- 无标题文档
查看论文信息

论文中文题名:

 成煤背景约束下富油煤关键分子热解演化行为研究    

姓名:

 米奕臣    

学号:

 21209071008    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081801    

学科名称:

 工学 - 地质资源与地质工程 - 矿产普查与勘探    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 地质与环境学院    

专业:

 地质资源与地质工程    

研究方向:

 富油煤地质与开发    

第一导师姓名:

 师庆民    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-19    

论文答辩日期:

 2024-06-02    

论文外文题名:

 Study on the pyrolysis behavior of key molecules in tar-rich coal with various coal-forming environments    

论文中文关键词:

 富油煤 ; 成煤背景 ; 热解 ; 微观结构演化 ; 原位热解红外光谱    

论文外文关键词:

 Tar-rich coal ; Coal-forming environment ; Pyrolysis ; Molecular evolution ; In-situ FTIR    

论文中文摘要:

广泛分布在我国西北部的富油煤,是一种煤、油、气属性兼备的特殊矿产资源,具有高油气属性。作为富油煤形成的基础,成煤背景的差异性导致不同沉积盆地、不同沉积层位的煤焦油产率不同,本质应归因于其原始分子结构在热解过程中的演化行为特点。本研究以鄂尔多斯盆地延安组以及三塘湖盆地八道湾组煤样为研究对象,结合热失重分析以及原位热解红外光谱对四个不同焦油产率的煤样进行研究。

研究结果表明:(1)分别选择覆水程度依次加深、还原性依次增强的干燥森林沼泽、潮湿森林沼泽、低位泥炭沼泽和强还原泥炭沼泽成煤背景的煤样,后三种均为富油煤且其亚甲基结构相对含量显著高于其他脂肪族结构,表现为脂肪族侧链结构的长度更长且支链化程度更低。(2)基于热解失重率(TG)和失重速率(DTG)分析,随着成煤背景还原性的增强,在高于350 ℃热解阶段煤的失重程度增强、活化能增强,且具备更多可断裂的Cal-Cal、Cal-H、Cal-O以及Cal-N键(约占总裂解量的30-60%);随着升温速率的提高,煤的失重程度降低,煤中Cal-Cal、Cal-H、Cal-O以及Cal-N键的断裂程度增高。(3)基于原位热解红外光谱分析,在350 ℃之前,各煤样CH2和CH结构协同裂解的程度一致,CH/CH2值趋于平缓;在350 ℃后的分解程度加剧阶段,CH2、CH结构主导着富油煤中脂肪族结构含量的演化,其分解程度与煤焦油产率呈良好对应性。随着成煤背景还原性的增强,在350 ℃热解阶段交联反应相对更弱,富氢的化学键断裂程度增强。到500 ℃后,具有强还原性成煤背景的富油煤CH结构减少量多,CH2结构相对富集,脂肪族结构表现出弱交联;而具有弱还原性成煤背景的煤游离端CH3结构断裂明显,CH2结构迅速减少,CH结构相对富集,脂肪族结构表现出强交联。

论文外文摘要:

Tar-rich coal, which is widely distributed in Northwest China, is a unique mineral resource known for its high oil and gas properties. The variance in coal-forming environments gives rise to varying coal tar yields across different sedimentary basins and layers. The evolution of the original molecular structure during pyrolysis is largely influenced by these characteristics. This study focused on coal samples from the Yan'an Formation in the Ordos Basin and the Badawan Formation in the Santanghu Basin. Four coal samples with different tar yields were analyzed using thermogravimetric analysis and in-situ pyrolysis infrared spectroscopy.

The study results indicated that: (1) The coal samples were selected based on sedimentary backgrounds of dry forest swamp, wet forest swamp, low peat swamp, and strong reduction peat swamp, with increasing water coverage and reducibility. The last three samples are tar-rich coal, with a significantly higher relative content of CH2 structure compared to other aliphatic structures. This indicated that the aliphatic side-chain structures of tar-rich coal are longer and less branched. (2) Based on thermogravimetric (TG) and derivative thermogravimetric (DTG) analysis, it was found that as the reducing nature of the coal-forming environment increases, there is a higher degree of weight loss during the pyrolysis stage above 350 ℃. Additionally, the activation energy also increases and there are more breakable Cal-Cal, Cal-H, Cal-O, and Cal-N bonds being formed (approximately 30-60% of the total breakage amount). On the other hand, as the heating rate increases, the degree of weight loss of coal decreases while the breakage degree of Cal-Cal, Cal-H, Cal-O, and Cal-N bonds in coal increases. (3) Based on in-situ pyrolysis infrared spectroscopy analysis, it was found that before 350 ℃, the degree of synergistic cracking of CH2 and CH structures in various coal samples remains consistent, and the CH/CH2 ratio levels off. However, during the intensified decomposition stage after 350 ℃, the evolution of aliphatic structures in tar-rich coal is mainly dominated by CH2 and CH structures, with the degree of decomposition closely correlated with coal tar yield. As the reducing nature of the coal-forming environment increases, the degree of cross-linking reaction is relatively weaker at about 350 ℃ pyrolysis stage, leading to an increased breakage of hydrogen-rich chemical bonds. By 500 ℃, a stronger reducing coal-forming environment results in a greater decrease in CH content in tar-rich coal, with CH2 becoming relatively enriched and aliphatic structures showing weak cross-linking. Conversely, in coal sample with a weaker reducing coal-forming environment, cleavage of terminal CH3 becomes evident, CH2 rapidly decreases, CH becomes relatively enriched, and aliphatic structures exhibit strong cross-linking.

参考文献:

[1] 王双明, 师庆民, 王生全,等. 富油煤的油气资源属性与绿色低碳开发[J]. 煤炭学报, 2021, 46(05): 1365-1377.

[2] 樊大磊,王宗礼,李剑,等. 2023年国内外油气资源形势分析及展望[J].中国矿业,2024,33(01):30-37.

[3] Shi Q, Li C, Wang S, et al. Effect of the depositional environment on the formation of tar-rich coal: A case study in the northeastern Ordos Basin, China[J]. Journal of Petroleum Science and Engineering, 2022, 216: 110828.

[4] Ju Y, Zhu Y, Zhou H, et al. Microwave pyrolysis and its applications to the in situ recovery and conversion of oil from tar-rich coal: An overview on fundamentals, methods, and challenges[J]. Energy Reports, 2021, 7: 523-536.

[5] Shi Q, Li C, Wang S, et al. Variation of molecular structures affecting tar yield: A comprehensive analysis on coal ranks and depositional environments[J]. Fuel, 2023, 335: 127050.

[6] Du Z, Li W. The Catalytic Effect from Alkaline Elements on the Tar-Rich Coal Pyrolysis[J]. Catalysts, 2022, 12(4): 376.

[7] Ma L, Mao Q, Wang C, et al. Investigation of Pyrolysis and Mild Oxidation Characteristics of Tar-Rich Coal via Thermogravimetric Experiments[J]. ACS omega, 2022, 7(29): 25613-25624.

[8] Ju Y, Zhu Y, Zhang Y, et al. Effects of high-power microwave irradiation on tar-rich coal for realising in situ pyrolysis, fragmentation, and low-carbon utilisation of tar-rich coal[J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 157: 105165.

[9] Diessel C F K. An appraisal of coal facies based on maceral characteristics[J]. Australian Coal Geology, 1982, 4(2): 474-484.

[10] Diessel C F K. On the correlation between coal facies and depositional environments[C]. Proceeding 20th Symposium of Department Geology, University of New Castle, New South Wales. 1986: 19-22.

[11] Guo X, Shi L, Liu Z, et al. The Boltzmann-Monte-Carlo-Percolation (BMCP) model on pyrolysis of coal: The quantitative correction on CP/MAS 13C solid-state NMR spectra and insight on structural evolution during coalification[J]. Fuel, 2021, 304: 121488.

[12] Li W, Song Y, Yang W, et al. Structural transformations for a subbituminous coal, impact of temperature on gold-tube pyrolysis chars evaluated using HRTEM[J]. Fuel, 2022, 311: 122581.

[13] Stanton R W, Warwick P D, Swanson S M. Tar yields from low-temperature carbonization of coal facies from the Powder River Basin, Wyoming, USA[J]. International journal of coal geology, 2005, 63(1-2): 13-26.

[14] Mishra D K, Hackley P C, Jubb A M, et al. Maturation study of vitrinite in carbonaceous shales and coals: Insights from hydrous pyrolysis[J]. International Journal of Coal Geology, 2022, 259: 104044.

[15] Alpern B, de Sousa M J L. Documented international enquiry on solid sedimentary fossil fuels; coal: definitions, classifications, reserves-resources, and energy potential[J]. International journal of coal geology, 2002, 50(1-4): 3-41.

[16] 师庆民, 王双明, 王生全,等. 神府南部延安组富油煤多源判识规律[J]. 煤炭学报, 2022, 47(05): 2057-2066.

[17] 杨甫, 段中会, 马丽,等. 陕西省富油煤分布及受控地质因素[J/OL]. 煤炭科学技术: 1-14[2023-03-07].

[18] 王锐, 夏玉成, 马丽. 榆神矿区富油煤赋存特征及其沉积环境研究[J]. 煤炭科学技术, 2020, 48(12): 192-197.

[19] 许婷, 李宁, 姚征,等. 陕北榆神矿区富油煤分布规律及形成控制因素[J]. 煤炭科学技术, 2022, 50(03): 161-168.

[20] 谢青, 李宁, 姚征,等. 黄陵矿区富油煤焦油产率特征及主控地质因素分析[J]. 中国煤炭, 2020, 46(11): 83-90.

[21] Calder J H, Gibling M R, Mukhopadhyay P K. Peat formation in a westphalian B piedmont setting, cumberland basin, Nova Scotia: Implications for the maceral-based interpretation of rheotrophic and raised paleomires[J]. Contribution series No. 91-002. 1991.

[22] Silva M B, Kalkreuth W. Petrological and geochemical characterization of Candiota coal seams, Brazil—implication for coal facies interpretations and coal rank[J]. International Journal of Coal Geology, 2005, 64(3-4): 217-238.

[23] Zhao L, Qin Y, Cai C, et al. Control of coal facies to adsorption-desorption divergence of coals: A case from the Xiqu Drainage Area, Gujiao CBM Block, North China[J]. International Journal of Coal Geology, 2017, 171: 169-184.

[24] Jiu B, Huang W, Hao R. A method for judging depositional environment of coal reservoir based on coal facies parameters and rare earth element parameters[J]. Journal of Petroleum Science and Engineering, 2021, 207: 109128.

[25] Marshall C, Large D J, Meredith W, et al. Geochemistry and petrology of Palaeocene coals from Spitsbergen—Part 1: Oil potential and depositional environment[J]. International Journal of Coal Geology, 2015, 143: 22-33.

[26] Yan B H, Cao C X, Cheng Y, et al. Experimental investigation on coal devolatilization at high temperatures with different heating rates[J]. Fuel, 2014, 117: 1215-1222.

[27] Sun S, Xu D, Wei Y, et al. Influence laws of operating parameters on coal pyrolysis characteristics[J]. Journal of Analytical and Applied Pyrolysis, 2022: 105684.

[28] Bausch M J, Guadalupe-Fasano C, Gostowski R. Estimates of solution-phase bond dissociation energies for carbon-sulfur and sulfur-sulfur bonds in radical anions derived from aromatic sulfides[J]. Energy & fuels, 1991, 5(3): 419-423.

[29] Davico G E, Bierbaum V M, DePuy C H, et al. The CH bond energy of benzene[J]. Journal of the American Chemical Society, 1995, 117(9): 2590-2599.

[30] Miura K, Mae K, Li W, et al. Estimation of hydrogen bond distribution in coal through the analysis of OH stretching bands in diffuse reflectance infrared spectrum measured by in-situ technique[J]. Energy & Fuels, 2001, 15(3): 599-610.

[31] Arenillas A, Pevida C, Rubiera F, et al. Characterisation of model compounds and a synthetic coal by TG/MS/FTIR to represent the pyrolysis behaviour of coal[J]. Journal of Analytical and Applied Pyrolysis, 2004, 71(2): 747-763.

[32] Liu Q, Wang S, Zheng Y, et al. Mechanism study of wood lignin pyrolysis by using TG–FTIR analysis[J]. Journal of analytical and applied pyrolysis, 2008, 82(1): 170-177.

[33] Pedley J B. Thermochemical data of organic compounds[M]. Springer Science & Business Media, 2012.

[34] Shi L, Liu Q, Guo X, et al. Pyrolysis behavior and bonding information of coal—A TGA study[J]. Fuel Processing Technology, 2013, 108: 125-132.

[35] Kobayashi H, Howard J B, Sarofim A F. Coal devolatilization at high temperatures[C]//Symposium (international) on combustion. Elsevier, 1977, 16(1): 411-425.

[36] Ladner W R. The products of coal pyrolysis: properties, conversion and reactivity[J]. Fuel processing technology, 1988, 20: 207-222.

[37] Solomon P R, Serio M A, Suuberg E M. Coal pyrolysis: experiments, kinetic rates and mechanisms[J]. Progress in energy and combustion science, 1992, 18(2): 133-220.

[38] Solomon P R, Fletcher T H, Pugmire R J. Progress in coal pyrolysis[J]. Fuel, 1993, 72(5): 587-597.

[39] Petersen H I, Nytoft H P. Oil generation capacity of coals as a function of coal age and aliphatic structure[J]. Organic Geochemistry, 2006, 37(5): 558-583.

[40] 张双全, 吴光国. 煤化学[M]. 徐州: 中国矿业大学出版社, 2015: 33-45.

[41] Zhang D, Liu P, Lu X, et al. Upgrading of low rank coal by hydrothermal treatment: Coal tar yield during pyrolysis[J]. Fuel Processing Technology, 2016, 141: 117-122.

[42] Meuzelaar, H.L.C., Harper, A.M., Hill, G.R., Given, P.H.,1984a. Characterization and classification of Rocky Mountain coals by Curie-point pyrolysis mass spectrometry. Fuel 63, 640-652.

[43] Iglesias M J, Jiménez A, Del Rıo J C, et al. Molecular characterisation of vitrinite in relation to natural hydrogen enrichment and depositional environment[J]. Organic Geochemistry, 2000, 31(12): 1285-1299.

[44] Liu P, Zhang D, Wang L, et al. The structure and pyrolysis product distribution of lignite from different sedimentary environment[J]. Applied Energy, 2016, 163: 254-262.

[45] Song H, Liu G, Zhang J, et al. Pyrolysis characteristics and kinetics of low rank coals by TG-FTIR method[J]. Fuel Processing Technology, 2017, 156: 454-460.

[46] 钮志远. 典型煤的官能团热解机理、动力学分析及影响因素研究[D]. 中国科学技术大学, 2017.

[47] Niu Z, Liu G, Yin H, et al. Investigation of mechanism and kinetics of non-isothermal low temperature pyrolysis of perhydrous bituminous coal by in-situ FTIR[J]. Fuel, 2016, 172: 1-10.

[48] Niu Z, Liu G, Yin H, et al. In-situ FTIR study of reaction mechanism and chemical kinetics of a Xundian lignite during non-isothermal low temperature pyrolysis[J]. Energy Conversion and Management, 2016, 124: 180-188.

[49] Niu Z, Liu G, Yin H, et al. Devolatilization behaviour and pyrolysis kinetics of coking coal based on the evolution of functional groups[J]. Journal of analytical and applied pyrolysis, 2018, 134: 351-361.

[50] Niu Z, Liu G, Yin H, et al. A comparative study on thermal behavior of functional groups in coals with different ranks during low temperature pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2021, 158: 105258.

[51] Wang D, Shao L, Li Z, et al. Hydrocarbon generation characteristics, reserving performance and preservation conditions of continental coal measure shale gas: A case study of Mid-Jurassic shale gas in the Yan’an Formation, Ordos Basin[J]. Journal of Petroleum Science and Engineering, 2016, 145: 609-628.

[52] Wang L, Lv D, Hower J C, et al. Geochemical characteristics and paleoclimate implication of Middle Jurassic coal in the Ordos Basin, China[J]. Ore Geology Reviews, 2022, 144: 104848.

[53] Ma X, Zheng G, Liang M, et al. Occurrence and Origin of H 2 S from Volcanic Reservoirs in Niudong Area of the Santanghu Basin, NW China[J]. Geofluids, 2019, 2019.

[54] Zhang L, Yan D, Yang S, et al. Effects of sequence stratigraphy on coal characteristics and CH4 adsorption capacity of the low-rank coal in Santanghu Basin, China[J]. Journal of Natural Gas Science and Engineering, 2020, 81: 103467.

[55] Zhang Y, Tian J, Feng S, et al. The occurrence modes and geologic origins of arsenic in coal from Santanghu Coalfield, Xinjiang[J]. Journal of Geochemical Exploration, 2018, 186: 225-234.

[56] ICCP The new vitrinite classification (ICCP System 1994) [J]. Fuel, 1998, 77(5): 349-358.

[57] ICCP. The new inertinite classification (ICCP System 1994) [J]. Fuel, 2001, 80(4): 459-471.

[58] Sýkorová I, Pickel W, Christanis K, et al. Classification of huminite—ICCP System 1994[J]. International Journal of Coal Geology, 2005, 62(1-2): 85-106.

[59] Pickel W, Kus J, Flores D, et al. Classification of liptinite–ICCP System 1994[J]. International Journal of Coal Geology, 2017, 169: 40-61.

[60] 代世峰, 唐跃刚, 姜尧发,等. 煤的显微组分定义与分类(ICCP system 1994)解析Ⅰ: 镜质体[J]. 煤炭学报, 2021, 46(06):1821-1832.

[61] Gavalas G R. Coal pyrolysis[M]. Elsevier, 1982.

[62] Mosorov V. The Lambert-Beer law in time domain form and its application[J]. Applied Radiation and Isotopes, 2017, 128: 1-5.

[63] Ibarra J V, Moliner R, Bonet A J. FT-ir investigation on char formation during the early stages of coal pyrolysis[J]. Fuel, 1994, 73(6): 918-924.

[64] Ibarra J V, Munoz E, Moliner R. FTIR study of the evolution of coal structure during the coalification process[J]. Organic Geochemistry, 1996, 24(6-7): 725-735.

[65] Solomon P R, King H H. Tar evolution from coal and model polymers: Theory and experiments[J]. Fuel, 1984, 63(9): 1302-1311.

[66] Hayashi J, Kawakami T, Kusakabe K, et al. Physical and chemical modification of low-rank coals with alkyl chains and the roles of incorporated groups in pyrolysis[J]. Energy & fuels, 1993, 7(6): 1118-1122.

[67] Liu P, Le J, Wang L, et al. Relevance of carbon structure to formation of tar and liquid alkane during coal pyrolysis[J]. Applied Energy, 2016, 183: 470-477.

[68] Liu R, Liu G, Yousaf B, et al. Novel investigation of pyrolysis mechanisms and kinetics for functional groups in biomass matrix[J]. Renewable and Sustainable Energy Reviews, 2022, 153: 111761.

[69] Coats A W, Redfern J P. Kinetic parameters from thermogravimetric data[J]. Nature, 1964, 201(4914): 68-69.

[70] Carrasco F. The evaluation of kinetic parameters from thermogravimetric data: comparison between established methods and the general analytical equation[J]. Thermochimica Acta, 1993, 213: 115-134.

[71] Lin Y, Li Q, Li X, et al. Pyrolysates distribution and kinetics of Shenmu long flame coal[J]. Energy conversion and management, 2014, 86: 428-434.

[72] Bai H, Mao N, Wang R, et al. Kinetic characteristics and reactive behaviors of HSW vitrinite coal pyrolysis: A comprehensive analysis based on TG-MS experiments, kinetics models and ReaxFF MD simulations[J]. Energy Reports, 2021, 7: 1416-1435.

[73] Meng D, Yue C, Wang T, et al. Evolution of carbon structure and functional group during Shenmu lump coal pyrolysis[J]. Fuel, 2021, 287: 119538.

[74] Qiu N, Li H, Jin Z, et al. Temperature and time effect on the concentrations of free radicals in coal: Evidence from laboratory pyrolysis experiments[J]. International journal of coal geology, 2007, 69(3): 220-228.

[75] Saxena S C. Devolatilization and combustion characteristics of coal particles[J]. Progress in energy and combustion science, 1990, 16(1): 55-94.

[76] Vassallo A.M.; Liu Y.L.; Pang L.S.K. et al., Infrared spectroscopy of coal maceral concentrates at elevated temperatures[J]. Fuel, 1991, 70.5: 635-639.

[77] Lei Z, Liang Q, Ling Q, et al. Investigating the reaction mechanism of light tar for Shenfu bituminous coal pyrolysis[J]. Energy, 2023, 263: 125731.

[78] Yan L J, Bai Y H, Kong X J, et al. Effects of alkali and alkaline earth metals on the formation of light aromatic hydrocarbons during coal pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2016, 122: 169-174.

[79] Jiang Y, Zong P, Tian B, et al. Pyrolysis behaviors and product distribution of Shenmu coal at high heating rate: A study using TG-FTIR and Py-GC/MS[J]. Energy Conversion and Management, 2019, 179: 72-80.

[80] Shi Q, Mi Y, Wang S, et al. Pyrolysis behavior of tar-rich coal with various coal-forming environments: A TGA and in-situ transmission FTIR study[J]. Fuel, 2024, 358: 130250.

中图分类号:

 P624.4    

开放日期:

 2024-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式