论文中文题名: |
下位厚煤层重复采动覆岩裂隙演化与瓦斯运移规律研究
|
姓名: |
王昊天
|
学号: |
21220226171
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
085700
|
学科名称: |
工学 - 资源与环境
|
学生类型: |
硕士
|
学位级别: |
工程硕士
|
学位年度: |
2024
|
培养单位: |
西安科技大学
|
院系: |
安全科学与工程学院
|
专业: |
安全工程
|
研究方向: |
矿井瓦斯灾害防治
|
第一导师姓名: |
潘红宇
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2024-06-17
|
论文答辩日期: |
2024-06-01
|
论文外文题名: |
Study on the evolution of overlying strata fractures and gas migration laws in repeated mining of lower thick coal seams
|
论文中文关键词: |
厚煤层 ; 采动裂隙 ; 重复采动 ; 裂隙带高度 ; 瓦斯运移
|
论文外文关键词: |
Thick coal seam ; Mining-induced fractures ; Repeated mining ; Height of fracture zone ; Gas migration
|
论文中文摘要: |
︿
相较于单一煤层开采,多煤层开采的空间性和复杂性十分突出。当多煤层开采时,上下分层采空区覆岩形成新的裂隙带,采动裂隙带空间将相互影响扩大,其分布范围并非简单的几何叠加,而是与采高、煤层埋深及层间距等因素密切相关。因此,研究采动裂隙场的演化及瓦斯运移规律对提升瓦斯抽采效率具有重要意义。本文采用理论分析、物理相似模拟、数值模拟和现场工程实践等研究方法,对陕西某矿下位厚煤层重复采动条件下覆岩裂隙演化及裂隙场内瓦斯运移规律进行了系统研究。具体研究成果如下:
(1) 根据陕西某矿下位厚煤层重复采动实际情况,开展二维物理相似模拟实验和3DEC数值模拟实验,研究了单次采动和下位厚煤层重复采动条件下覆岩变形破坏规律。得到单次采动和重复采动覆岩裂隙带发育高度和采场围岩裂隙的发育形态。
(2) 结合3DEC数值模拟软件获得的单次采动和下位厚煤层重复采动覆岩裂隙场分布特征,利用COMSOL软件进行模拟分析,探究了下位厚煤层在重复采动前后,卸压瓦斯在采空区及其上覆岩裂隙网络中的运移和富集过程,揭示了下位厚煤层重复采动裂隙场内部卸压瓦斯的运移富集规律。
(3) 综合考虑采高、煤层埋深及下伏煤层开采时引起两煤层间隔层顶部位置的二次下沉值,改进两煤层开采综合采高计算方法;结合修正后的裂隙带高度预计公式计算得到陕西某矿下位厚煤层重复采动覆岩裂隙带发育高度。
(4) 综合以上研究成果,结合现场裂隙带高度探查结果,现场施工高、中、低三个层位的定向长钻孔,现场工程应用效果表明,高位定向长钻孔瓦斯抽采量占绝对瓦斯涌出量的37%-63%,平均抽采占比53.5%,进一步验证论文研究结果及抽采系统布置优化的合理性,保证了下位厚煤层重复采动工作面的安全开采,为同类开采条件矿井卸压瓦斯抽采提供了参考依据,对于实现瓦斯精准抽采具有重要意义。
﹀
|
论文外文摘要: |
︿
Compared to single coal seam mining, the spatial and complexity features of multi-seam mining are very prominent. When mining multiple coal seams, new fracture zones are formed in the overlying rock of the upper and lower mining voids. The spaces of the mining-induced fracture zones influence each other and expand, and their distribution is not a simple geometric superposition, but closely related to factors such as mining height, coal seam burial depth, and inter-seam spacing. Therefore, studying the evolution of the mining-induced fracture field and the laws of gas migration is of great importance for improving the efficiency of gas extraction. This paper adopts research methods such as theoretical analysis, physical similar simulation, numerical simulation, and field validation to systematically study the evolution of overburden fractures and the laws of gas migration within the fracture field under the conditions of repeated mining of a thick lower coal seam in a mine in Shaanxi. The specific research results are as follows:
(1) Based on the actual situation of repeated mining of the thick lower coal seam in the Shaanxi mine, two-dimensional physical similar experiments and 3DEC numerical simulation experiments were conducted to study the deformation and failure patterns of the overburden under the conditions of single mining and repeated mining of the thick lower coal seam. The development height of the fracture zone in the overburden and the formation pattern of the surrounding rock fractures in the mining area were obtained.
(2) Combined with the distribution characteristics of the overburden fracture field under single mining and repeated mining of the thick lower coal seam obtained using 3DEC numerical simulation software, simulation analysis using COMSOL software was conducted to explore the migration and enrichment process of depressurized gas in the goaf and its overlying rock fracture network before and after repeated mining of the thick lower coal seam, revealing the migration and enrichment laws of depressurized gas within the fracture field under the conditions of repeated mining of the thick lower coal seam.
(3) Taking into account the mining height, coal seam burial depth, and the secondary subsidence value of the top of the interlayer caused by the mining of the underlying coal seam, the comprehensive mining height calculation method for mining both coal seams was improved; Combined with the modified formula for predicting the development height of the fracture zone, the development height of the overburden fracture zone under repeated mining of the thick lower coal seam in the Shaanxi mine was calculated.
(4) Integrating the above research results, combined with the field exploration results of the fracture zone height, directional long drilling holes at high, medium, and low positions were conducted on-site. The field engineering application results show that the gas extraction volume of high-position directional long drilling holes accounts for 37%-63% of the total gas emission volume, with an average extraction proportion of 53.5%. This further verifies the research results of the thesis and the rationality of the optimized layout of the extraction system, ensuring the safe mining of the working face under repeated mining of the thick lower coal seam, providing a reference for depressurized gas extraction in mines under similar mining conditions, and is of great significance for achieving precise gas extraction.
﹀
|
参考文献: |
︿
[1] 袁亮, 吴劲松, 杨科. 煤炭安全智能精准开采关键技术与应用[J]. 采矿与安全工程学报, 2023, 40(05): 861-868. [2] 袁亮, 王恩元, 马衍坤, 等. 我国煤岩动力灾害研究进展及面临的科技难题[J]. 煤炭学报, 2023, 48(05): 1825-1845. [3] 程远平, 付建华, 俞启香. 中国煤矿瓦斯抽采技术的发展[J]. 采矿与安全工程学报, 2009, 26(02): 127-139. [4] 李树刚, 刘李东, 赵鹏翔, 等. 综采工作面覆岩压实区裂隙动态演化规律影响因素分析[J]. 煤炭科学技术, 2022, 50(01): 95-104. [5] 张永将,邹全乐,杨慧明,等.突出煤层群井上下联合抽采防突模式与关键技术[J].煤炭学报,2023,48(10):3713-3730. [6] 赵毅鑫,刘文超,张村,等.近距离煤层蹬空开采围岩应力及裂隙演化规律[J].煤炭学报,2022,47(01):259-273. [7] Yuan A, Ni L, Hu Z. Pressure–Relief Gas Cooperative Drainage Technology in a Short-Distance Coal Seam Group[J]. Applied Sciences-Basel, 2023, 13(9): 5534. [8] 钱鸣高. 岩层控制与煤炭科学开采文集[M]. 徐州: 中国矿业大学出版社, 2011. [9] 袁亮. 卸压开采抽采瓦斯理论及煤与瓦斯共采技术体系[J]. 煤炭学报, 2009, 34(01): 1-8. [10] Apehc-B A. Rock and Ground Surface Movements[M]. Beijing: Coal Industry Press, 1989. [11] Helmut K. Mining Subsidence Engineering[M]. Germany: Springer, 1983. [12] 钱鸣高, 刘听成. 矿山压力及其控制[M]. 北京: 煤炭工业出版社, 1991: 44-55. [13] 宋振骐. 实用矿山压力控制. 中国矿业大学出版社, 1988 [14] H W. An hypothesis concerning pillar stability[J]. Mining Engineer, 1972,131(6):409-417. [15] 钱鸣高, 石平五. 矿山压力与岩层控制. 徐州: 中国矿业大学出版社, 2003. [16] 侯忠杰. 地表厚松散层浅埋煤层组合关键层的稳定性分析[J]. 煤炭学报, 2000(02): 127-131. [17] 张杰. 浅埋煤层顶板深孔预爆强制初放研究[J]. 采矿与安全工程学报, 2012, 29(03): 339-343. [18] 钱鸣高, 岩层控制的关键层理论[M]. 江苏: 中国矿业大学, 2001. [19] 钱鸣高, 缪协兴, 许家林. 岩层控制中的关键层理论研究[J]. 煤炭学报, 1996(03): 2-7. [20] 刘宝琛, 廖国华. 煤矿地表移动的基本规律[M]. 北京: 中国工业出版社, 1965. [21] 贾喜荣, 翟英达. 采场薄板矿压理论与实践综述[J]. 矿山压力与顶板管理, 1999(Z1): 22-25+238. [22] 贾喜荣, 李海, 王青平, 等. 薄板矿压理论在放顶煤工作面中的应用[J]. 太原理工大学学报, 1999(02): 71-75. [23] 姜福兴, 宋振骐, 宋扬. 老顶的基本结构形式[J]. 岩石力学与工程学报, 1993(04): 366-379. [24] 张顶立, 王悦汉. 综采放顶煤工作面岩层结构分析[J]. 中国矿业大学学报, 1998(04): 10-13. [25] 黄庆享, 张沛, 董爱菊. 浅埋煤层地表厚砂土层“拱梁”结构模型研究[J]. 岩土力学, 2009, 30(09): 2722-2726. [26] N.E.Yasitli, B.Unver. 3Dnumberical modeling of long wall mining with top-coalcaving[J]. International Journal of Rock Mechanics and Mining sciences, 42(2005): 219-315. [27] S.K.Das. Observations and classification of roof strata behavior over long wall coal mining panels in India[J]. International Journal of Rock Mechanics and Mining sciences, 37(2000): 85-597. [28] Rajendra Singh. Staggered development of a thick coal seam for full height working in a single lift by the blasting gallery method[J]. international Journal of Rock Mechanics and Mining Sciences, 2004(41): 745-759. [29] 格罗莫夫, 贝奇科夫著, 赵宏珠, 等. 缓倾斜厚煤层开采矿山压力控制[M]徐州:中国矿业大学出版社, 1990: 73-81. [30] Liu S Y, Qian M G. Stability and control of immediate roof of fully mechanized coal face[J]. 9th International Conference on Ground Control in Mining. Morgantown: the University of West Virgina, 1990. 123-127. [31] 赵宏珠. 大采高支架的使用及参数研究[J]. 煤炭学报, 1991(1): 33-38. [32] 胡国伟, 靳钟铭. 大采高综采工作面矿压观测及其显现规律研究[J]. 太原理工大学学报, 2006, 37(2): 127-130. [33] 弓培林, 靳钟铭. 大采高采场覆岩结构特征及运动规律研究[J]. 煤炭学报, 2004(1): 7-11. [34] 弓培林, 靳钟铭. 大采高综采采场顶板控制力学模型研究[J]. 岩石力学与工程学报, 2008, 27(1): 193-198. [35] 弓培林. 大采高采场围岩控制理论及应用研究[M]. 北京: 煤炭工业出版社, 2006. [36] 黄庆享. 浅埋煤层长壁开采顶板结构及岩层控制研究[M]. 徐州: 中围矿业大学出版社, 2000, 28-33. [37] 黄庆享, 刘文岗, 田银素. 近浅埋煤层大采高矿压显现规律实测研究[J]. 矿山压力与顶板管理, 2003(3): 58-59. [38] 张翔, 朱斯陶, 姜福兴, 等. 深部大采高综采面厚硬岩层-煤柱结构失稳诱冲机理研究[J]. 岩土工程学报, 2024, 1-10. [39] Shi X, Zhang J. Characteristics of overburden failure and fracture evolution in shallow buried working face with large mining height[J]. Sustainability, 2021, 13(24): 13775. [40] 任晓鹏, 辛亚军, 杨俊鹏. 大采高过联巷空顶-煤柱-支架耦合承载与控制分析[J]. 采矿与安全工程学报, 2023, 40(02): 251-262. [41] Li L, Zhang F. Instability model of a coal wall with large mining height under excavation unloading conditions[J]. Advances in Civil Engineering, 2020, 2020: 1-6. [42] 倪先杰, 李迎富. 大采高工作面采场围岩结构力学分析及其工程应用[J]. 采矿与安全工程学报, 2022, 39(05): 911-920. [43] 徐刚, 张震, 杨俊哲, 等. 8.8m超大采高工作面支架与围岩相互作用关系[J]. 煤炭学报, 2022, 47(04): 1462-1472. [44] 魏宗勇, 李树刚, 林海飞, 等. 大采高综采覆岩裂隙演化特征三维实验研究[J]. 西安科技大学学报, 2020, 40(04): 589-598. [45] Wang H, Liu Y, Tang Y, et al. Failure mechanisms and the control of a longwall face with a large mining height within a shallow-buried coal seam[J]. Shock and Vibration, 2021, 2021: 1-11. [46] Li Z, Pang Y, Bao Y, et al. Research on surface failure law of working faces in large mining height and shallow buried coal seam[J]. Advances in Civil Engineering, 2020, 2020: 1-14. [47] 许家林, 鞠金峰. 特大采高综采面关键层结构形态及其对矿压显现的影响[J]. 岩石力学与工程学报, 2011, 30(8): 1547-1556. [48] Ju J, Xu J. Structural characteristics of key strata and strata behaviour of a fully mechanized longwall face with 7.0 m height chocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 58: 46-54. [49] 付玉平, 宋选民, 邢平伟, 等. 大采高采场顶板断裂关键块稳定性分析[J]. 煤炭学报, 2009, 34(8): 1027-1031. [50] 付玉平, 宋选民, 邢平伟. 浅埋煤层大采高超长工作面冒落带高度的研究[J]. 采矿与安全工程学报, 2010, 27(2): 190-194. [51] 文志杰, 汤建泉, 王洪彪. 大采高采场力学模型及支架工作状态研究[J]. 煤炭学报, 2011, 36(S1): 42-46. [52] 文志杰, 赵晓东, 尹立明, 等. 大采高顶板控制模型及支架合理承载研究[J]. 采矿与安全工程学报, 2010. 27(2): 255-258. [53] 张世豪. 大采高综采工艺参数正交优化[J]. 山西煤炭, 2004(1): 26-28. [54] 鞠金峰, 许家林, 王庆雄. 大采高采场关键层-悬臂梁-结构运动型式及对矿压的影响[J]. 煤炭学报, 2011. 36(12): 161-166. [55] 王悦汉, 邓喀中, 张冬至. 重复采动条件下覆岩下沉特性的研究[J]. 煤炭学报, 1998, 23(5): 470-475. [56]Zou J, Wang M, Bai L, et al. Numerical study on migration of overlying strata and propogation of cracks during multi-coal seams mining[J]. Front. Earth Sci. 11: 1326597. [57] 李树刚, 丁洋, 安朝峰, 等. 近距离煤层重复采动覆岩裂隙形态及其演化规律实验研究[J]. 采矿与安全工程学报, 2016, 33(05): 904-910. [58] 崔峰, 贾冲, 来兴平, 等. 缓倾斜冲击倾向性顶板特厚煤层重复采动下覆岩两带发育规律研究[J]. 采矿与安全工程学报, 2020, 37(03): 514-524. [59] Cui F, Jia C, Lai X, et al. Study on the law of fracture evolution under repeated mining of close-distance coal seams[J]. Energies, 2020, 13(22): 6064. [60] 黄远. 双煤层重复采动下覆岩变形破坏特征及导高发育研究[D]. 徐州: 中国矿业大学, 2014. [61] Ji J, Li Z, Yang K, et al. Research on formation mechanism and evolution pattern of bed separation zone during repeated mining in multiple coal seams[J]. Geofluids, 2022, 2022: 1-19. [62] 孙学阳, 夏玉成, 高东方. 横向重复采动对煤矿区地表沉陷影响的数值模拟[J]. 矿业研究与开发, 2008, 28(3): 14-16+27. [63] 柳昭星. 近距离厚煤层重复采动覆岩“两带”高度分析[J]. 中国煤炭地质, 2020, 32(10): 10-14. [64] 孙世国, 夏景超, 宣文研. 多次重复开采对围岩稳定及地表变形的影响[J]. 矿业研究与开发, 2019, 39(06): 32-35. [65] Qi Y, Wang W, Ge J, et al. Development characteristics of the rock fracture field in strata overlying a mined coal seam group[J]. PloS one, 2022, 17(10): e0268955. [66] 武宇亮, 于宗仁, 闫增会, 等. 浅部采区首采面重复采动“两带”发育特征数值模拟[J]. 煤矿安全, 2019, 50(05): 199-203. [67] Li Q, Wu G, Kong D. Study on Stability of Stope Surrounding Rock under Repeated Mining in Close-Distance Coal Seams[J]. Geofluids, 2022, 2022. [68] Shi X, Zhang J. Characteristics of Overburden Failure and Fracture Evolution in Shallow Buried Working Face with Large Mining Height[J]. Sustainability. 2021; 13(24):13775. [69] 朱卫兵. 浅埋近距离煤层重复采动关键层结构失稳机理研究[J]. 煤炭学报, 2011, 36(06): 1065-1066. [70] Zhu W, Qi X, Ju J, et al. Mechanisms behind strong strata behaviour in high longwall mining face-ends under shallow covers[J]. Journal of Geophysics and Engineering, 2019, 16(3): 559-570. [71] 李红旭. 布尔台矿重复采动覆岩移动及地表变形规律研究[D]. 焦作: 河南理工大学, 2016. [72] 张宏伟, 赵象卓, 韩军, 等. 极近距离煤层重复采动矿压显现规律[J]. 辽宁工程技术大学学报(自然科学版), 2018, 37(02): 225-371. [73] 武飞. 上行式重复采动覆岩移动与裂隙发育规律研究[D]. 徐州: 中国矿业大学, 2019. [74] Liu T, Lin B, Fu X, et al. Experimental study on gas diffusion dynamics in fractured coal: a better understanding of gas migration in in-situ coal seam[J]. Energy, 2020, 195: 117005. [75] Yasitli N E, Unver B. 3D numerical modeling of longwall mining with top-coal caving[J]. International Journal of Rock Mechanics and Mining Sciences, 2005, 42(2): 219-235. [76] Rutqvist J, Stephansson O. The role of hydromechanical coupling in fractured rock engineering[J]. Hydrogeology Journal, 2003, 11(1): 7-40. [77] Wang H, Li T, Zou Q, et al. Influences of path control effects on characteristics of gas migration in a coal reservoir[J]. Fuel, 2020, 267: 117212. [78] Zhao W, Wang K, Cheng Y, et al. Evolution of gas transport pattern with the variation of coal particle size: Kinetic model and experiments[J]. Powder technology, 2020, 367: 336-346. [79] 赵鹏翔, 卓日升, 李树刚, 等. 综采工作面推进速度对瓦斯运移优势通道演化的影响[J]. 煤炭科学技术, 2018, 46(07): 99-108. [80] Zhao P, Zhuo R, Li S, et al. Analysis of advancing speed effect in gas safety extraction channels and pressure-relief gas extraction[J]. Fuel, 2020, 265: 116825. [81] Zhao P, Zhuo R, Li S, et al. Fractal characteristics of gas migration channels at different mining heights[J]. Fuel, 2020, 271: 117479. [82] Zhao P, Zhuo R, Li S, et al. Research on the effect of coal seam inclination on gas migration channels at fully mechanized coal mining face[J]. Arabian Journal of Geosciences, 2019, 12(18): 1-14. [83] 张勇, 张保, 张春雷, 等. 厚煤层采动裂隙发育演化规律及分布形态研究[J]. 中国矿业大学学报, 2013, 42(06): 935-940. [84] 张勇, 许力峰, 刘珂铭, 等. 采动煤岩体瓦斯通道形成机制及演化规律[J]. 煤炭学报, 2012, 37(09): 1444-1450. [85] 李立. 采动影响下煤体瓦斯宏细观尺度通道演化机理研究[D]. 中国矿业大学(北京), 2016. [86] 刘洪永, 程远平, 周红星, 等. 综采长壁工作面推进速度对优势瓦斯通道的诱导与控制作用[J]. 煤炭学报, 2015, 40(04): 809-815. [87] 吴仁伦, 王亚飞, 徐东亮, 等. 工作面面宽对煤层群开采瓦斯卸压运移“三带”范围的影响[J]. 采矿与安全工程学报, 2017, 34(01): 192-198. [88] Mallants D, Jeffrey R, Zhang X, et al. Review of plausible chemical migration pathways in Australian coal seam gas basins[J]. International Journal of Coal Geology, 2018, 195: 280-303. [89] 苏伟伟. 近距离下邻近煤层群开采采空区瓦斯治理技术[J]. 中国安全科学学报, 2018, 28(12): 83-88. [90] Liang W, Cheng Y, Li F, et al. Fracture evolution and pressure relief gas drainage from distant protected coal seams under an extremely thick key stratum[J]. Journal of China University of Mining and Technology, 2008, 18(2): 182-186. [91] 郭明杰, 郭文兵, 袁瑞甫, 等. 基于采动裂隙区域分布特征的定向钻孔空间位置研究[J]. 采矿与安全工程学报, 2022, 39(04): 817-826. [92] 李树刚, 徐培耘, 林海飞, 等. 倾斜煤层卸压瓦斯导流抽采技术研究与工程实践[J]. 采矿与安全工程学报, 2020, 37(05): 1001-1008. [93] 赵鹏翔, 卓日升, 李树刚, 等. 综采工作面瓦斯运移优势通道演化规律采高效应研究[J]. 采矿与安全工程学报, 2019, 36(04): 848-856. [94] 丁洋, 朱冰, 李树刚, 等. 高突矿井采空区卸压瓦斯精准辨识及高效抽采[J]. 煤炭学报, 2021, 46(11): 3565-3577. [95] Gao A, Qin B, Zhang L, et al. Experimental Study on Gas Migration Laws at Return Air Side of Goaf under High-Temperature Conditions[J]. Combustion Science and Technology, 2022: 1-15. [96] Wang W, Li Z, Zhao G, et al. Coal and Gas Comining in the High-Gas Detong Mine, China: Analytical and Numerical Parameter Optimization of Gas Extraction Boreholes[J]. Advances in Civil Engineering, 2022, 2022. [97] Cheng C, Cheng X, Yu R, et al. The law of fracture evolution of overlying strata and gas emission in goaf under the influence of mining[J]. Geofluids, 2021, 2021. [98] Xiao P, Han K, Shuang H, et al. The effects of key rock layer fracturing on gas extraction during coal mining over a large height[J]. Energy Science & Engineering, 2021, 9(4): 520-534. [99] 顾大钊. 相似材料和相似模型[D]. 徐州: 中国矿业大学, 1995. [100]He F, Li L, Lv K, et al. Study on Evolution of Front Abutment Pressure at Working Face in Repeated Mining of Close-Distance Coal Seams[J]. Sustainability. 2022, 14(19):12399. [101]Xiong Y, Kong D, Cheng Z, et al. Instability Control of Roadway Surrounding Rock in Close-Distance Coal Seam Groups under Repeated Mining[J]. Energies. 2021, 14(16):5193. [102]Fang S J, Liang B, Sun W J, et al. Study on stress evolution law of overburden under repeated mining in long-distance double upper protective layer[J]. Energies, 2022, 15(12): 4459. [103]国家煤炭工业局. 建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程[M]. 北京: 煤炭工业出版社, 2000: 227-236. [104]国家煤炭工业局. 建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程[M]. 北京: 煤炭工业出版社, 2017: 227-236. [105]李春意. 覆岩与地表移动变形演化规律的预测理论及实验研究[D]. 北京:中国矿业大学(北京), 2010. [106]刘世奇. 厚煤层开采覆岩破坏规律及粘土隔水层采动失稳机理研究[D]. 北京:中国矿业大学(北京), 2016. [107]Zhou A, Xu Z, Wang K, et al. Coal mine gas migration model establishment and gas extraction technology field application research[J]. Fuel, 2023, 349: 128650. [108]Wang H, Wang E, Li Z, et al. Study and application of dynamic inversion model of coal seam gas pressure with drilling[J]. Fuel, 2020, 280: 118653. [109]Wei C, Li C, Ye Q, et al. Modeling of gas emission in coal mine excavation workface: a new insight into the prediction model[J]. Environmental Science and Pollution Research, 2023, 30(44): 100137-100148. [110]Song W, Han X, Qi J. Prediction of Gas Emission in the Working Face Based on LASSO-WOA-XGBoost[J]. Atmosphere, 2023, 14(11): 1628.
﹀
|
中图分类号: |
TD712
|
开放日期: |
2024-06-18
|