论文中文题名: | 成煤背景约束下富油煤关键分子热解演化行为研究 |
姓名: | |
学号: | 21209071008 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 081801 |
学科名称: | 工学 - 地质资源与地质工程 - 矿产普查与勘探 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2024 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 富油煤地质与开发 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2024-06-19 |
论文答辩日期: | 2024-06-02 |
论文外文题名: | Study on the pyrolysis behavior of key molecules in tar-rich coal with various coal-forming environments |
论文中文关键词: | |
论文外文关键词: | Tar-rich coal ; Coal-forming environment ; Pyrolysis ; Molecular evolution ; In-situ FTIR |
论文中文摘要: |
广泛分布在我国西北部的富油煤,是一种煤、油、气属性兼备的特殊矿产资源,具有高油气属性。作为富油煤形成的基础,成煤背景的差异性导致不同沉积盆地、不同沉积层位的煤焦油产率不同,本质应归因于其原始分子结构在热解过程中的演化行为特点。本研究以鄂尔多斯盆地延安组以及三塘湖盆地八道湾组煤样为研究对象,结合热失重分析以及原位热解红外光谱对四个不同焦油产率的煤样进行研究。 研究结果表明:(1)分别选择覆水程度依次加深、还原性依次增强的干燥森林沼泽、潮湿森林沼泽、低位泥炭沼泽和强还原泥炭沼泽成煤背景的煤样,后三种均为富油煤且其亚甲基结构相对含量显著高于其他脂肪族结构,表现为脂肪族侧链结构的长度更长且支链化程度更低。(2)基于热解失重率(TG)和失重速率(DTG)分析,随着成煤背景还原性的增强,在高于350 ℃热解阶段煤的失重程度增强、活化能增强,且具备更多可断裂的Cal-Cal、Cal-H、Cal-O以及Cal-N键(约占总裂解量的30-60%);随着升温速率的提高,煤的失重程度降低,煤中Cal-Cal、Cal-H、Cal-O以及Cal-N键的断裂程度增高。(3)基于原位热解红外光谱分析,在350 ℃之前,各煤样CH2和CH结构协同裂解的程度一致,CH/CH2值趋于平缓;在350 ℃后的分解程度加剧阶段,CH2、CH结构主导着富油煤中脂肪族结构含量的演化,其分解程度与煤焦油产率呈良好对应性。随着成煤背景还原性的增强,在350 ℃热解阶段交联反应相对更弱,富氢的化学键断裂程度增强。到500 ℃后,具有强还原性成煤背景的富油煤CH结构减少量多,CH2结构相对富集,脂肪族结构表现出弱交联;而具有弱还原性成煤背景的煤游离端CH3结构断裂明显,CH2结构迅速减少,CH结构相对富集,脂肪族结构表现出强交联。 |
论文外文摘要: |
Tar-rich coal, which is widely distributed in Northwest China, is a unique mineral resource known for its high oil and gas properties. The variance in coal-forming environments gives rise to varying coal tar yields across different sedimentary basins and layers. The evolution of the original molecular structure during pyrolysis is largely influenced by these characteristics. This study focused on coal samples from the Yan'an Formation in the Ordos Basin and the Badawan Formation in the Santanghu Basin. Four coal samples with different tar yields were analyzed using thermogravimetric analysis and in-situ pyrolysis infrared spectroscopy. The study results indicated that: (1) The coal samples were selected based on sedimentary backgrounds of dry forest swamp, wet forest swamp, low peat swamp, and strong reduction peat swamp, with increasing water coverage and reducibility. The last three samples are tar-rich coal, with a significantly higher relative content of CH2 structure compared to other aliphatic structures. This indicated that the aliphatic side-chain structures of tar-rich coal are longer and less branched. (2) Based on thermogravimetric (TG) and derivative thermogravimetric (DTG) analysis, it was found that as the reducing nature of the coal-forming environment increases, there is a higher degree of weight loss during the pyrolysis stage above 350 ℃. Additionally, the activation energy also increases and there are more breakable Cal-Cal, Cal-H, Cal-O, and Cal-N bonds being formed (approximately 30-60% of the total breakage amount). On the other hand, as the heating rate increases, the degree of weight loss of coal decreases while the breakage degree of Cal-Cal, Cal-H, Cal-O, and Cal-N bonds in coal increases. (3) Based on in-situ pyrolysis infrared spectroscopy analysis, it was found that before 350 ℃, the degree of synergistic cracking of CH2 and CH structures in various coal samples remains consistent, and the CH/CH2 ratio levels off. However, during the intensified decomposition stage after 350 ℃, the evolution of aliphatic structures in tar-rich coal is mainly dominated by CH2 and CH structures, with the degree of decomposition closely correlated with coal tar yield. As the reducing nature of the coal-forming environment increases, the degree of cross-linking reaction is relatively weaker at about 350 ℃ pyrolysis stage, leading to an increased breakage of hydrogen-rich chemical bonds. By 500 ℃, a stronger reducing coal-forming environment results in a greater decrease in CH content in tar-rich coal, with CH2 becoming relatively enriched and aliphatic structures showing weak cross-linking. Conversely, in coal sample with a weaker reducing coal-forming environment, cleavage of terminal CH3 becomes evident, CH2 rapidly decreases, CH becomes relatively enriched, and aliphatic structures exhibit strong cross-linking. |
参考文献: |
[1] 王双明, 师庆民, 王生全,等. 富油煤的油气资源属性与绿色低碳开发[J]. 煤炭学报, 2021, 46(05): 1365-1377. [2] 樊大磊,王宗礼,李剑,等. 2023年国内外油气资源形势分析及展望[J].中国矿业,2024,33(01):30-37. [16] 师庆民, 王双明, 王生全,等. 神府南部延安组富油煤多源判识规律[J]. 煤炭学报, 2022, 47(05): 2057-2066. [17] 杨甫, 段中会, 马丽,等. 陕西省富油煤分布及受控地质因素[J/OL]. 煤炭科学技术: 1-14[2023-03-07]. [18] 王锐, 夏玉成, 马丽. 榆神矿区富油煤赋存特征及其沉积环境研究[J]. 煤炭科学技术, 2020, 48(12): 192-197. [19] 许婷, 李宁, 姚征,等. 陕北榆神矿区富油煤分布规律及形成控制因素[J]. 煤炭科学技术, 2022, 50(03): 161-168. [20] 谢青, 李宁, 姚征,等. 黄陵矿区富油煤焦油产率特征及主控地质因素分析[J]. 中国煤炭, 2020, 46(11): 83-90. [40] 张双全, 吴光国. 煤化学[M]. 徐州: 中国矿业大学出版社, 2015: 33-45. [46] 钮志远. 典型煤的官能团热解机理、动力学分析及影响因素研究[D]. 中国科学技术大学, 2017. [56] ICCP The new vitrinite classification (ICCP System 1994) [J]. Fuel, 1998, 77(5): 349-358. [57] ICCP. The new inertinite classification (ICCP System 1994) [J]. Fuel, 2001, 80(4): 459-471. [60] 代世峰, 唐跃刚, 姜尧发,等. 煤的显微组分定义与分类(ICCP system 1994)解析Ⅰ: 镜质体[J]. 煤炭学报, 2021, 46(06):1821-1832. |
中图分类号: | P624.4 |
开放日期: | 2024-06-19 |