- 无标题文档
查看论文信息

论文中文题名:

 基于压裂液腐蚀的煤体宏细观结构损伤与增透机制研究    

姓名:

 王宁    

学号:

 B201312037    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 083700    

学科名称:

 工学 - 安全科学与工程    

学生类型:

 博士    

学位级别:

 工学博士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 煤矿瓦斯灾害防治    

第一导师姓名:

 李树刚    

第一导师单位:

 西安科技大学    

第二导师姓名:

 李明    

论文提交日期:

 2023-01-17    

论文答辩日期:

 2022-12-07    

论文外文题名:

 Study on Macro- and Meso-structure Damage and Permeability Improvement Mechanism of Coal Based on Fracturing Fluid Corrosion    

论文中文关键词:

 煤矿瓦斯灾害 ; 压裂液腐蚀 ; 宏细观结构损伤 ; 增透机制 ; 微震监测    

论文外文关键词:

 Coal Mine Gas Disaster ; Fracturing Fluid Corrosion ; Macro-mes structural damage ; Permeability Improvement Mechanism ; Microseismic Monitoring    

论文中文摘要:

       煤矿瓦斯灾害因吞噬诸多矿工生命,是煤矿安全生产中最为棘手的难题之一。由于煤层透气性差,导致瓦斯抽采困难,严重影响瓦斯的抽采利用。随着开采深度和强度的不断加大,开采困难的问题更加突出,如何将瓦斯资源进行高效抽采,是目前急需解决的问题,腐蚀压裂能有效补充普通水力压裂的不足。本文旨在完善和推进表面活性剂协同复合酸化增透技术,系统研究了表面活性剂协同复合酸液腐蚀煤体孔裂隙结构损伤及其增透机制,高压钻孔胶密封辅助技术和煤层增透装备研发,以及进行了现场工业性试验。研究过程中,采用理论分析、物理实验和现场实践相结合的方法,全面地研究和阐述了表面活性剂协同复合酸化增透技术,并为其推广应用提供了实践案例。

       为揭示腐蚀煤体煤岩微观孔裂隙结构损伤机理,从力学性质、孔隙度及孔隙分布、表面微观形态等多个角度研究了煤体孔裂隙损伤特征。研究表明,腐蚀后煤样力学强度降低,表面活性剂协同复合腐蚀处理后的煤样强度较原煤样减小11.21%;经表面活性剂协同腐蚀处理的煤样,裂隙闭合应变增加了25.92%。屈服应变较小了5.38%,对煤体结构的损伤效果最大。采用液氮吸附测试等方法研究了腐蚀煤体孔裂隙结构损伤演化规律,结果显示,腐蚀处理具有明显的扩孔作用,能够使一些楔形孔转化为圆柱孔。随着腐蚀压裂液组分的增加,煤样的比表面积、孔体积以及孔径均逐渐增大。通过分形维数理论对腐蚀煤样孔隙连通性进行表征。复合酸化煤体分形维数Dw和Ds值都减小,说明复合腐蚀作用改善了煤样孔隙连通性,有利于提高瓦斯抽采效率。

       研制了与腐蚀压裂钻孔密封技术相匹配的高强度微膨胀新型密封材料。通过单因素与多因素实验探究了新型密封材料的最优配比,结果表明AL掺量:生石灰掺量:石膏掺量:其他:水泥掺量=0.56%:0.56%:2%:13.42%:83.46%,且水料比为0.7时最优。

       使用物理相似实验测定得到了适用于试验矿井418工作面的腐蚀压裂技术的压力为10MPa,通过微震监测技术和流量法结合的方式对腐蚀压裂钻孔的合理布置间距进行了研究,对监测试验结果进行综合分析,最终确定腐蚀压裂钻孔的最优布置间距为11m。研究成果进行了现场工业性试验,腐蚀压裂施工作业后,腐蚀压裂孔和导向孔的瓦斯抽采浓度高、流量大,衰减时间慢。经腐蚀压裂工艺应用,瓦斯抽采最高浓度提高了48%,煤层瓦斯抽采效果显著提升。

       本文采用物理实验、数值模拟、理论分析和现场测试等多种手段,揭示了表面活性剂协同的压裂液腐蚀煤体孔裂隙结构损伤特性和增透机理,研究了压裂液腐蚀煤体孔裂隙结构损伤演化规律,表征了不同腐蚀压裂液对煤体孔隙裂隙损伤的分形特征,探究了适用于腐蚀形压裂液的新型钻孔密封材料,丰富了煤层酸化压裂抽采煤层气技术。

论文外文摘要:

    Coal mine gas disaster is one of the most difficult problems in coal mine safety production because it devours the lives of many miners. The poor permeability of coal seams leads to difficulties in gas extraction, which seriously affects the extraction and utilization of gas. With the increasing mining depth and intensity, the problem of mining difficulties becomes more prominent. How to extract gas resources efficiently is an urgent problem, and corrosion fracturing can effectively supplement the shortage of ordinary hydraulic fracturing. This paper aims to improve and advance the surfactant synergistic composite acidizing permeation enhancement technology, and systematically researches the surfactant synergistic composite acid corroding coal pore fracture structure damage and its permeation enhancement mechanism, the high-pressure borehole adhesive sealing auxiliary technology and coal seam permeation enhancement equipment development, as well as conducts field industrial tests. During the research process, a combination of theoretical analysis, physical experiments and field practice was used to comprehensively study and elaborate the surfactant synergistic composite acidizing permeation enhancement technology and provide practical cases for its promotion and application.

    In order to reveal the damage mechanism of microscopic pore and fissure structure of corroded coal bodies, the damage characteristics of microscopic pore and fissure of coal bodies were studied from various perspectives, such as mechanical properties, porosity and pore distribution, and surface microscopic morphology. The study showed that the mechanical strength of the coal samples decreased after corrosion, and the strength of the coal samples treated with surfactant synergistic composite corrosion decreased by 11.21% compared with the original coal samples; the fracture closure strain of the coal samples treated with surfactant synergistic corrosion increased by 25.92%. The yield strain was smaller by 5.38%, which had the greatest effect on the damage of the coal structure. The corrosion treatment has a significant hole expansion effect, which can convert some wedge-shaped holes into cylindrical holes. With the increase of corrosion fracturing fluid components, the specific surface area, pore volume and pore diameter of the coal sample gradually increased. The values of fractal dimension Dw and Ds of the composite acidified coal body were reduced, indicating that the composite corrosion improved the pore connectivity of the coal sample, which is conducive to improving the gas extraction efficiency.

    New high-strength micro-expansion sealing materials were developed to match with the corrosion fracturing borehole sealing technology. The optimal ratio of the new sealing materials was investigated by single-factor and multi-factor experiments, and the results showed that the dose of AL: lime: gypsum: other: cement = 0.56%: 0.56%: 2%: 13.42%: 83.46%, and the water-to-material ratio was optimal at 0.7.

    The pressure of corrosion fracturing technology applicable to the test mine 418 working face was 10 MPa, and the reasonable spacing of corrosion fracturing boreholes was studied by combining micro-vibration monitoring technology and flow rate method, and the monitoring test results were analyzed comprehensively to determine the optimal spacing of corrosion fracturing boreholes to be 11 m. The research results were tested industrially in the field. After the corrosion fracturing construction operation, the gas extraction concentration in the corrosion fracturing holes and pilot holes is high, the flow rate is high and the decay time is slow. The highest concentration of gas extraction was increased by 48% after the application of corrosion fracturing process, and the effect of coal seam gas extraction was significantly improved.

    In this paper, physical experiments, numerical simulations, theoretical analyses and field tests are used to reveal the damage characteristics and permeation enhancement mechanism of coal pore fracture structure corroded by surfactant-coordinated fracturing fluid, to study the damage evolution law of coal pore fracture structure corroded by fracturing fluid, to characterize the fractal characteristics of coal pore fracture damage by different corrosive fracturing fluids, to explore the new drilling seal material applicable to corrosive fracturing fluid The study enriched the technology of coal seam acid fracturing for CBM extraction.

参考文献:

[1] 李树刚, 林海飞, 成连华, 等. 我国煤矿瓦斯灾害事故发生原因及防治对策[C]. 中国上海: 2010: 6.

[2] 李树刚, 林海飞, 赵鹏翔, 等. 采动裂隙椭抛带动态演化及煤与瓦斯共采[J]. 煤炭学报, 2014, 39(8): 1455-1462.

[3] 程志恒, 陈亮, 邹全乐, 等. 煤与瓦斯共采领跑煤炭科学开采[J]. 能源与节能, 2011, 04: 1-4.

[4] 李琰庆, 唐永志, 唐彬, 等. 淮南矿区煤与瓦斯共采技术的创新与发展[J]. 煤矿安全, 2020, 51(8): 77-81.

[5] 孙富海. 煤炭生态地质勘查基本构架与科学问题[J]. 西部探矿工程, 2021, 33(04): 134-137.

[6] 张昊, 张强, 左小, 等. 生态环境保护性的采选充系统设计及应用[J]. 中国矿业大学学报, 2021, 50(3): 548-557.

[7] 徐凤银, 肖芝华, 陈东, 等. 我国煤层气开发技术现状与发展方向[J]. 煤炭科学技术, 2019, 47(10): 205-215.

[8] 秦勇, 袁亮, 胡千庭, 等. 我国煤层气勘探与开发技术现状及发展方向[J]. 煤炭科学技术, 2012, 40(10): 1-6.

[9] 袁亮. 我国深部煤与瓦斯共采战略思考[J]. 煤炭学报, 2019, 43(1), 1-6.

[10] 安全管理网/事故案例/事故统计, http://www.safehoo.com/.

[11] 许晓晨, 陶占盛, 张智勇, 等. 中国煤层气开发技术发展方向浅谈[J].能源与节能, 2019, 11: 145-146.

[12] 汪红. 2018 年度《全国石油天然气资源勘查开采情况通报》发布原油产量有望转跌为升[J]. 中国石油石化, 2019, 16: 40-41.

[13] Li SG, Wang N, Zhang TJ. Study on Energy Dissipation Law in the Process of Coal and Gas Outburst. ACSR-Advances in Computer Research, 2016, 7.

[14] 钟方德. 中高阶煤储层吸附孔孔隙结构特征对比分析[J]. 中国煤炭地质, 2018, 30(S1): 48-55.

[15] Nie BS, Ma YK, Hu ST, et al. Laboratory Study Phenomenon of Coal and Gas Outburst Based on a Mid-scale Simulation System. Scientific Reports 9. 2019.

[16] 倪小明, 李全中, 王延斌, 等. 多组分酸对不同煤阶煤储层化学增透实验研究[J]. 煤炭学报, 2014, 39(S2): 436-440.

[17] Li N, Dai J, Liu C, et al. Feasibility study on application of volume acid fracturing technology to tight gas carbonate reservoir development[J]. Petroleum 2015, 1(3):206-216.

[18] Zhou Z, Wang X, Zhao Z, et al. New Eq. for acid fracturing in low permeability gas reservoirs: Experimental study and field application[J]. J Petrol Sci Engin, 2007, 59(3–4): 257-262.

[19] 张柏林, 房淑华. 重力热管在猫儿沟露天矿排土场深部积温治理的应用[J]. 能源研究与利用, 2021(01): 44-46.

[20] 范忠胜, 黄玉玺, 王鹏. 梁家碛露天煤矿首采区一标段北帮开采边界方案优化[J]. 露天采矿技术, 2016, 31(10): 35-38.

[21] 闫万俊, 黄玉玺, 年军, 等. 香源煤业沿空留巷围岩变形特征分析[J]. 煤矿安全, 2015, 46(08): 224-226.

[22] 黄玉玺. 复杂赋存条件综放工作面安全开采技术研究[D]. 辽宁工程技术大学, 2013.

[23] 张利军, 张东鹏, 张天明, 等. 基于后倾斜高抽巷为主体的坚硬顶板综放工作面初采期瓦斯综合治理[J]. 煤矿安全, 2021, 52(12): 73-77.

[24] 王兆丰, 肖建兵, 段君君, 等. 新形势下加强地质灾害防治资质管理的思考与建议[J]. 中国矿业, 2019, 28(04): 31-33.

[25] 孙可明, 李天舒. 超临界CO2作用下煤体膨胀变形理论模型[J]. 煤炭学报, 2020, 45(04): 1419-1426.

[26] 孙可明, 翟诚, 辛利伟, 等. 不同饱和度水合物沉积物的三轴加载渗透率试验[J]. 天然气工业, 2017, 37(12): 61-67.

[27] 王兆丰, 王龙, 董家昕, 等. 冷冻取芯过程含瓦斯煤样温度场演化规律模拟研究[J].煤炭学报, 2021, 46(01): 199-210.

[28] 雷云, 刘建军, 张哨楠. CO2相变致裂本煤层增透技术研究[J]. 工程地质学报, 2017, 25(01): 215-221.

[29] 刘九员, 刘立州. 二氧化碳相变压裂技术在井筒揭煤中的应用[J]. 山西煤炭, 2015, 35(03): 3-5.

[30] 董庆祥, 王兆丰, 韩亚北, 等. 液态CO2相变致裂的TNT当量研究[J]. 中国安全科学学报, 2014, 24(11):84-88.

[31] 王公忠, 孙光中. 负压条件下构造煤原煤样瓦斯渗透性实验[J]. 煤矿安全, 2015, 46(10): 11-14.

[32] 王宁, 李树刚, 邓增社. 脉动水力压裂煤层微观结构变化及其工程实践. 煤矿安全, 2019, 50(8): 18-22.

[33] 刘厅, 赵洋, 林柏泉. 双重卸压效应下煤体力学行为响应及对渗透率的影响规律[J]. 煤炭学报, 2022, 47(7): 2656-2667.

[34] 张霄. 基于分形理论的体积压裂水平井产能预测方法研究[D]. 中国石油大学(华东), 2014.

[35] Li SG, Wang N, Zhang TJ. Study on damage evolution characteristics of coal and rock uniaxial compression based on the acoustic emission. AER-Advances in Engineering Research, 2016, 11.

[36] 何亚辉, 赵明阶, 汪魁, 等. 基于云模型的土石坝渗流安全风险模糊综合评价[J]. 水电能源科学, 2018, 36(3): 83-86.

[37] 王玲玲, 王兆丰, 霍肖肖, 等. 高温高压下煤孔隙结构的变化对瓦斯吸附特性的影响[J]. 中国安全生产科学技术, 2022, 14(12): 97-101.

[38] 李真珍, 于建新, 杨小林, 等. 深部煤层水压爆破裂纹扩展规律[J]. 高压物理学报, 2022, 26(3): 035301.

[39] 刘俭. 中兴矿高瓦斯低渗透水力压裂增透技术研究[D]. 煤炭科学研究总院, 2020.

[40] 李岩. 高压水射流割缝技术卸压增透机理及应用研究[J].山东煤炭科技, 2020(7): 81-86.

[41] 张永将, 郭寿松. 高压水射流环形割缝深度理论模型及应用[J]. 煤炭学报, 2019, 44(1): 126-132.

[42] 刘晓辉, 余洁, 康家辉, 等. 不同围压下煤岩强度及变形特征研究[J]. 地下空间与工程学报, 2019, 15(5): 1341-1352.

[43] 徐玉胜, 李春元, 张勇, 等. 不同采高下瓦斯通道卸荷损伤演化及抽采验证. 煤炭学报[J]. 2018, 43(9): 2501-2509.

[44] 李树刚, 钱鸣高, 石平五. 煤样全应力应变中的渗透系数-应变方程[J]. 煤田地质与勘探, 2001, 29(1): 22-24.

[45] 李树刚, 钱鸣高, 等. 综放开采覆岩离层裂隙变化及空隙渗流特性研究[J]. 岩石力学与工程学报, 2000, 19(5): 604-607.

[46] 李树刚, 徐精彩. 软煤样渗透特性的电液伺服试验研究[J]. 岩土工程学报, 2001, 23(1): 68-70.

[47] 袁亮. 我国深部煤与瓦斯共采战略思考[J]. 煤炭学报, 2016,41(01):1-6.

[48] 袁亮, 薛俊华. 低透气性煤层群无煤柱煤与瓦斯共采关键技术[J]. 煤炭科学技术, 2013, 41(01):5-11.

[49] 袁亮, 张平松. 煤炭精准开采地质保障技术的发展现状及展望[J]. 煤炭学报, 2019, 44(08):2277-2284.

[50] 袁亮, 郭华, 沈宝堂, 等. 低透气性煤层群煤与瓦斯共采中的高位环形裂隙体[J]. 煤炭学报, 2011, 36(03):357-365.

[51] 袁亮, 薛生. 煤层瓦斯含量法确定保护层开采消突范围的技术及应用[J]. 煤炭学报, 2014, 39(09): 1786-1791.

[52] 余国锋, 袁亮, 任波, 等. 底板突水灾害大数据预测预警平台研究[J]. 煤炭学报, 2021, 46(11): 3502-3514.

[53] 袁亮, 杨科. 再论废弃矿井利用面临的科学问题与对策[J]. 煤炭学报, 2021, 46(1): 16-24.

[54] 李树刚. 综放开采围岩活动及瓦斯运移[M]. 徐州:中国矿业大学出版社, 2000.

[55] Li Shugang, Lin Haifei. Migration and Accumulation Characteristic of Methane in Mining Fissure Elliptic Paraboloid Zone. In: Wang Yajun, Huang Ping, Li Shengcai, eds. Proceedings, 2004 International Symposium on Safety Science and Technology. Vol Ⅳ. Beijing: Science Press, 2004, 576-581.

[56] 李树刚. 综放面采空区矿压特征与漏风形态[J]. 焦作工学院学报, 1997(06): 6-10.

[57] 李树刚, 钱鸣高. 综放采空区冒落特征及瓦斯流态[J]. 矿山压力与顶板管理, 1997(21): 79-81.

[58] 李树刚, 林海飞, 赵鹏翔, 等. 采动裂隙椭抛带动态演化及煤与甲烷共采[J]. 煤炭学报, 2014, 39(8): 1455-1462.

[59] 李树刚, 李昊天, 丁洋, 等. 仰斜开采覆岩应力分布及裂隙演化规律物理模拟试验[J]. 煤矿安全, 2015, 46(2): 25-31.

[60] 李树刚, 张伟, 邹银先, 等. 综放采空区瓦斯渗流规律数值模拟研究[J]. 矿业安全与环保, 2008(02): 1-3.

[61] 王宁, 王世斌, 李树刚, 等. 基于微震监测的切顶缷压无煤柱自成巷开采覆岩运移周期性演化机理验证. 煤炭工程, 2021.

[62] 李树刚, 张伟, 邹银先, 等. 综放采空区瓦斯渗流规律数值模拟研究[J]. 矿业安全与环保, 2008(02): 1-3.

[63] 卢平, 方良才, 童云飞, 等. 深井煤层群首采层Y型通风工作面采空区卸压瓦斯抽采与综合治理研究[J]. 采矿与安全工程学报, 2013,30(03):456-462.

[64] 孟凡伟, 周学双, 童莉, 等. 油气田开发业挥发性有机物排放来源及控制措施[J]. 油气田环境保护, 2015,25(03):32-34+73.

[65] 武华太. 沙曲矿巷道底鼓原因与形成机理分析[J]. 煤炭科学技术, 2020, 38(04): 21-24.

[66] 武华太. 高预应力强力锚杆支护技术在大断面巷道中的应用[J]. 煤矿开采, 2010, 15(04): 68-70.

[67] Nie BS, Fan PH, Li XC, et al. Quantitative investigation of anisotropic characteristics of methane-induced strain in coal based on coal particle tracking method with X-ray computer tomography. Fuel 214 (2018): 272-284.

[68] 李胜, 张浩浩, 范超军, 等. 考虑基质瓦斯渗流的煤层流固耦合模型[J]. 中国安全科学学报, 2018, 28(3): 114-119.

[69] 秦雷, 林海飞, 兰世瑞, 等. 低温液氮作用下煤体瓦斯吸附特性试验研究[J]. 煤炭科学技术, 2020, 48(10): 105-112.

[70] Xie H, Ni G, Li S, et al. The influence of surfactant on pore fractal characteristics of composite acidized coal [J] , Fuel, 2019, 253: 741-753.

[71] Qin L, Zhai C, Liu S, et al. Fractal dimensions of low rank coal subjected to liquid nitrogen freeze-thaw based on nuclear magnetic resonance applied for coalbed methane recovery[J]. Powder Technology, 2018, 325: 11-20.

[72] 贾男. 煤层脉动式酸化压裂增透技术及其应用[J]. 中国安全科学学报, 2020, 30(10): 75-81.

[73] 赵博, 文光才, 孙海涛, 等. 煤岩渗透率对酸化作用响应规律的试验研究[J]. 煤炭学报, 2017, 42(08): 2019-2025.

[74] Song Y, Jiang B, Li FL, Liu JG. Structure and fractal characteristic of micro- and meso-pores in low, middle-rank tectonic deformed coals by CO2 and N2 adsorption. Microporous and Mesoporous Materials. 2017, 253: 191–202.

[75] Li X, Kang Y. Effect of fracturing fluid immersion on methane adsorption/desorption of coal[J]. J Natu Gas Sci Engin, 2016, 34: 449-457.

[76] Liu HH, Mou JH, Cheng YP. Impact of pore structure on gas adsorption and diffusion dynamics for long-flame coal. Journal of Natural Gas Science and Engineering. 2015, 22: 203–213.

[77] Li Z, Ni GH, Wang H, Sun Q, Wang G, Jiang BY, Zhao C. Molecular structure characterization of lignite treated with ionic liquid via FTIR and XRD spectroscopy. Fuel 272 (2020): 117705.

[78] 周世宁, 林柏泉. 煤层瓦斯赋存与流动理论. 北京: 煤炭工业出版社, 1999.

[79] 邱健, 邱帅. 采煤工作面瓦斯涌出规律及其防治[J]. 山东煤炭科技, 2012,(2): 173-175.

[80] 刘炎杰, 刘超, 马兵, 等.提高煤储层渗透率的酸化实验[J]. 煤田地质与勘探, 2016, 44(02): 46-49.

[81] 刘炎杰. 低渗透煤储层酸化改造实验研究[D]. 河南理工大学, 2016.

[82] 赵博. 中深孔爆破技术在回风石门掘进中的应用研究[J]. 山东煤炭科技, 2021, 39(02): 46-48.

[83] Zhang L, Li Z, Yang Y, et al. Effect of acid treatment on the characteristics and structures of high-sulfur bituminous coal [J]. Fuel 2016, 184: 418-429.

[84] 严敏, 张一真, 林海飞, 等. 液氮浸融对不同预制温度煤体损伤特性试验研究[J]. 煤炭学报, 2020, 45(08): 2813-2823.

[85] 胡松, 单联莹, 徐博洋, 等. 煤块受载破碎过程中的细观力学特性演变研究[J]. 煤炭学报, 2018, 43(03): 855-861.

[86] 熊德国, 赵忠明, 苏承东, 等. 饱水对煤系地层岩石力学性质影响的试验研究[J]. 岩石力学与工程学报, 2011, 30(05): 998-1006.

[87] 王凯, 蒋一峰, 徐超. 不同含水率煤体单轴压缩力学特性及损伤统计模型研究[J]. 岩石力学与工程学报, 2018, 37(05): 1070-1079.

[88] 赵星. 单轴压缩条件下煤体裂隙细观CT探测实验研究[D]. 华北科技学院, 2017.

[89] 张成良, 刘磊, 王超. 高等岩石力学及工程应用[M]. 长沙:中南大学出版社, 2016.8.

[90] 李雪梅, 蔺亚兵, 马东民. 高、低煤阶煤中宏观煤岩组分孔隙特征研究[J]. 煤炭工程, 2019, 51(6): 24-27.

[91] Li Y, Liu D. Comparison of low-field NMR and mercury intrusion porosimetry in characterizing pore size distributions of coals [J]. Fuel, 2012, 95: 152-158.

[92] Li QZ, Lin BQ, Wang K, et al. Surface properties of pulverized coal and its effects on coal mine methane adsorption behaviors under ambient conditions. Powder Technol. 2015, 270:278–86.

[93] Wang K, Wang GD, Ren T, Cheng YP. Methane and CO2 sorption hysteresis on coal: A critical review. International Journal of Coal Geology. 2014, 132: 60–80.

[94] 蒋长宝, 林骏, 王亮, 等. 酸化作用前后煤样吸附甲烷特性研究[J]. 煤炭科学技术, 2020, 46(09): 163-169.

[95] Wu W, Sun H. Sorption–desorption hysteresis of phenanthrene — effect of nanopores, solute concentration, and salinity. Chemosphere. 2010, 81: 961–967.

[96] Li XC, Kang YL. Effect of fracturing fluid immersion on methane adsorption/desorption of coal. Journal of Natural Gas Science and Engineering. 2016, 34: 449–57.

[97] 王宁, 刘长来, 李树刚, 等. 含孔试样破坏过程的时空特征研究.煤炭工程, 2021,53(5): 162–167.

[98] Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. Journal of the American Chemical Society. 1938, 60(2): 309–319.

[99] Jiang JY, Yang WH, Cheng YP, et al. Pore structure characterization of coal particles via MIP, N2 and CO2 adsorption: Effect of coalification on nanopores evolution. Powder Technology. 2019, 354: 136–148.

[100] 袁梅, 陈恋, 吕晴, 等. 酸化下无烟煤化学结构影响及吸附性能影响研究[J]. 煤炭科学技术, 2020, 46(09): 163-169.

[101] Balucan R D, Turner L G, Steel K M. X-ray μCT investigations of the effects of cleat demineralization by HCl acidizing on coal permeability [J]. J Natu Gas SciEngin. 2018, 55: 206-218.

[102] Bahrami H, Rezaee R, Clennell B. Water blocking damage in hydraulically fractured tight sand gas reservoirs: An example from Perth Basin, Western Australia[J]. J of Petrol Sci & Engin, 2012, 88-89.

[103] 赵文秀, 李瑞, 乌效鸣, 等. 利用酸化技术提高煤储层渗透率的室内初探[J]. 中国煤层气, 2012, 9(01): 10-13.

[104] 马秀媛, 芮洪兴, 王倩, 等. 多尺度岩石渗透特性的实验研究[J]. 岩土力学, 2014, 31(8): 2191-2196+2204.

[105] 王祖洸, 高保彬, 吕蓬勃. 单轴压缩条件下含瓦斯煤样力学性质研究[J]. 中国科技论文, 2017, 12(15): 1764-1769.

[106] 王宁, 李树刚, 王世斌, 等. 煤体破碎过程中分形特征与能量耗散规律研究[J]. 煤矿安全, 2021, 52(4): 1-6.

[107] 裴柏林, 郝杰, 张遂安, 等. 煤基质膨胀收缩对储层渗透率影响的新数学模型[J] 煤田地质与勘探, 2017, 45(01): 51-55.

[108] 李陈, 李亚娇, 李剑, 等. 考虑基质收缩效应的复合煤层气藏产能评价[J]. 断块油气田, 2019, 26(01): 75-79.

[109] 高为, 易同生, 金军, 等. 黔西地区煤样孔隙综合分形特征及对孔渗性的影响[J].煤炭学报, 2017, 42(05): 1258-1265.

[110] 倪冠华, 李钊, 解宏超. 基于核磁共振测试的煤层水锁效应解除方法[J]. 煤炭学报, 2018,43(8): 2280-2287.

[111] 刘谦. 水力化措施中的水锁效应及其解除方法实验研究[D].中国矿业大学, 2014.

[112] 张培, 李希建, 沈仲辉. 低渗透页岩气开采水锁效应的处理方法[J]. 煤炭技术, 2018, 37(04): 88-90.

[113] Dillinger A, Esteban L. Experimental evaluation of reservoir quality in Mesozoic formations of the Perth Basin (Western Australia) by using a laboratory low field Nuclear Magnetic Resonance[J]. Mar and Petrol Geol, 2014, 57: 455-469.

[114] 苏金龙. 基于分形理论的煤颗粒物理结构与细观力学特性关系研究[D]. 华中科技大学, 2016.

[115] 宋晓夏, 唐跃刚, 李伟, 等. 中梁山南矿构造煤吸附孔分形特征[J]. 煤炭学报, 2016, 38(01): 134-139.

[116] 闫建平, 何旭, 耿斌, 等. 核磁共振T2谱多重分形特征及其在孔隙结构评价中的应用[J]. 应用地球物理学, 2017,14(02):205-215+322.

[117] 李铭杰, 卢守青, 司书芳, 等. 粒径损伤对原生煤和构造煤孔隙结构与分形特征的影响[J]. 中国安全生产科学技术, 2022, 18(7): 88-94.

[118] Xie H, Ni G, Li S, et al. The influence of surfactant on pore fractal characteristics of composite acidized coal [J] , Fuel, 2019, 253: 741-753.

[119] Qin L, Zhai C, Liu S, et al. Fractal dimensions of low rank coal subjected to liquid nitrogen freeze-thaw based on nuclear magnetic resonance applied for coalbed methane recovery[J]. Powder Technology, 2018, 325: 11-20.

[120] K Razminia, A Razminia, V I. Shiryaev. Application of fractal geometry to describe reservoirs with complex structures. Communications in Nonlinear Science and Numerical Simulation[J], 2020(82).

[121] Lauren C. Zappala;Reydick D. Balucan;James Vaughan;Karen M. Steel.Analysis of a reactive distillation process to recover tertiary amines and acid for use in a combined nickel extraction‐mineral carbonation process[J]. Environmental Progress & Sustainable Energy. 2019(3).

[122] Yao YB, Liu DM. Comparison of low-field NMR and mercury intrusion porosimetry in characterizing pore size distributions of coals[J]. Fuel 2022, 95: 152-158.

[123] 刘亚鹏. 高阶煤孔裂隙特征及其影响因素的低场核磁共振实验研究[D]. 河南理工大学, 2017.

[124] Dong K, Ni GH, Xu YH, Xun M, Wang H, Li S, Sun Q, Li YF. Effect of nano-SiO2/styrene-acrylic emulsion on compactness and strength of mine drilling seal materials. Powder Technology 372 (2020): 325-335.

[125] Jiang JY, Yang WH, Cheng YP, et al. Pore structure characterization of coal particles via MIP, N2 and CO2 adsorption: Effect of coalification on nanopores evolution. Powder Technology 354 (2019): 136–148.

[126] Song Y, Jiang B, Liu J. Nanopore structural characteristics and their impact on methane adsorption and diffusion in low to medium tectonically deformed coals case study in the Huaibei coal field. Fuel 31 (2017): 6711–6723.

[127] 陈富瑜, 周勇, 杨栋吉, 等. 基于分形理论的致密砂岩粗层孔隙结构研究-以鄂尔多斯盆地庆城地区延长组长7段为例[J]. 中国矿业大学学报, 2022, 51(05):941-955.

[128] Li S, Ni GH, Wang H, Xun M, Xu YH. Effects of acid solution of different components on the pore structure and mechanical properties of coal. Advanced Powder Technology 31 (2020): 1736-1747.

[129] Yu YX, Luo XR, Wang ZX, et al. A new correction method for mercury injection capillary pressure (MICP) to characterize the pore structure of shale. Journal of Natural Gas Science and Engineering 68 (2019): 102896.

[130] Zhao WM, Geng XZ, Lu JC, et al. Mercury removal performance of brominated biomass activated carbon injection in simulated and coal-fired flue gas. Fuel 285 (2021): 119131.

[131] 谭敏仪, 曾燕妮, 吴志成, 等. 核磁共振 MRCP 成像原理及成像技术[J]. 中国医药科学, 2019, 9(03): 128-130.

[132] Han H, Guo C, Zhong NN, et al. A study on fractal characteristics of lacustrine shales of Qingshankou Formation in the Songliao Basin, northeast China using nitrogen adsorption and mercury injectionmethods. Journal of Petroleum Science and Engineering 193 (2020): 107378.

[133] Liu YS, Liu YT, Zhang QC et al. Petrophysical static rock typing for carbonate reservoirs based on mercury injection capillary pressure curves using principal component analysis. Journal of Petroleum Science and Engineering 181 (2019): 106175.

[134] Ivakhnenko O P, Makhatova M N, Nadirov K, et al. Unconventional coalbed methane reservoirs characterization using magnetic susceptibility[J]. Energy Procedia, 2016, 97:318-325.

[135] Luo Z, Zhang N, Zhao L, et al. A novel stimulation strategy for developing tight fractured gas reservoir[J]. Petroleum 2017, 4: 215-222.

[136] 秦雷, 王平, 林海飞, 等. 基于氮气吸附和压汞法液氮冻结煤体孔隙结构精细化表征研究[J]. 西安科技大学学报, 2020, 40(06): 945-952+959.

[137] 秦雷, 林海飞, 兰世瑞, 等. 低温液氮作用下煤体瓦斯吸附特性试验研究[J]. 煤炭科学技术, 2020,48(10): 105-112.

[138] 秦雷. 熊洞煤矿矿井工程地质条件分析[J]. 采矿技术, 2020, 20(04): 174-177.

[139] ClaudiaVoigt, JanaHubálková, HerbertGiesche, et al. Intrusion and extrusion mercury porosimetry measurements at Al2O3–C Influence of measuring parameter. Microporous and Mesoporous Materials 299 (2020): 110125.

[140] Ji HG, Jiang H, Song ZY, et al. Analysis on the microstructure evolution and fracture morphology during the softening process of weakly cemented sandstone. Journal of China Coal Society. 2018, 43: 993–999.

[141] 张磊. 抽采钻孔孔周裂隙扩展机理及其检测技术研究[D]. 西安科技大学, 2019.

[142] Wang JY, Zhou G, Xing Wei, Wang SC. Experimental characterization of multi-nozzle atomization interference for dust reduction between hydraulic supports at a fully mechanized coal mining face. Environmental Science and Pollution Research 2019, 26(10): 10023-10036.

[143] Wang G, Jiang C, Shen J, Han DY, Qin XJ. Deformation and water transport behaviors study of heterogenous coal using CT-based 3D simulation. International Journal of Coal Geology 2019, 211(1):103204.

[144] 周冬. 大直径抽采钻孔非凝固膏体封孔技术研究[D]. 中国矿业大学, 2020.

[145] 王振锋. 瓦斯抽采浓度控制机理及管路浓度自动调控预警系统研究[D]. 河南理工大学, 2014.

[146] Cheng WM, Liu Z, Yang H, Wang WY. Non-linear Seepage Characteristics and Influential Factors of Water Injection in Gassy Seams. Experimental Thermal and Fluid Science 2018, 91: 41-53.

[147] Cai P, Nie W, Chen DW, Yang SB, Liu ZQ. Effect of air flowrate on pollutant dispersion pattern of coal dust particles at fully mechanized mining face based on numerical simulation. Fuel 2019, 239: 623-635.

[148] 聂万才, 张廷山, 王铭伟, 等. 海陆过渡相煤系页岩孔隙分形特征及影响因素-以沁水盆地北部太原组为例[J]. 沉积学报. 2022,44(X):1-15.

[149] Yang SB, Nie W, Lv SS, Liu ZQ, Peng HT, Ma X, Cai P, Xu CW. Effects of spraying pressure and installation angle of nozzles on atomization characteristics of external spraying system at a fully-mechanized mining face, Powder Technology 2019, 343:754-764.

[150] Zou QL, Lin BQ. Fluid-solid coupling characteristics of gas-bearing coal subject to hydraulic slotting: An experimental investigation. Energy and Fuels, 2018, 32: 1047-1060.

[151] 潘一山. 煤矿冲击地压扰动响应失稳理论及应用[J]. 煤炭学报, 2018, 43(08): 2091-2098.

[152] Yan FZ, Lin BQ, Xu J, Wang YH, Zhang XL, Peng SJ. Structural evolution characteristics of middle-high rank coal samples subjected to high-voltage electrical pulse. Energy and Fuels 2022, 32:3263-3271.

[153] Yan FZ, Lin BQ, Zhu CJ, Zhou Y. Experimental investigation on anthracite coal fragmentation by high-voltage electrical pulses in the air condition: Effect of breakdown voltage. Fuel 2016, 183: 583-592. [150] S.P. Shah, W.J. Weiss, W. Yang, Alexander et al Shrinkage cracking – can it be prevented. Concr. Int., vol. 20, American Concrete Inst, Farmington Hills, MI, United States,1998, 51–55.

[154] J.C. Walraven, Design for service life: How should it be implemented in future codes, in: Alexander et al (Eds.), Concrete Repair, Rehabilitation and Retrofitting II, Taylor & Francis Group, London, 2009, 3.

[155] 王瀚姣,杜美利,薛文海,等.酸洗对黄陵富汕煤结构和动力学特征的影响[J].煤炭转化.2021,44(X):1-8.

[156] Wei Lu, Xiaolei Sun, Liyang Gao, et al. Study on the characteristics and mechanism of DL-malic acid in inhibiting spontaneous combustion of lignite and bituminous coal [J]. Fuel, 308(2022):122012.

[157] Qingfeng Xu, Rulin Liu, Seeram Ramakrishna. Comparative experimental study on the effects of organic and inorganic acids on coal dissolution [J]. Journal of Molecular Liquids, 339(2021):116730.

[158] Guanhua Ni, Haoran Dou, Zhao Li, et al. Study on the combustion characteristics of bituminous coal modified by typical inorganic acids [J]. Energy, 2022, 261:125214.

[159] 赵云飞.预处理对不同显微形貌胜利褐煤结构和燃烧性能的影响[D].呼和浩特:内蒙古工业大学,2020.

[160] 王宁, 李树刚. 压裂液腐蚀效应下煤体力学损伤规律及增透效果研究[J]. 煤炭科学技术, 2022, 50(5): 1-7.

[161] 罗明坤. 低透气性煤层酸化压裂复合增透技术研究[D]. 辽宁工程技术大学, 2017.

[162] M. Raupach, Research in the field of repair – Actual approaches and future needs, in: Alexander et al (Eds.), Concrete Repair, Rehabilitation and Retrofitting II, Taylor & Francis Group, London, 2009, 66.

[163] 赵修成, 赵晓彦, 郭佳奇. 断续节理岩体声学力学特性试验研究[J]. 岩石力学与工程学报, 2020,39(07): 1408-1419.

[164] N.K. Emberson, G.C. Mays, Significance of property mismatch in the patch repair of structural concrete. Part 1: Properties of repair systems, Mag. Concr. Res. 42 (1990) 147–160, https://doi.org/10.1680/macr.1990, 42.152.147.

[165] G.P. Tilly, J. Jacobs, Concrete repairs: Observations on performance in service and current practice. CONREPNET Project Report, IHS BRE Press, Watford, UK, 2007.

[166] 周喻, 刘冰, 王莉, 等. 单轴压缩条件下含双圆孔类岩石试样力学特性的细观研究[J].岩石力学与工程学报, 2017, 36(11): 2662-2671.

[167] 宋浩晟, 李波波, 陈帅, 等. 页岩储层动态表观渗透率演化机制[J].中国矿业大学学报, 2022, 51(05): 873-885.

[168] M. Sánchez, P. Faria, L. Ferrara, et al., External treatments for the preventive repair of existing constructions: a review, Constr. Build. Mater. 193 (2018) 435–452, https://doi.org/10.1016/j.conbuildmat.2018, 10.

[169] 李全中, 蔡永乐, 胡海洋, 等. 泥页岩中黏土矿物纳米孔隙结构及其对甲烷吸附的影响[J].煤炭学报, 2017, 42(09): 2414-1219.

[170] 张遵国, 陈毅, 唐朝, 等. 煤体二氧化碳吸附解吸变形特征及变形模型[J].煤炭学报, 2022, 48(08): 3128-3137.

[171] 张海南. 基于多孔材料的二氧化碳吸附与转化[D]. 辽宁科技大学, 2021.

[172] J.M. Lees, B. Gruffydd-Jones, C.J. Burgoyne, Expansive couplers: a means of pre-tensioning fiber reinforced tendons, Constr. Build. Mater. 6 (1996) 413–423, https://doi.org/10.1016/0950-0618(95)00070-4.

[173] S. Nagataki, H. Gomi, Expansive admixtures (mainly ettringite), Cem. Concr. Comp. 20 (1998) 163–170, https://doi.org/10.1016/0950-0618(95)00070-4.

[174] 李明杰, 卢守青, 司书芳, 等. 粒径损伤对原生煤和构造煤孔隙结构与分形特征的影响[J].中国安全生产科学技术, 2022, 18(7): 88-94.

[175] Guide for the use of shrinkage compensating concrete, ACI committee Report ACI 223R, American Concrete Institute, 2010.

[176] 谭立新, 梁泰然, 蔡一湘, 等. 气体吸附法测定分体比表面积影响因素的研究[J].材料研究与应用, 2021, 8(2): 137-140.

[177] F.鲁克罗尔, J.鲁克罗尔, K.S.W辛, 等. 粉体与多孔固体材料的吸附原理、方法及应用[M]. 北京:化学工业出版社, 2020.3.

[178] 胡谷平, 黄滨, 张伟庆. 对BET数据处理过程的解读[J].大学化学, 2022, 37(7): 285-290.

[179] P. Carballosa, J.L. García Calvo, D. Revuelta, J.J. Sánchez, J.P. Gutiérrez, Influence of cement and expansive additive types in the performance of self-stressing and self-compacting concretes for structural elements, Constr. Build. Mater. 93 (2015) 223–229, https://doi.org/10.1016/j.conbuildmat.2015.05.113. J.L. García Calvo et al./Construction and Building Materials 251 (2020): 118974 9.

[180] 洪林, 王文静, 高大猛, 等. 低温氮吸附中煤阶对临界填充孔径的影响[J].中国安全科学学报, 2022, 32(4): 51-58.

[181] J.L. García Calvo, D. Revuelta, P. Carballosa, J.P. Gutiérrez, Comparison betweenthe performance of expansive SCC and expansive conventional concretes in different expansion and curing conditions, Constr. Build. Mater. 136 (2017) 277–285, https://doi.org/10.1016/j.conbuildmat. 2017, 01.039.

[182] X. Pan, Z. Shi, C. Shi, T.C. Ling, N. Li, A review on surface treatment. Part II: Performance, Constr. Build. Mater. 133 (2017) 81–90.

[183] A.A. Almusallam, F.M. Khan, S.U. Dulaijan, O.S.B. Study on the difference of pore structure of anthracite under different particle sizes using low-temperature nitrogen adsorption method, Environmental Science and Pollution Research. 25 (2022) 473–481.

[184] M.H.F. Medeiros, P. Helene, Surface treatment of reinforced concrete in marine environment: Influence of chloride diffusion coefficient and capillary water absorption, Constr. Build. Mater. 23 (2019) 1476–1484.

[185] 刘志军, 杨栋, 胡耀青, 等. 油页岩原位热解孔隙结构演化的低温氮吸附分析[J].西安科技大学学报, 2018, 38(5): 737-742.

[186] M.V. Diamanti, A. Brenna, F. Bolzoni, M. Berra, T. Pastore, M. Ormellese, Effect of polymer modified cementitious coatings on water and chloride permeability in concrete, Constr. Build. Mater. 49 (2013) 720–728.

[187] X. Shi, N. Xie, K. Fortune, J. Gong, Durability of steel reinforced concrete in chloride environments: an overview, Constr. Build. Mater. 30 (2012) 125–138.

[188] M. Jamal Shannag, High-performance cementitious grouts for structural repair, Cem. Concr. Res. 32 (2002) 803–808.

[189] 戚灵灵, 周晓庆, 彭信山, 等. 基于低温氮吸附和压汞法的焦煤孔隙结构研究[J].煤炭安全, 2022, 53(7): 1-6+13.

[190] P. Carballosa, J.L. García Calvo, D. Revuelta, Influence of expansive calcium sulfoaluminate agent dosage on properties and microstructure of expansive self-compacting concretes, Cem. Concr. Compos. 107 (2020), https://doi.org/ 10.1016/j.cemconcomp.2019, 103464.

[191] 胡彪. 煤中多尺度孔隙结构的甲烷吸附行为特征及其微观影响机制[D]. 中国矿业大学, 2022.

[192] Polymer-Modified V. Afroughsabet, G. Geng, A. Lin, L. Biolzi, C.P. Ostertag, P.J.M. Monteiro, The influence of expansive cement on the mechanical, physical, and microstructural properties of hybrid-fiber-reinforced concrete, Cem. Concr. Compos. 96 (2019) 21–32.

[193] Polymer-Modified Concrete, ACI Committee Report ACI 548.3R-03, American Concrete Institute, 2003.

[194] 杨天鸿, 徐涛, 刘建新, 等. 应力-损伤-渗流耦合模型及在深部煤层瓦斯卸压实践中的应用[J]. 岩石力学与工程学报, 2015, 14(16): 2900-2905.

[195] 董庆, 赵洪. 厚关键层下突出煤层煤岩瓦斯卸压规律数值模拟研究[J]. 中州煤炭, 2018(9): 28-32.

[196] 夏红春, 程远平, 柳继平. 远程覆岩卸压变形及其渗透性研究[J]. 西安科技大学学报, 2016, 26(01): 10-14.

[197] 梁冰. 煤和瓦斯突出固流耦合失稳理论[M]. 北京: 地质出版社, 2000.

[198] 王猛, 李星甫, 杨鑫, 等. 不同流体与黏土矿物对岩石渗透率影响实验研究[J]. 地球物理学进展, 2022,37(1): 275-283.

[199] 邵杰, 李金平, 卢小海. 煤样渗透性及渗流稳定性的实验研究[J]. 山东工业技术, 2016(1): 75-76.

[200] 倪小明, 李全中, 王延斌, 等. 多组分酸对不同煤阶煤储层化学增透实验研究[J].煤炭学报,2014,39(S2):436-440.

[201] 周世宁, 林柏泉. 煤层瓦斯赋存与流动理论. 北京: 煤炭工业出版社, 1999.

[202] 胡思佳, 董太华, 朱传杰, 等. 高瓦斯矿井急倾斜综放面瓦斯涌出规律研究[J]. 能源与环保, 2020, 42(9):7-12.

[203] 未志杰, 康晓东, 刘玉洋, 等. 煤层气藏全流固耦合数学模型[J]. 岩性油气藏, 2019, 31(2): 151-158.

[204] 万军凤, 赖晓晴, 时凤霞, 等. 煤层气吸附解吸三维应力实验装置开发及应用[J]. 科学技术与工程, 2016, 16(33): 14-17.

[205] M. Ramli, A.A. Tabassi, Influences of polymer modification and exposure conditions on chloride permeability of cement mortars and composites, J. Mater. Civil Engineer. 24 (2012) 216–222, https://doi.org/10.1061/(ASCE) MT.1943-5533.0000379.

[206] A. Parghi, M.S. Alam, Effects of curing regimes on the mechanical properties and durability of polymer-modified mortars – an experimental investigation, J. Sustainable Cem. Based Mater. 5 (2016) 324–347, https://doi.org/10.1080/ 21650373.2015.1124812. https://doi.org/10.1016/j.cemconcomp.2007, 04.004.

[207] 李铭杰, 卢守青, 司书芳, 等. 粒径损伤对原生煤和构造煤孔隙结构与分形特征的影响[J]. 中国安全生产科学技术, 2022, 18(7): 88-94.

[208] S. Hu, H. Wang, G. Zhang, Q. Ding, Bonding and abrasion resistance of geopolymeric repair material made with steel slag, Cem. Concr. Compos. 30 (2008) 239–244, https://doi.org/10.1016/j.cemconcomp.2007, 04.004.

[209] M.B.J. Mathew, M.M. Sudhakar, D.C. Natarajan, Strength, economic and sustainability characteristics of coal ash-GGBS based geopolymer concrete, Int. J. Comput. Eng. Res. 3 (2022) 207–212.

[210] Sobolev K, Ferrada-Gutiérrez M. Am Ceram Soc Bull 2005, 84: 16–9.

[211] Sugimoto T. Fine particles: synthesis, characterization, and mechanisms of growth. CRC Press, 2000.

[212] Pashley RM, Karaman ME. Applied colloid and surface chemistry. John Wiley and Sons, 2004.

[213] Fukushi K, Sato T. Using a surface complexation model to predict the nature and stability of nanoparticles. Environ Sci Technol 2018, 39: 1250–1256.

[214] 王宁, 张天军, 范京道, 等. 煤矿瓦斯抽采封孔质量检测技术与应用. 煤炭技术, 2019, 38(8): 87-89.

[215] 王俏, 王兆丰. 不同破坏类型煤的吸附势差异性研究[J]. 煤矿安全, 2018, 49(12): 13-16.

[216] 张超, 范富槐, 李树刚, 等. 基于微胶囊技术的瓦斯抽采钻孔密封材料研究[J]. 煤炭科学技术, 2021, 45(01):1-9.

[217] 周福宝, 孙玉宁, 李海鉴, 等. 煤层瓦斯抽采钻孔密封理论模型与工程技术研究[J].中国矿业大学学报, 2016, 45(03): 433-439.

[218] 包若羽. 松软煤层抽采钻孔密封段失稳机理及新型加固密封技术研究[D]. 西安科技大学, 2019.

[219] 包若羽. 松软煤层瓦斯抽采钻孔同心环加固密封技术研究与应用[J]. 煤炭科学技术, 2022, 50(05): 164-170.

[220] 张磊. 抽采钻孔孔周裂隙扩展机理及其检测技术研究[D]. 西安科技大学, 2019.

中图分类号:

 TD712    

开放日期:

 2023-03-21    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式