- 无标题文档
查看论文信息

论文中文题名:

 微波照射冻结多孔岩石热融软化规律及机制    

姓名:

 韩力    

学号:

 19204209054    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085213    

学科名称:

 工学 - 工程 - 建筑与土木工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 建筑与土木工程    

研究方向:

 岩土工程    

第一导师姓名:

 贾海梁    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-14    

论文答辩日期:

 2022-05-28    

论文外文题名:

 Thawing and softening behaviors and underlying damage mechanisms of frozen porous rock under microwave irradiation    

论文中文关键词:

 微波照射 ; 冻结多孔岩石 ; 热融软化规律 ; 热融损伤机制 ; 热膨胀与热应力    

论文外文关键词:

 Microwave irradiation ; Frozen porous rock ; Thawing and softening behaviors ; Thawing and softening mechanics ; Thermal expansion and thermal stress    

论文中文摘要:

在高寒高海拔地区,基岩冻结范围广、冻结深度大。冻结岩石具有强度大、硬度高、脆性强等特点,导致岩层的开挖掘进难度大、成本高、周期不可控,是高寒区岩石工程和采矿活动面临的重要挑战。为了解决这一问题,热融辅助破岩的手段是一个可行的思路。微波照射辅助破岩作为一种环保经济的破岩方式在硬岩隧道掘进、钻井工程中已被应用。微波照射辅助破岩主要应用于富含吸波矿物的硬岩,而石英砂岩因其缺少吸波矿物而被认为不适用于该方法。但本文的前期研究表明:冻结石英砂岩因其内部含有未冻孔隙水,具有较强的吸波效应,为微波照射辅助破岩方法的应用提供了基础,也为高寒地区冻结岩石开挖掘进提供了一种新的思路。本文旨在探究微波照射辅助破碎冻结石英砂岩的实际效果,以冻结石英砂岩为研究对象,研究了其在微波作用下的热融软化规律;揭示了微波照射下饱和冻结砂岩的热融软化损伤机制。研究显示:

1. 微波作用下冻结石英砂岩经历3个阶段:I快速融化阶段;II孔隙水汽化阶段;III试样干燥阶段。快速融化阶段与孔隙水汽化阶段的节点以试样表面出现气泡为特征,照射时间约为40s;孔隙水汽化阶段与试样干燥阶段的节点以试样表面气泡消失为特征,照射时间约为70s。快速融化阶段水分散失以部分自由水为主,该阶段试样电阻快速下降;孔隙水汽化阶段水分散失以自由水和毛细水为主,该阶段试样电阻保持稳定;试样干燥阶段水分散失以结合水为主,该阶段试样电阻波动上升,最后维持稳定。

2. 微波作用对饱和冻结砂岩的强度具有显著的软化效应。饱和冻结砂岩在微波照射至汽化结束阶段,强度下降到最低点,仅为饱和冻结状态的1/5。同样,在微波作用下,饱和冻结砂岩的抗拉强度变化趋势和抗压强度相似。从冻结状态到开始汽化状态,抗拉强度下降了85.1%。

3. 微波作用对不同饱和度的冻结石英砂岩的强度具有软化效应。随着饱和度的增加,冻结石英砂岩的强度呈现增加趋势,而常温状态下石英砂岩强度呈下降趋势。微波照射后的石英砂岩强度变化曲线低于微波照射前的曲线,这说明经过微波照射后,石英砂岩出现了强度劣化。随着冻结砂岩饱和度的增加,微波照射下冻结砂岩的软化效应也越显著。

4. 微波作用对饱和冻结石英砂岩的强度具有显著的软化效应。微波照射下冻结石英砂岩的软化主要由汽胀效应和热胀效应2 个过程引起,汽胀效应和热胀效应均在颗粒尺度(细观)和试样尺度(宏观)有不同的表现形式。汽胀效应主要造成试样颗粒间孔隙扩展;而热胀效应则造成试样颗粒内部断裂。

5. 当饱和度在100%~40%范围时,冻结石英砂岩的软化是由汽胀效应和热胀效应共同作用引起的;当饱和度在40%~0%范围时,冻结石英砂岩的软化主要由热胀效应引起。自由水和毛细水的含量影响微波作用下冻结砂岩发生汽胀效应的强弱,而吸附水影响微波作用下冻结砂岩的热胀效应。

论文外文摘要:

The strength and hardness of frozen rock are much higher than that of rock at room temperature. It imposes great difficulty and cost for tunnel penetration, mine excavation, and much higher wear to excavation machinery. Thawing frozen rock before excavation can improve efficiency and reduce construction costs. Microwave irradiation thawing technology has the advantages of a fast heating rate, efficient energy utilization, and good penetration. But the quartz sandstone has poor microwave absorption, which is deemed unsuitable for microwave-assisted rock breakage. The unfrozen water in pores has a good response to microwave irradiation, and it provides a new idea about microwave-assisted rock breakage in cold regions. In this paper, the thawing process and softening effect are researched, and the damage mechanisms are investigated. The main conclusions are shown as follows:

1. The thawing process of frozen sandstone has three stages under microwave irradiation: I rapid melting of pore ice; II intense vaporization of meltwater; III drying. Between stages I and II, bubbles appear on the specimen surface. Between stages II and III, the bubbling stops. In stage I, part of the bulk water dissipates as pore water, and the electrical resistance drops. In stage II, mainly bulk water and capillary water dissipate as pore water, and the electrical resistance remains stable. In stage III, absorbed water dissipates as pore water and the electrical resistance increases rapidly and then becomes stable.

2. Microwave irradiation has a significant softening effect on frozen quartz sandstone. The uniaxial compression strength drops to the lowest point, after microwave irradiation to stage II, only 1/5 of the saturated frozen state. The tensile strength drops 85.1%, which has a similar trend of uniaxial compression strength.

3. Microwave irradiation has a softening effect on the strength of frozen quartz sandstones with different saturations. The strength of frozen quartz sandstone shows an increasing trend with the increase of saturation, while the strength of quartz sandstone at room temperature showed a decreasing trend. The strength curve of quartz sandstone after microwave irradiation is lower than that before microwave irradiation, which means that the quartz sandstone has damage after irradiation. The softening effect is more obvious with the increased saturation.

4. Microwave irradiation softens frozen quartz sandstone through processes of thermal expansion and vaporization expansion. The above two processes can be observed at both grain and specimen scales. Intra-grain cracking of minerals is mainly caused by thermal expansion of mineral grains, while crack extension among the grain boundaries is mainly caused by vaporization expansion of melting water.

5. At saturations of 40–100%, softening of frozen quartz sandstone is caused by vaporization expansion and thermal expansion, while it is mainly caused by thermal expansion at 0–40% saturation. The contents of bulk water and capillary water affect the intensity of vaporization expansion, while absorbed water affects thermal expansion.

参考文献:

[1] 马巍, 岩土工程学报 王 J. 中国冻土力学研究 50a 回顾与展望 [J]. 2012, 34(4): 625-40.

[2] Jia H, Zi F, Yang G, et al. Influence of Pore Water (Ice) Content on the Strength and Deformability of Frozen Argillaceous Siltstone [J]. Rock Mechanics and Rock Engineering, 2020, 53(2): 967-74.

[3] Wang T, Sun Q, Jia H, et al. Linking the mechanical properties of frozen sandstone to phase composition of pore water measured by LF-NMR at subzero temperatures [J]. Bulletin of Engineering Geology and the Environment, 2021, 80(6): 4501-13.

[4] Natanzi A S, Laefer D F. Using chemicals as demolition agents near historic structures; proceedings of the 9th International Conference on Structural Analysis of Historical Constructions, Mexico City, Mexico, 14-17 October, 2014, F, 2014 [C].

[5] 李夕兵, 周子龙, 王卫华. 岩石破碎工程发展现状与展望 [J]. 2009-2010岩石力学与岩石工程学科发展报告, 2009: 142-9.

[6] 刘柏禄, 潘建忠, 谢世勇. 岩石破碎方法的研究现状及展望 [J]. 中国钨业, 2011, (1): 15-9.

[7] Jia H, Wang T, Chen W, et al. Microscopic mechanisms of microwave irradiation thawing frozen soil and potential application in excavation of frozen ground [J]. Cold Regions Science and Technology, 2021, 184: 103248.

[8] 李根生, 廖华林, 黄中伟, et al. 超高压水射流作用下岩石损伤破碎机理 [J]. 机械工程学报, 2009, 45(10): 284-93.

[9] 卢朝栋. 高压水射流特性及喷射岩石破碎机理 [J]. 国外地质勘探技术, 1981, 10: 1-8.

[10] 徐锐敏, 唐璞, 薛正辉. 微波技术基础 [M]. 科学出版社, 2009.

[11] Batchelor A R, Jones D A, Plint S, et al. Deriving the ideal ore texture for microwave treatment of metalliferous ores [J]. Minerals Engineering, 2015, 84: 116-29.

[12] Hassani F, Nekoovaght P M, Gharib N J J O R M, et al. The influence of microwave irradiation on rocks for microwave-assisted underground excavation [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(1): 1-15.

[13] Nienhaus K, Kuchinke C, Röllinger D. Emission analysis of the cutting tools used for hard rock cutting with regard to status monitoring; proceedings of the ISRM International Symposium-EUROCK 2013, F, 2013 [C]. OnePetro.

[14] Jones D A, Kingman S W, Whittles D N, et al. Understanding microwave assisted breakage [J]. Minerals Engineering, 2005, 18(7): 659-69.

[15] Shepel T, Grafe B, Hartlieb P, et al. Evaluation of cutting forces in granite treated with microwaves on the basis of multiple linear regression analysis [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 107: 69-74.

[16] Somani A, Nandi T K, Pal S K, et al. Pre-treatment of rocks prior to comminution – A critical review of present practices [J]. International Journal of Mining Science and Technology, 2017, 27(2): 339-48.

[17] Hartman H L, Mutmansky J M. Introductory mining engineering [M]. John Wiley & Sons, 2002.

[18] Toifl M, Hartlieb P, Meisels R, et al. Numerical study of the influence of irradiation parameters on the microwave-induced stresses in granite [J]. Minerals Engineering, 2017, 103-104: 78-92.

[19] Hassani F, Nekoovaght P. The development of microwave assisted machineries to break hard rocks; proceedings of the Proceedings of the 28th International Symposium on Automation and Robotics in Construction, Seoul, South Korea, F, 2011 [C].

[20] Nekoovaght Motlagh P. An investigation on the influence of microwave energy on basic mechanical properties of hard rocks [D]; Concordia University, 2009.

[21] Maurer W C. Novel drilling techniques; proceedings of the The Cutting Edge: Interfacial Dynamics of Cutting and Grinding: Proceedings of a Symposium Sponsored by the American Association for the Advancement of Science and Supported in Part by National Institute of Dental Research and National Science Foundation, F, 1976 [C]. US Department of Health, Education, and Welfare, Public Health Service ….

[22] Zavitsanos P. Coal desulfurization using microwave energy [M]. Environmental Protection Agency, Office of Research and Development,[Office …, 1978.

[23] Lindroth D P, Morrell R J, Blair J R. Microwave assisted hard rock cutting [R]: National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV …, 1991.

[24] 赵沁华, 赵晓豹, 郑彦龙, et al. 微波照射下矿物升温特性与岩石弱化效果研究综述 [J]. 高校地质学报, 2020, 26(3): 350.

[25] Li J, Kaunda R B, Arora S, et al. Fully-coupled simulations of thermally-induced cracking in pegmatite due to microwave irradiation [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2019, 11(2): 242-50.

[26] Vorster W, Rowson N A, Kingman S W. The effect of microwave radiation upon the processing of Neves Corvo copper ore [J]. International Journal of Mineral Processing, 2001, 63(1): 29-44.

[27] Lovás M, Znamenáčková I, Zubrik A, et al. The application of microwave energy in mineral processing–a review [J]. Acta Montanistica Slovaca, 2011, 16(2): 137.

[28] Lovás M, Kováčová M, Dimitrakis G, et al. Modeling of microwave heating of andesite and minerals [J]. International Journal of Heat and Mass Transfer, 2010, 53(17): 3387-93.

[29] Wang Y, Forssberg E. Dry comminution and liberation with microwave assistance [J]. Scandinavian Journal of Metallurgy, 2005, 34(1): 57-63.

[30] Amankwah R K, Khan A U, Pickles C A, et al. Improved grindability and gold liberation by microwave pretreatment of a free-milling gold ore [J]. Mineral Processing and Extractive Metallurgy, 2005, 114(1): 30-6.

[31] Can N M, Bayraktar I. Effect of microwave treatment on the flotation and magnetic separation properties of pyrite, chalcopyrite, galena and sphalerite [J]. Mining, Metallurgy & Exploration, 2007, 24(3): 185-92.

[32] Waters K E, Rowson N A, Greenwood R W, et al. The effect of heat treatment on the magnetic properties of pyrite [J]. Minerals Engineering, 2008, 21(9): 679-82.

[33] Sikong L, Bunsin T. Mechanical property and cutting rate of microwave treated granite rock [J]. Songklanakarin Journal of Science Technology

2009, 31(4).

[34] Kumar P, Sahoo B K, De S, et al. Iron ore grindability improvement by microwave pre-treatment [J]. Journal of Industrial and Engineering Chemistry, 2010, 16(5): 805-12.

[35] Sahoo B K, De S, Meikap B C. Improvement of grinding characteristics of Indian coal by microwave pre-treatment [J]. Fuel Processing Technology, 2011, 92(10): 1920-8.

[36] Irannajad M, Mehdilo A, Salmani Nuri O. Influence of microwave irradiation on ilmenite flotation behavior in the presence of different gangue minerals [J]. Separation and Purification Technology, 2014, 132: 401-12.

[37] Hartlieb P, Grafe B. Experimental Study on Microwave Assisted Hard Rock Cutting of Granite [J]. BHM Berg- und Hüttenmännische Monatshefte, 2017, 162(2): 77-81.

[38] Hartlieb P, Rostami J. Rock mechanics implications of microwave treatment of rock as part of a hybrid system for mechanical excavation of rock for civil and mining applications; proceedings of the ISRM European Rock Mechanics Symposium-EUROCK 2018, F, 2018 [C]. OnePetro.

[39] Li Y, Lu G, Feng X, et al. The influence of heating path on the effect of hard rock fragmentation using microwave assisted method [J]. J of Rock Mech Eng, 2017, 36(6): 1460-8.

[40] Li H, Shi S, Lu J, et al. Pore structure and multifractal analysis of coal subjected to microwave heating [J]. Powder Technology, 2019, 346: 97-108.

[41] Huang J, Xu G, Chen Y, et al. Simulation of microwave’s heating effect on coal seam permeability enhancement [J]. International Journal of Mining Science and Technology, 2019, 29(5): 785-9.

[42] Xiating F, Gaoming L, Li Y, et al. High-power microwave borehole fracturing device for engineering rock mass [Z]. Google Patents. 2020

[43] Teimoori K, Hassani F, Sasmito A, et al. Experimental investigations of microwave effects on rock breakage using sem analysis; proceedings of the AMPERE 2019 17th International Conference on Microwave and High Frequency Heating, F, 2019 [C]. Editorial Universitat Politècnica de València.

[44] Teimoori K, Hassani F, Sasmito A, et al. Numerical investigation on the effects of single-mode microwave treatment on rock breakage system; proceedings of the AMPERE 2019 17th International Conference on Microwave and High Frequency Heating, F, 2019 [C]. Editorial Universitat Politècnica de València.

[45] Lu G, Feng X, Li Y, et al. Influence of microwave treatment on mechanical behaviour of compact basalts under different confining pressures [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2020, 12(2): 213-22.

[46] Kingman S W, Jackson K, Cumbane A, et al. Recent developments in microwave-assisted comminution [J]. International Journal of Mineral Processing, 2004, 74(1): 71-83.

[47] Jokovic V. Microwave processing of minerals [J]. 2012.

[48] Jerby E, Dikhtiar V. Method and device for drilling, cutting, nailing and joining solid non-conductive materials using microwave radiation [Z]. Google Patents. 2000

[49] Jerby E, Dikhtyar V, Aktushev O, et al. The microwave drill [J]. Science, 2002, 298(5593): 587-9.

[50] Zhang Z, Liu D, Zou G, et al. Influence of microwave irradiation distance on electromagnetism, temperature and stress field in rock; proceedings of the 53rd US Rock Mechanics/Geomechanics Symposium, F, 2019 [C]. OnePetro.

[51] Ma Z J, Zheng Y L, Li X Z, et al. Design and performance of an open-ended converging microwave antenna in fracturing biotite diorite at low microwave power levels [J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2021, 7(4): 95.

[52] Didenko A, Zverev B, Prokopenko A. Microwave fracturing and grinding of solid rocks by example of kimberlite; proceedings of the Physics-Doklady, F, 2005 [C].

[53] Satish H, Ouellet J, Raghavan V, et al. Investigating microwave assisted rock breakage for possible space mining applications [J]. Mining technology, 2006, 115(1): 34-40.

[54] Like Q, Jun D, Pengfei T. Study on the effect of microwave irradiation on rock strength [J]. Journal of Engineering Science Technology Review

2015, 8(4): 91-6.

[55] Hartlieb P, Kuchar F, Moser P, et al. Reaction of different rock types to low-power (3.2 kW) microwave irradiation in a multimode cavity [J]. Minerals Engineering, 2018, 118: 37-51.

[56] Rizmanoski V. The effect of microwave pretreatment on impact breakage of copper ore [J]. Minerals Engineering, 2011, 24(14): 1609-18.

[57] Amankwah R K, Ofori-Sarpong G. Microwave heating of gold ores for enhanced grindability and cyanide amenability [J]. Minerals Engineering, 2011, 24(6): 541-4.

[58] Wang E, Shi F, Manlapig E. Pre-weakening of mineral ores by high voltage pulses [J]. Minerals Engineering, 2011, 24(5): 455-62.

[59] Ali A Y, Bradshaw S M. Bonded-particle modelling of microwave-induced damage in ore particles [J]. Minerals Engineering, 2010, 23(10): 780-90.

[60] Wang Y, Djordjevic N. Thermal stress FEM analysis of rock with microwave energy [J]. International Journal of Mineral Processing, 2014, 130: 74-81.

[61] Swart A J, Mendonidis P. Evaluating the effect of radio-frequency pre-treatment on granite rock samples for comminution purposes [J]. International Journal of Mineral Processing, 2013, 120: 1-7.

[62] Peng Z, Hwang J-Y, Park C-L, et al. Numerical Analysis of Heat Transfer Characteristics in Microwave Heating of Magnetic Dielectrics [J]. Metallurgical and Materials Transactions A, 2012, 43(3): 1070-8.

[63] Ong K G, Akbarnezhad A. Microwave-assisted concrete technology: production, demolition and recycling [M]. CRC Press, 2014.

[64] Lu G-M, Feng X-T, Li Y-H, et al. Experimental Investigation on the Effects of Microwave Treatment on Basalt Heating, Mechanical Strength, and Fragmentation [J]. Rock Mechanics and Rock Engineering, 2019, 52(8): 2535-49.

[65] Zheng Y, Ma Z, Zhao X, et al. Experimental Investigation on the Thermal, Mechanical and Cracking Behaviours of Three Igneous Rocks Under Microwave Treatment [J]. Rock Mechanics and Rock Engineering, 2020, 53(8): 3657-71.

[66] Peinsitt T, Kuchar F, Hartlieb P, et al. Microwave heating of dry and water saturated basalt, granite and sandstone [J]. International Journal of Mining and Mineral Engineering, 2010, 2(1): 18-29.

[67] Kobusheshe J. Microwave enhanced processing of ores [D]; University of Nottingham Dissertation, 2010.

[68] Chen G, Chen J, Guo S, et al. Dissociation behavior and structural of ilmenite ore by microwave irradiation [J]. Applied Surface Science, 2012, 258(10): 4826-9.

[69] Hartlieb P, Leindl M, Kuchar F, et al. Damage of basalt induced by microwave irradiation [J]. Minerals Engineering, 2012, 31: 82-9.

[70] Hartlieb P, Toifl M, Kuchar F, et al. Thermo-physical properties of selected hard rocks and their relation to microwave-assisted comminution [J]. Minerals Engineering, 2016, 91: 34-41.

[71] Zheng Y L, Zhang Q B, Zhao J. Effect of microwave treatment on thermal and ultrasonic properties of gabbro [J]. Applied Thermal Engineering, 2017, 127: 359-69.

[72] Charikinya. Characterising the Effect of Microwave Treatment on Bio-Leaching of Coarse [J]. Massive Sulphide Ore Particles , Stellenbosch University, Stellenbosch, 2015.

[73] Bobicki E R, Liu Q, Xu Z. Microwave Treatment of Ultramafic Nickel Ores: Heating Behavior, Mineralogy, and Comminution Effects [J]. Minerals, 2018, 8(11).

[74] Forster J, Maham Y, Bobicki E R. Microwave heating of magnesium silicate minerals [J]. Powder Technology, 2018, 339: 1-7.

[75] Kahraman S, Canpolat A N, Fener M. The influence of microwave treatment on the compressive and tensile strength of igneous rocks [J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 129: 104303.

[76] Satish H. Exploring microwave assisted rock breakage for possible space mining applications [J]. 2005.

[77] Whittles D N, Kingman S W, Reddish D J. Application of numerical modelling for prediction of the influence of power density on microwave-assisted breakage [J]. International Journal of Mineral Processing, 2003, 68(1): 71-91.

[78] Lu G-M, Li Y-H, Hassani F, et al. The influence of microwave irradiation on thermal properties of main rock-forming minerals [J]. Applied Thermal Engineering, 2017, 112: 1523-32.

[79] 周科平, 薛轲, 矿冶工程 刘. 微波作用下砂岩孔隙结构演化及强度劣化的试验研究 [J]. 矿冶工程, 2020, 40(2): 6-11.

[80] 李皋, 孟英峰, 唐洪明, et al. 砂岩储集层微波加热产生微裂缝的机理及意义 [J]. 石油勘探与开发, 2007, 34(1): 2-0.

[81] Wei C K, Davis H T, Davis E A, et al. Heat and mass transfer in water-laden sandstone: Microwave heating [J]. AIChE Journal, 1985, 31(5): 842-8.

[82] Yao J, Tao M, Zhao R, et al. Effect of microwave treatment on thermal properties and structural degradation of red sandstone in rock excavation [J]. Minerals Engineering, 2021, 162: 106730.

[83] 贾海梁, 陈伟航, 王婷, et al. 微波照射冻土热融软化规律试验研究 [J]. 岩石力学与工程学报, 2020, 39 Supp.2.

[84] 邓华锋, 原先凡, 李建林, et al. 饱水度对砂岩纵波波速及强度影响的试验研究 [J]. 岩石力学与工程学报, 2013, 32(8): 1625-31.

[85] 史謌, 沈文略, 杨东全. 岩石弹性波速度和饱和度, 孔隙流体分布的关系 [J]. 地球物理学报, 2003, 46(1): 138-42.

[86] Yang L, Jia H, Han L, et al. Hysteresis in the ultrasonic parameters of saturated sandstone during freezing and thawing and correlations with unfrozen water content [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2021, 13(5): 1078-92.

[87] Kang M, Lee J S. Evaluation of the freezing–thawing effect in sand–silt mixtures using elastic waves and electrical resistivity [J]. Cold Regions Science and Technology, 2015, 113: 1-11.

[88] Martínez-Martínez J, Benavente D, García-Del-Cura M A. Spatial attenuation: The most sensitive ultrasonic parameter for detecting petrographic features and decay processes in carbonate rocks [J]. Engineering Geology, 2011, 119(3): 84-95.

[89] Liu X, Qin H, Lan H. On the relationship between soil strength and wave velocities of sandy loess subjected to freeze-thaw cycling [J]. Soil Dynamics and Earthquake Engineering, 2020, 136: 106216.

[90] Lee I-M, Han S-I, Kim H-J, et al. Evaluation of rock bolt integrity using Fourier and wavelet transforms [J]. Tunnelling and Underground Space Technology, 2012, 28: 304-14.

[91] Santos C A, Urdaneta V, Jaimes G, et al. Ultrasonic Spectral and Complexity Measurements on Brine and Oil Saturated Rocks [J]. Rock Mechanics and Rock Engineering, 2010, 43(3): 351-9.

[92] Verwer K, Eberli G P, Weger R J. Effect of pore structure on electrical resistivity in carbonates [J]. AAPG bulletin, 2011, 95(2): 175-90.

[93] Khairy H, Tn. Harith Z Z. Influence of pore geometry, pressure and partial water saturation to electrical properties of reservoir rock: Measurement and model development [J]. Journal of Petroleum Science and Engineering, 2011, 78(3): 687-704.

[94] Nguyen S T. Micromechanical approach for electrical resistivity and conductivity of sandstone [J]. Journal of Applied Geophysics, 2014, 111: 135-40.

[95] 肖立志. 核磁共振成像测井与岩石核磁共振及其应用 [Z]. 北京: 科学出版社. 1998

[96] 谭龙, 韦昌富, 田慧会, et al. 冻土未冻水含量的低场核磁共振试验研究 [J]. 岩土力学, 2015, 36(6): 1566-72.

[97] 刘堂晏, 肖立志, 傅容珊, et al. 球管孔隙模型的核磁共振 (NMR) 弛豫特征及应用 [J]. 地球物理学报, 2004, 47(4): 663-71.

[98] Jia H, Ding S, Zi F, et al. Evolution in sandstone pore structures with freeze-thaw cycling and interpretation of damage mechanisms in saturated porous rocks [J]. CATENA, 2020, 195: 104915.

[99] Jia H, Ding S, Wang Y, et al. An NMR-based investigation of pore water freezing process in sandstone [J]. Cold Regions Science and Technology, 2019, 168: 102893.

[100] 陈卫忠, 谭贤君, 于洪丹, et al. 低温及冻融环境下岩体热, 水, 力特性研究进展与思考 [J]. 岩石力学与工程学报, 2011, 30(7): 1318-36.

[101] Zhang L, Yang C, Wang D, et al. Freezing point depression of soil water depending on its non-uniform nature in pore water pressure [J]. Geoderma, 2022, 412: 115724.

[102] 赵涛, 杨更社, 任俊童, et al. 不同负温对冻结饱和砂岩力学特性的影响 [J]. 西安科技大学学报, 2020, 40(06): 996-1002.

[103] Jia H-L, Han L, Zhao T, et al. Strength and the cracking behavior of frozen sandstone containing ice-filled flaws under uniaxial compression [J]. Permafrost and Periglacial Processes, 2022.

[104] Meredith R J. Engineers' handbook of industrial microwave heating [M]. Iet, 1998.

[105] Metaxas A A, Meredith R J. Industrial microwave heating [M]. IET, 1983.

[106] Ondrášik M, Kopecký M. Rock pore structure as main reason of rock deterioration [J]. Studia geotechnica et mechanica, 2014, 36(1): 79-88.

[107] De Groot S R, Mazur P. Non-equilibrium thermodynamics [M]. Courier Corporation, 2013.

[108] Colbeck S. Configuration of ice in frozen media [J]. Soil science, 1982, 133(2): 116-23.

[109] Matsuoka N, Murton J. Frost weathering: recent advances and future directions [J]. Permafrost Periglacial Processes

2008, 19(2): 195-210.

[110] Dash J, Rempel A, Wettlaufer J. The physics of premelted ice and its geophysical consequences [J]. Reviews of modern physics, 2006, 78(3): 695.

[111] Rempel A W. Formation of ice lenses and frost heave [J]. Journal of Geophysical Research: Earth Surface, 2007, 112(F2).

[112] Petrovic J J. Review Mechanical properties of ice and snow [J]. Journal of Materials Science, 2003, 38(1): 1-6.

[113] Guerin F, Laforte C, Farinas M-I, et al. Analytical model based on experimental data of centrifuge ice adhesion tests with different substrates [J]. Cold Regions Science and Technology, 2016, 121: 93-9.

[114] Chen H, Wu Y, Xia H, et al. Review of ice-pavement adhesion study and development of hydrophobic surface in pavement deicing [J]. Journal of Traffic and Transportation Engineering (English Edition), 2018, 5(3): 224-38.

[115] Jellinek H H G. Adhesive properties of ice [M]. US Army Snow Ice and Permafrost Research Establishment, Corps of Engineers, 1957.

[116] Ruedrich J, Siegesmund S. Fabric dependence of length change behaviour induced by ice crystallisation in the pore space of natural building stones; proceedings of the Heritage, Weathering & Conservation: Proceedings of the International Conference on Heritage, Weathering and Conservation, F, 2006 [C]. Taylor & Francis.

[117] Levi F. Thermal fatigue: A possible source of structural modifications in meteorites [J]. Meteoritics, 1973, 8.

[118] Hall K, Thorn C E. Thermal fatigue and thermal shock in bedrock: An attempt to unravel the geomorphic processes and products [J]. Geomorphology, 2014, 206: 1-13.

[119] Richter D, Simmons G. Thermal expansion behavior of igneous rocks [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1974, 11(10): 403-11.

中图分类号:

 TU458    

开放日期:

 2022-06-14    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式