- 无标题文档
查看论文信息

论文中文题名:

 基于机电阻抗法的混凝土结构应力状态检测技术研究    

姓名:

 代光帝    

学号:

 20204053019    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 081406    

学科名称:

 工学 - 土木工程 - 桥梁与隧道工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 土木工程    

研究方向:

 桥梁与隧道理论及技术    

第一导师姓名:

 刘群峰    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-10    

论文答辩日期:

 2023-06-03    

论文外文题名:

 Research on Detection Technology of Stress State of Concrete Structure Based on Electromechanical Impedance Method    

论文中文关键词:

 机电阻抗法 ; 混凝土应力检测 ; 埋置式PZT ; 探针式PZT ; 灵敏度 ; 稳定性    

论文外文关键词:

 Electromechanical impedance method ; Concrete stress detection ; Embedded PZT ; Probe - type PZT ; Sensitivity ; Stability    

论文中文摘要:

作为工程结构的基础材料,混凝土的应力及损伤发展决定了结构的性能。应力检测是评估大型土木工程结构安全及其服役状态的关键指标。机电阻抗法(EMI)是通过压电传感器(PZT)的阻抗信息来反映主体结构状态的一种检测方法。但是,当前基于机电阻抗的应力检测技术功率低、稳定性差,无法满足实际工程需求。因此,本文拟采用数值模拟和实验相结合的方法,研究优化埋置式传感器的安装方式,以改进混凝土应力检测稳定性;同时拟开发新型探针式传感器,实现混凝土应力状态检测。本文主要研究内容如下:

(1)揭示了埋置式PZT的安装方向和界面粗糙度对混凝土应力检测灵敏度和稳定性的影响。本文使用数值模拟方法,研究埋置式传感器安装方向对混凝土应力检测的影响。研究结果发现:90°安装的埋置式传感器的灵敏度更高。另外,本文还研究了传感器-混凝土界面粗糙度对混凝土应力检测的影响。研究结果表明:粗糙PZT传感器情况下,混凝土应力检测的线性相关范围达到0.48 fc(抗压强度),远大于光滑PZT传感器案例和其他前人的研究。

(2)设计开发了一种新型的探针式传感器。推导了探针式传感器的理论模型,研究了探针材料对传感器性能的影响,最后,提出了并联PZT探针式传感器的三种激励形式。结果表明:实心铝方探针式传感器的灵敏度高、稳定性好,在三种激励形式(弯矩激励、扭矩激励、平行力激励)下,实验验证了探针式传感器能有效监测混凝土早期水化状态。

(3)基于探针式传感器的混凝土应力状态检测技术研究。采用数值模拟方法,研究了扭矩、弯矩和平行力三种激励类型的传感器对混凝土应力方向的灵敏度(一种是荷载平行于PZT厚度方向,另一种是荷载垂直于PZT厚度方向)。研究结果表明:扭矩激励形式的探针式传感器对混凝土的应力大小的灵敏度最高;平行力激励的探针式传感器对应力方向检测的灵敏度最高。此外,扭矩激励型探针式传感器对微小损伤检测的稳定性最好。

论文外文摘要:

As the fundamental material for engineering structures, the stress and damage development of concrete determine the performance of the structures. Stress detection is a key indicator for evaluating the safety and serviceability of large civil engineering structures. Electromechanical impedance (EMI) is a detection method that reflects the state of the main structure through the impedance information of piezoelectric sensors (PZT). However, the current stress detection technology based on electromechanical impedance has low power and poor stability, which cannot meet the requirements of practical engineering. Therefore, this paper proposes to use a combined approach of numerical simulation and experimentation to study the optimization of the installation method of embedded sensors in order to improve the stability of concrete stress detection. Additionally, a new probe-type sensor is intended to be developed to achieve concrete stress state detection. The main research contents of this paper are as follows:

(1) The influence of the installation direction and interface roughness of embedded PZT on the sensitivity and stability of concrete stress detection is revealed. Numerical simulation is used to study the influence of the installation direction of embedded sensors on concrete stress detection. The research results show that the sensitivity is higher for sensors installed at 90°. Furthermore, the influence of the sensor-concrete interface roughness on concrete stress detection is also studied. The research results indicate that under the condition of a rough PZT sensor, the linear correlation range of concrete stress detection reaches 0.48 fc (compressive strength), which is much higher than the case of a smooth PZT sensor and previous studies.

(2) A new probe-type sensor is designed and developed. The theoretical model of the probe-type sensor is derived, and the influence of probe material on sensor performance is studied. Finally, three excitation forms of parallel PZT probe-type sensors are proposed. The results show that the solid aluminum square probe-type sensor has high sensitivity and good stability. Experimental verification under three excitation forms (bending moment excitation, torsional excitation, and parallel force excitation) confirms that the probe-type sensor can effectively monitor the early hydration state of concrete.

(3) Research on concrete stress state detection technology based on probe-type sensors. Using numerical simulation, the sensitivity of sensors of three excitation types (torsion, bending moment, and parallel force) to the stress direction of concrete is studied (one type is the load parallel to the thickness direction of PZT, and the other type is the load perpendicular to the thickness direction of PZT). The research results show that the probe-type sensor with torsional excitation has the highest sensitivity to the magnitude of concrete stress, while the probe-type sensor with parallel force excitation has the highest sensitivity for stress direction detection. In addition, the probe-type sensor with torsional excitation exhibits the best stability for detecting small-scale damage.

参考文献:

[1] 杨辰. 结构健康监测的传感器优化布置研究进展与展望[J]. 振动与冲击, 2020, 39(17): 12.

[2] 艾德米. 基于压电传感机械阻抗的结构损伤识别方法研究[D]. 华中科技大学, 2017.

[3] 张笑华, 肖兴勇, 方圣恩. 面向桥梁结构健康监测的压缩感知动力响应信号重构[J]. 振动工程学报, 2022(003): 035.

[4] 罗尧治, 赵靖宇. 空间结构健康监测研究现状与展望[J]. 建筑结构学报, 2022, 43(10): 13.

[5] 刘家诚, 高许超, 林涛. 港珠澳大桥对粤港澳大湾区城市群发展的影响研究[J]. 特区经济, 2019(1): 4.

[6] 熊学玉, 向瑞斌. 国家会展中心预应力混凝土结构健康监测[J]. 建筑结构, 2018, 48(8): 5.

[7] Adamus K, Adamus J, Lacki J. Ultrasonic testing of thin walled components made of aluminum based laminates[J]. Composite Structures, 2018, 202: 95-101.

[8] Bahati P A, Le V D, Lim Y. An impact echo method to detect cavities between railway track slabs and soil foundation[J]. Journal of Engineering and Applied Science, 2021, 68(1): 7.

[9] Innes M, Davis C, Rosalie C, et al. Acoustic Emission Detection and Characterisation Using Networked FBG Sensors[J]. Procedia Engineering, 2017, 188: 440-447.

[10] Khan M A, Sun J, Li B, et al. Magnetic sensors-A review and recent technologies[J]. Engineering Research Express, 2021, 3(2): 022005.

[11] Shipway N J, Barden T J, Huthwaite P, et al. Automated defect detection for Fluorescent Penetrant Inspection using Random Forest[J]. NDT & E International, 2019, 101: 113-123.

[12] Rique A M, Machado A C, Oliveira D F, et al. X-ray imaging inspection of fiberglass reinforced by epoxy composite[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2015, 349: 184-191.

[13] Fan X, Li J, Hao H. Review of piezoelectric impedance based structural health monitoring: Physics-based and data-driven methods[J]. Advances in Structural Engineering, 2021, 24(16): 3609-3626.

[14] Zhu J, Qing X, Liu X, et al. Electromechanical impedance-based damage localization with novel signatures extraction methodology and modified probability-weighted algorithm[J]. Mechanical Systems and Signal Processing, 2021, 146: 107001.

[15] Dias L L, Lopes K W, Bueno D D, et al. An enhanced approach for damage detection using the electromechanical impedance with temperature effects compensation[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2023, 45(4): 228.

[16] Jiang X, Zhang X, Tang T, et al. Electromechanical impedance based self-diagnosis of piezoelectric smart structure using principal component analysis and LibSVM[J]. Scientific Reports, 2021, 11(1): 11345.

[17] 左春愿. 基于机电阻抗技术的结构损伤识别方法研究[D]. 大连理工大学, 2016.

[18] Taha H, Ball R, Paine K. Sensing of Damage and Repair of Cement Mortar Using Electromechanical Impedance[J]. Materials, 2019, 12: 3925.

[19] Saravanan T J, Balamonica K, Priya C B, et al. Comparative performance of various smart aggregates during strength gain and damage states of concrete[J]. Smart Materials and Structures, 2015, 24(8): 085016.

[20] Zhijie W, Dongdong C, Liqiong Z, et al. Influence of Axial Load on Electromechanical Impedance (EMI) of Embedded Piezoceramic Transducers in Steel Fiber Concrete[J]. Sensors, 2018, 18(6): 1782.

[21] Fan S, Zhao S, Qi B, et al. Damage Evaluation of Concrete Column under Impact Load Using a Piezoelectric-Based EMI Technique[J]. Sensors, 2018, 18: 1591.

[22] Qin F, Zhang Z, Xie B, et al. Experimental Study on Damage Detection in ECC-Concrete Composite Beams Using Piezoelectric Transducers[J]. Sensors, 2019, 19: 2799.

[23] Tan B. Experimental Study on Damage Evolution Characteristics of Concrete under Impact Load Based on EMI Method[J]. Sustainability, 2022, 14: 10557.

[24] Zhao S, Fan S, Yang J, et al. Numerical and experimental investigation of electro-mechanical impedance based concrete quantitative damage assessment[J]. Smart Materials and Structures, 2020, 29(5): 055025.

[25] Ai D, Mo F, Yang F, et al. Electromechanical impedance-based concrete structural damage detection using principal component analysis incorporated with neural network[J]. Journal of Intelligent Material Systems and Structures, 2022, 33(17): 2241-2256.

[26] Ghafari E, Yuan Y, Wu C, et al. Evaluation the compressive strength of the cement paste blended with supplementary cementitious materials using a piezoelectric-based sensor[J]. Construction and Building Materials, 2018, 171: 504-510.

[27] Su Y-F, Han G, Amran A, et al. Instantaneous monitoring the early age properties of cementitious materials using PZT-based electromechanical impedance (EMI) technique[J]. Construction and Building Materials, 2019, 225: 340-347.

[28] Zhang C, Panda G P, Yan Q, et al. Monitoring early-age hydration and setting of portland cement paste by piezoelectric transducers via electromechanical impedance method[J]. Construction and Building Materials, 2020, 258: 120348.

[29] Ai D, Lin C, Zhu H. Embedded piezoelectric transducers based early-age hydration monitoring of cement concrete added with accelerator/retarder admixtures[J]. Journal of Intelligent Material Systems and Structures, 2020, 32(8): 847-866.

[30] Li Y, Ma Y, Hu X. Early-age strength monitoring of the recycled aggregate concrete using the EMI method[J]. Smart Materials and Structures, 2021, 30(5): 055017.

[31] Li Y, Ma Y. Early-age strength monitoring of the recycled aggregate concrete using the EMI method[J]. Smart Materials and Structures, 2021, 30(5): 055017 (14pp).

[32] Zhang C, Yan Q, Wang X, et al. Measurement and evaluation of soft soil strength development during freeze-thaw process based on electromechanical impedance technique[J]. Measurement Science and Technology, 2021, 32(2): 025113.

[33] Oh T, Kim J, Lee C, et al. Nondestructive Concrete Strength Estimation based on Electro-Mechanical Impedance with Artificial Neural Network[J]. Journal of Advanced Concrete Technology, 2017, 15: 94-102.

[34] Li G, Luo M, Huang J, et al. Early-age concrete strength monitoring using smart aggregate based on electromechanical impedance and machine learning[J]. Mechanical Systems and Signal Processing, 2023, 186: 109865.

[35] Liu Q, Mu Y, Li X, et al. A PCA-Based Approach for Very Early-Age Hydration Monitoring of Self-Compacting Concrete Using Embedded PZT Sensors[J]. Sensors, 2023, 23: 3627.

[36] Hou S, Cui L, Xu X. A piezoelectric-based three-direction normal stress sensor for concrete structures[J]. Journal of Intelligent Material Systems and Structures, 2019, 30(12): 1858-1867.

[37] Zhang H, Hou S, Ou J. Smart aggregates for monitoring stress in structural lightweight concrete[J]. Measurement, 2018, 122: 257-263.

[38] Hou S, Zhang H B, Ou J P. A PZT-based smart aggregate for compressive seismic stress monitoring[J]. Smart Materials and Structures, 2012, 21(10): 105035.

[39] Hou S, Zhang H B, Ou J P. SA-based concrete seismic stress monitoring: a case study for normal strength concrete[J]. Smart Materials and Structures, 2016, 25(9): 095041.

[40] Zhang J, Lu Y, Lu Z, et al. A new smart traffic monitoring method using embedded cement-based piezoelectric sensors[J]. Smart Materials and Structures, 2015, 24(2): 025023.

[41] Wang D, Zhang J, Zhu H. Embedded Electromechanical Impedance and Strain Sensors for Health Monitoring of a Concrete Bridge[J]. Shock and Vibration,2015,(2015-3-2), 2015, 2015(pt.1): 821395.1-821395.12.

[42] Jang A-Y, Lim S-H, Kim D-H, et al. Strain-Detecting properties of hybrid PE and steel fibers reinforced cement composite (Hy-FRCC) with Multi-Walled carbon nanotube (MWCNT) under repeated compression[J]. Results in Physics, 2020, 18: 103199.

[43] Pan H H, Guan J-C. Stress and strain behavior monitoring of concrete through electromechanical impedance using piezoelectric cement sensor and PZT sensor[J]. Construction and Building Materials, 2022, 324: 126685.

[44] Alexander Soju J.,Sumathi P.,Panigrahi S.K.,Gopalakrishnan N.. Embedded dual PZT-based monitoring for curing of concrete[J]. Construction and Building Materials,2021,312:

[45] C. Bharathi Priya, T. Jothi Saravanan, K. Balamonica, N. Gopalakrishnan, A.R. M. Rao, EMI based monitoring of early-age characteristics of concrete and comparison of serial/parallel multi-sensing technique, Constr. Build. Mater. 191 (2018) 1268-1284

[46] Qiu H, Li F. In-plane selective excitation of arbitrary vibration modes using thickness-shear (d15) piezoelectric transducers[J]. Smart Materials and Structures, 2022, 31(3): 03LT01.

[47] Du X H, Zheng J, Belegundu U, et al. Crystal Orientation Dependence of Piezoelectric Properties of Lead Zirconate Titanate Near the Morphotropic Phase Boundary[J]. Applied Physics Letters, 1998, 72: 2421-2423.

[48] Hsu Y-C, Wu C-C, Lee C-C, et al. Demonstration and characterization of PZT thin-film sensors and actuators for meso- and micro-structures[J]. Sensors and Actuators A: Physical, 2004, 116(3): 369-377.

[49] 张耀文, 赵晶, 何颖. PZT尺寸与位置对传感器导纳的影响[J]. 压电与声光, 2022(004): 044.

[50] Pagel, K., Bucht, et al. Development of shape memory alloy actuators with inherent guidance function[J]. Mechatronics: The Science of Intelligent Machines, 2015, 30: 254-258.

[51] Farrar C, Inman D. Overview of Piezoelectric Impedance-Based Health Monitoring and Path Forward[J]. The Shock and Vibration Digest, 2003, 35: 451-463.

[52] Leo D. Engineering Analysis of Smart Material Systems[J], 2008: i-xiv.

[53] 揭小落, 肖黎, 屈文忠. 载荷影响下的机电阻抗协整结构损伤识别方法[J]. 振动.测试与诊断, 2020.

[54] Liang C, Sun F P, Rogers C A. Coupled Electro-Mechanical Analysis of Adaptive Material Systems-Determination of the Actuator Power Consumption and System Energy Transfer[J]. Journal of Intelligent Material Systems and Structures, 1997, 8(4): 335-343.

[55] Nokes J P, Cloud G L. The application of interferometric techniques to the nondestructive inspection of fiber-reinforced materials[J]. Experimental Mechanics, 1993, 33(4): 314-319.

[56] Lysmer J, Drake L A: A Finite Element Method for Seismology, Bolt B A, editor, Methods in Computational Physics: Advances in Research and Applications: Elsevier, 1972: 181-216.

[57] Kuhlemeyer R L, Lysmer J. Finite Element Method Accuracy for Wave Propagation Problems[J]. Journal of the Soil Mechanics and Foundations Division, 1973, 99: 421-427.

[58] Kocherla A, Subramaniam K V L. Embedded smart PZT-based sensor for internal damage detection in concrete under applied compression[J]. Measurement, 2020, 163: 108018.

[59] Zhao S, Fan S, Chen J. Quantitative assessment of the concrete gravity dam damage under earthquake excitation using electro-mechanical impedance measurements[J]. Engineering Structures, 2019, 191: 162-178.

[60] 中华人民共和国住房和城乡建设部组织. 混凝土结构设计规范:GB 50010-2010[M]. 混凝土结构设计规范:GB 50010-2010, 2014.

[61] Lubliner J, Oliver J, Oller S, et al. A plastic-damage model for concrete[J]. International Journal of Solids and Structures, 1989, 25(3): 299-326.

[62] Lee J, Fenves G L. A plastic‐damage concrete model for earthquake analysis of dams[J]. Earthquake Engineering & Structural Dynamics, 1998, 27(9).

[63] Yu X, Chen L, Fang Q, et al. A concrete constitutive model considering coupled effects of high temperature and high strain rate[J]. International Journal of Impact Engineering, 2017, 101: 66-77.

[64] Oliveira É L, Maia N M M, Marto A G, et al. Modal characterization of composite flat plate models using piezoelectric transducers[J]. Mechanical Systems and Signal Processing, 2016, 79: 16-29.

[65] Piana G, Lofrano E, Carpinteri A, et al. Experimental modal analysis of straight and curved slender beams by piezoelectric transducers[J]. Meccanica, 2016, 51(11): 2797-2811.

[66] Na W, Baek J. A Review of the Piezoelectric Electromechanical Impedance Based Structural Health Monitoring Technique for Engineering Structures[J]. Sensors, 2018, 18: 1307.

[67] Wang D, Zhu H. Monitoring of the strength gain of concrete using embedded PZT impedance transducer[J]. Construction and Building Materials, 2011, 25(9): 3703-3708.

[68] Nie Y, Xie T-Y, Chen G-M, et al. A 2D generic multi-surface cohesive zone model for simulating FRP-to-concrete mixed-mode debonding failure[J]. Composite Structures, 2022, 296: 115890.

[69] Huynh T-C, Ho D-D, Dang N-L, et al. Sensitivity of Piezoelectric-Based Smart Interfaces to Structural Damage in Bolted Connections[J]. Sensors, 2019, 19: 3670.

[70] Wichtmann T, Kimmig I, Triantafyllidis T. On correlations between “dynamic” (small-strain) and “static” (large-strain) stiffness moduli-An experimental investigation on 19 sands and gravels[J]. Soil Dynamics and Earthquake Engineering, 2017, 98: 72-83.

[71] Lu X, Lim Y Y, Soh C K. A novel electromechanical impedance-based model for strength development monitoring of cementitious materials[J]. Structural Health Monitoring, 2017, 17(4): 902-918.

中图分类号:

 TU528    

开放日期:

 2024-06-12    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式