006, (04): 41-43. [5]孙健淞, 康仁科, 周平, 等. 蜂窝芯超声切削技术研究进展[J]. 机械工程学报, 2023,59(09): 298-319. [6]陈健. 面包超声波切割装置和实验研究[D]. 杭州电子科技大学, 2018. [7]赵普, 贾松, 肖存勇, 等. 纤维增强树脂基复合材料超声波焊接技术及应用研究进展[J]. 材料工程, 2023,51(07): 12-21. [9]王静, 贾松, 袁媛, 等. CF/PEI复合材料超声焊工艺优化及机理研究[J]. 材料工程,2023, 51(07): 42-49. [11]李芳蓉, 刘淑梅, 刘凤霞, 等. 超声波清洗技术及其在中药材清洗中的应用研究[J]. 中兽医医药杂志, 2019,38(01): 32-35. [12]宋剑虹, 禹德伟. 超声波技术在轴承零件清洗中的应用[J]. 机械制造,2003, (01): 49-51. [13]向长林. 超声切割止血刀震子的理论分析设计及实验[D]. 苏州大学, 2016. [15]蒋建荣. 基于 FPGA 铝半连续铸造用超声波电源的研究[D]. 中南大学, 2011. [16]罗杰. 大功率超声波电源及应用研究[D]. 华南理工大学, 2015. [17]唐军. 超声电源频率自动跟踪系统设计[J]. 数字技术与应用, 2016 (8): 163-165. [18]严晓慧. 数字化超声波电源关键技术的研究与设计[D]. 哈尔滨工程大学, 2015. [19]王志强. 基于PVDF智能超声波换能器的研究[D]. 中北大学, 2021. [20]康智斌. 超声波电源频率闭环跟踪控制方法[J]. 电力电子技术, 2023, 57(02): 44-46+104. [25]陈旺武, 刘运毅. 基于频率搜索和跟踪的压电超声电源设计[J]. 电子器件, 2023, 46(06): 1541-1545. [26]李科. 基于极值搜索算法的超声电机温漂补偿方法研究[D]. 哈尔滨工业大学, 2022. [27]范伟, 李华峰, 赵小康. 压电换能器并联谐振频率跟踪系统设计[J]. 压电与声光, 2017, 39(04): 506-509. [28]张宏杰. 热超声键合高频换能系统设计与控制[D]. 天津大学, 2012. [30]张翔宇, 隋翯, 姜兴刚, 等. 超声振动切削技术发展简述[J]. 电加工与模具, 2018, (01): 1-6. [31]高嵘心, 张宏杰, 张洪健. 一种新型柔性夹持高频超声换能器设计[J]. 压电与声光, 2022, 44(01): 101-105+117. [33]苏含玉, 安纯尧, 刘建停, 等. 步进追频及恒振幅控制的超声电源设计[J]. 应用声学, 2023, 42(05): 917-922. [36]覃耀聪, 姚震, 罗红平, 等. 基于ANSYS的圆柱形超声工具头振幅优化设计[J]. 现代机械, 2023, (04):46-51. [37]滕旭东, 傅友登, 王弘辉. 基于数字PWM的新型超声波清洗电源的研制[J]. 电子技术应用, 2007, (09): 154-157. [38]李森. 原油降粘的超声波电源系统研制[D]. 哈尔滨工业大学, 2017. [39]秦佳才, 韩翔, 肖光宗, 等. 超声波换能器驱动电源的研究综述[J].电子设计工程, 2020,28(09): 135-139. [42]饶忠于, 张小雨, 胡小平. 外接LC电路的可调压电换能器的频率特性[J]. 声学学报, 2022, 47(05): 652-662. [43]贾梦雯. 高静水压下换能器声学参量测量方法研究[D]. 中国计量大学, 2020. [45]辛迪, 党柯华, 邓家锋, 等. 基于压电效应的果实采收超声切割机理分析[J]. 农业机械学报, 2023, 54(S2): 91-100. [46]许龙. 基于有限元法的耦合振动夹心换能器的特性和设计研究[D]. 陕西师范大学, 2008. [47]许韦华, 鲍海, 杨以涵, 等. 基于压电陶瓷逆压电效应的电压信号变送原理[J]. 电力系统自动化, 2010, 34(04): 80-83. [48]陈伟民, 管德, 诸德超, 等. 压电陶瓷晶片受迫振动分析及其应用[J]. 北京航空航天大学报, 2001, (01): 66-68. |
中图分类号: | TP274+.2 |
开放日期: | 2024-06-21 |