论文中文题名: | 微波照射冻结多孔岩石热融软化规律及机制 |
姓名: | |
学号: | 19204209054 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085213 |
学科名称: | 工学 - 工程 - 建筑与土木工程 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 岩土工程 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2022-06-14 |
论文答辩日期: | 2022-05-28 |
论文外文题名: | Thawing and softening behaviors and underlying damage mechanisms of frozen porous rock under microwave irradiation |
论文中文关键词: | |
论文外文关键词: | Microwave irradiation ; Frozen porous rock ; Thawing and softening behaviors ; Thawing and softening mechanics ; Thermal expansion and thermal stress |
论文中文摘要: |
在高寒高海拔地区,基岩冻结范围广、冻结深度大。冻结岩石具有强度大、硬度高、脆性强等特点,导致岩层的开挖掘进难度大、成本高、周期不可控,是高寒区岩石工程和采矿活动面临的重要挑战。为了解决这一问题,热融辅助破岩的手段是一个可行的思路。微波照射辅助破岩作为一种环保经济的破岩方式在硬岩隧道掘进、钻井工程中已被应用。微波照射辅助破岩主要应用于富含吸波矿物的硬岩,而石英砂岩因其缺少吸波矿物而被认为不适用于该方法。但本文的前期研究表明:冻结石英砂岩因其内部含有未冻孔隙水,具有较强的吸波效应,为微波照射辅助破岩方法的应用提供了基础,也为高寒地区冻结岩石开挖掘进提供了一种新的思路。本文旨在探究微波照射辅助破碎冻结石英砂岩的实际效果,以冻结石英砂岩为研究对象,研究了其在微波作用下的热融软化规律;揭示了微波照射下饱和冻结砂岩的热融软化损伤机制。研究显示: 1. 微波作用下冻结石英砂岩经历3个阶段:I快速融化阶段;II孔隙水汽化阶段;III试样干燥阶段。快速融化阶段与孔隙水汽化阶段的节点以试样表面出现气泡为特征,照射时间约为40s;孔隙水汽化阶段与试样干燥阶段的节点以试样表面气泡消失为特征,照射时间约为70s。快速融化阶段水分散失以部分自由水为主,该阶段试样电阻快速下降;孔隙水汽化阶段水分散失以自由水和毛细水为主,该阶段试样电阻保持稳定;试样干燥阶段水分散失以结合水为主,该阶段试样电阻波动上升,最后维持稳定。 2. 微波作用对饱和冻结砂岩的强度具有显著的软化效应。饱和冻结砂岩在微波照射至汽化结束阶段,强度下降到最低点,仅为饱和冻结状态的1/5。同样,在微波作用下,饱和冻结砂岩的抗拉强度变化趋势和抗压强度相似。从冻结状态到开始汽化状态,抗拉强度下降了85.1%。 3. 微波作用对不同饱和度的冻结石英砂岩的强度具有软化效应。随着饱和度的增加,冻结石英砂岩的强度呈现增加趋势,而常温状态下石英砂岩强度呈下降趋势。微波照射后的石英砂岩强度变化曲线低于微波照射前的曲线,这说明经过微波照射后,石英砂岩出现了强度劣化。随着冻结砂岩饱和度的增加,微波照射下冻结砂岩的软化效应也越显著。 4. 微波作用对饱和冻结石英砂岩的强度具有显著的软化效应。微波照射下冻结石英砂岩的软化主要由汽胀效应和热胀效应2 个过程引起,汽胀效应和热胀效应均在颗粒尺度(细观)和试样尺度(宏观)有不同的表现形式。汽胀效应主要造成试样颗粒间孔隙扩展;而热胀效应则造成试样颗粒内部断裂。 5. 当饱和度在100%~40%范围时,冻结石英砂岩的软化是由汽胀效应和热胀效应共同作用引起的;当饱和度在40%~0%范围时,冻结石英砂岩的软化主要由热胀效应引起。自由水和毛细水的含量影响微波作用下冻结砂岩发生汽胀效应的强弱,而吸附水影响微波作用下冻结砂岩的热胀效应。 |
论文外文摘要: |
The strength and hardness of frozen rock are much higher than that of rock at room temperature. It imposes great difficulty and cost for tunnel penetration, mine excavation, and much higher wear to excavation machinery. Thawing frozen rock before excavation can improve efficiency and reduce construction costs. Microwave irradiation thawing technology has the advantages of a fast heating rate, efficient energy utilization, and good penetration. But the quartz sandstone has poor microwave absorption, which is deemed unsuitable for microwave-assisted rock breakage. The unfrozen water in pores has a good response to microwave irradiation, and it provides a new idea about microwave-assisted rock breakage in cold regions. In this paper, the thawing process and softening effect are researched, and the damage mechanisms are investigated. The main conclusions are shown as follows: 1. The thawing process of frozen sandstone has three stages under microwave irradiation: I rapid melting of pore ice; II intense vaporization of meltwater; III drying. Between stages I and II, bubbles appear on the specimen surface. Between stages II and III, the bubbling stops. In stage I, part of the bulk water dissipates as pore water, and the electrical resistance drops. In stage II, mainly bulk water and capillary water dissipate as pore water, and the electrical resistance remains stable. In stage III, absorbed water dissipates as pore water and the electrical resistance increases rapidly and then becomes stable. 2. Microwave irradiation has a significant softening effect on frozen quartz sandstone. The uniaxial compression strength drops to the lowest point, after microwave irradiation to stage II, only 1/5 of the saturated frozen state. The tensile strength drops 85.1%, which has a similar trend of uniaxial compression strength. 3. Microwave irradiation has a softening effect on the strength of frozen quartz sandstones with different saturations. The strength of frozen quartz sandstone shows an increasing trend with the increase of saturation, while the strength of quartz sandstone at room temperature showed a decreasing trend. The strength curve of quartz sandstone after microwave irradiation is lower than that before microwave irradiation, which means that the quartz sandstone has damage after irradiation. The softening effect is more obvious with the increased saturation. 4. Microwave irradiation softens frozen quartz sandstone through processes of thermal expansion and vaporization expansion. The above two processes can be observed at both grain and specimen scales. Intra-grain cracking of minerals is mainly caused by thermal expansion of mineral grains, while crack extension among the grain boundaries is mainly caused by vaporization expansion of melting water. 5. At saturations of 40–100%, softening of frozen quartz sandstone is caused by vaporization expansion and thermal expansion, while it is mainly caused by thermal expansion at 0–40% saturation. The contents of bulk water and capillary water affect the intensity of vaporization expansion, while absorbed water affects thermal expansion. |
参考文献: |
[1] 马巍, 岩土工程学报 王 J. 中国冻土力学研究 50a 回顾与展望 [J]. 2012, 34(4): 625-40. [5] 李夕兵, 周子龙, 王卫华. 岩石破碎工程发展现状与展望 [J]. 2009-2010岩石力学与岩石工程学科发展报告, 2009: 142-9. [6] 刘柏禄, 潘建忠, 谢世勇. 岩石破碎方法的研究现状及展望 [J]. 中国钨业, 2011, (1): 15-9. [8] 李根生, 廖华林, 黄中伟, et al. 超高压水射流作用下岩石损伤破碎机理 [J]. 机械工程学报, 2009, 45(10): 284-93. [9] 卢朝栋. 高压水射流特性及喷射岩石破碎机理 [J]. 国外地质勘探技术, 1981, 10: 1-8. [10] 徐锐敏, 唐璞, 薛正辉. 微波技术基础 [M]. 科学出版社, 2009. [17] Hartman H L, Mutmansky J M. Introductory mining engineering [M]. John Wiley & Sons, 2002. [24] 赵沁华, 赵晓豹, 郑彦龙, et al. 微波照射下矿物升温特性与岩石弱化效果研究综述 [J]. 高校地质学报, 2020, 26(3): 350. [47] Jokovic V. Microwave processing of minerals [J]. 2012. [79] 周科平, 薛轲, 矿冶工程 刘. 微波作用下砂岩孔隙结构演化及强度劣化的试验研究 [J]. 矿冶工程, 2020, 40(2): 6-11. [80] 李皋, 孟英峰, 唐洪明, et al. 砂岩储集层微波加热产生微裂缝的机理及意义 [J]. 石油勘探与开发, 2007, 34(1): 2-0. [83] 贾海梁, 陈伟航, 王婷, et al. 微波照射冻土热融软化规律试验研究 [J]. 岩石力学与工程学报, 2020, 39 Supp.2. [84] 邓华锋, 原先凡, 李建林, et al. 饱水度对砂岩纵波波速及强度影响的试验研究 [J]. 岩石力学与工程学报, 2013, 32(8): 1625-31. [85] 史謌, 沈文略, 杨东全. 岩石弹性波速度和饱和度, 孔隙流体分布的关系 [J]. 地球物理学报, 2003, 46(1): 138-42. [95] 肖立志. 核磁共振成像测井与岩石核磁共振及其应用 [Z]. 北京: 科学出版社. 1998 [96] 谭龙, 韦昌富, 田慧会, et al. 冻土未冻水含量的低场核磁共振试验研究 [J]. 岩土力学, 2015, 36(6): 1566-72. [97] 刘堂晏, 肖立志, 傅容珊, et al. 球管孔隙模型的核磁共振 (NMR) 弛豫特征及应用 [J]. 地球物理学报, 2004, 47(4): 663-71. [100] 陈卫忠, 谭贤君, 于洪丹, et al. 低温及冻融环境下岩体热, 水, 力特性研究进展与思考 [J]. 岩石力学与工程学报, 2011, 30(7): 1318-36. [102] 赵涛, 杨更社, 任俊童, et al. 不同负温对冻结饱和砂岩力学特性的影响 [J]. 西安科技大学学报, 2020, 40(06): 996-1002. [104] Meredith R J. Engineers' handbook of industrial microwave heating [M]. Iet, 1998. [105] Metaxas A A, Meredith R J. Industrial microwave heating [M]. IET, 1983. [107] De Groot S R, Mazur P. Non-equilibrium thermodynamics [M]. Courier Corporation, 2013. [108] Colbeck S. Configuration of ice in frozen media [J]. Soil science, 1982, 133(2): 116-23. |
中图分类号: | TU458 |
开放日期: | 2022-06-14 |