- 无标题文档
查看论文信息

论文中文题名:

 BHT粉尘爆炸特性及惰性粉体抑制作用研究    

姓名:

 邓婕    

学号:

 20220089012    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 083700    

学科名称:

 工学 - 安全科学与工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 工业火灾与爆炸防控    

第一导师姓名:

 罗振敏    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-19    

论文答辩日期:

 2023-06-02    

论文外文题名:

 Study on the explosion characteristics of BHT dust and the inert powder suppression effect    

论文中文关键词:

 粉尘爆炸 ; 最小点火能 ; 爆炸压力 ; 抑制剂    

论文外文关键词:

 Dust explosion ; Minimum ignition energy ; Explosion pressure ; Inhibitors    

论文中文摘要:

2,6-二叔丁基对甲酚(Butylated hydroxytoluene,BHT)是常用的抗氧化剂之一,应用十分广泛,它具有中和以及捕获自由基的能力,可以用作精油和化妆品的添加剂,但BHT粉尘的易燃易爆特性使BHT的生产、储存、运输过程中存在较大的火灾爆炸危险性,且长期以来受到的关注极少。为此,本文研究测试了BHT粉尘云的最小点火能及其影响因素变化规律,同时对BHT粉尘的爆炸下限、最大爆炸压力及压升速率进行研究,得出其爆炸界限与爆炸强度,并以此为研究基础,进一步分析了影响BHT粉尘爆炸的主要因素和多种惰性粉体对其爆炸的抑制效果。

首先利用扫描电镜SEM,X射线光电子能谱,TG-DSC同步热分析仪对BHT粉尘的理化特性及热分解阶段特征展开研究。结果表明:BHT粉尘大部分颗粒的形貌呈现不规则的纤维长条状,最终以团簇状堆叠,表面较为粗糙;BHT中碳结构的归属为C-C、C-H、C-O、COO-,氧结构的归属为C-O、C=O,氮结构的赋存形式为吡咯型氮和氮氧化物;BHT粉与空气反应是一个失重放热过程,燃烧过程可分为低温氧化阶段、缓慢氧化阶段、剧烈燃烧阶段和反应平衡阶段。

其次采用1.2L哈特曼管和20L球形爆炸装置研究了BHT粉尘的最小点火能、爆炸界限与爆炸强度。哈特曼管测试结果表明:随着喷粉压力的增加,BHT粉尘的最小点火能呈先减小后增大的趋势,90kPa为最佳喷粉压力,此时BHT粉尘的点火能为最小值5mJ,粉尘浓度对最小点火能的变化规律与喷粉压力对最小点火能的影响规律一致,最佳粉尘浓度为150g/m3;20L球形爆炸装置测试结果显示:BHT粉尘的爆炸下限为18g/m3~38g/m3;BHT粉尘粒径越小,最大爆炸压力越大,爆炸危险性越高;计算得到在不同工况条件下BHT粉尘的最大爆炸压力数学模型公式,预测值与实验值接近,结果具有普适性。

最后选用NaHCO3、膨胀石墨粉(EG)、三聚氰胺聚磷酸盐粉末(MPP)作为抑制剂,利用20L球形爆炸装置研究其在不同质量分数下对BHT粉尘爆炸的抑制作用并对机理进行讨论。研究结果表明:抑制效果随着混合体系中惰性粉体质量分数的增加而增强;EG抑制BHT粉尘爆炸的作用机理表现为物理抑制,而NaHCO3和MPP均为物理化学共同抑制,当抑制剂质量分数相同时,抑制效果从大到小依次为:EG50(300-500) > NaHCO3 > MPP。研究结果可为BHT粉尘爆炸防治提供理论基础。

论文外文摘要:

2,6-di-tert-butyl hydroxytoluene (BHT) is one of the commonly used antioxidants, the application is very wide, it has the ability to neutralize and capture free radicals, can be used as additives to essential oils and cosmetics, but the flammable and explosive properties of BHT dust makes the production, storage and transportation of BHT has a greater risk of fire and explosion However, the flammable and explosive properties of BHT dust make the production, storage, and transportation of BHT a major fire and explosion hazard, and has long received little attention. To this end, this paper studies and tests the minimum ignition energy of BHT dust clouds and its influencing factors change law, while the lower explosion limit, maximum explosion pressure and pressure rise rate of BHT dust to study the explosion limit and explosion strength, and as a basis for research, further analysis of the main factors affecting the explosion of BHT dust and a variety of inert powders to inhibit the effect of its explosion.

Firstly, the physical and chemical properties and the characteristics of the thermal decomposition stages of BHT dust were investigated using SEM, X-ray photoelectron spectroscopy, and TG-DSC simultaneous thermal analyzer. The results showed that the morphology of most of the particles of BHT dust showed irregular fibrous long strips, and finally stacked in clusters with a relatively rough surface; the carbon structure in BHT was attributed to C-C, C-H, C-O, COO-, the oxygen structure was attributed to C-O, C=O, and the fugitive form of nitrogen structure is pyrrole type nitrogen and nitrogen oxide; the reaction between BHT powder and air is a weightless exothermic process, and the combustion process can be divided into low temperature oxidation stage, slow oxidation stage, intense combustion stage and reaction equilibrium stage.

Secondly, 1.2L Hartmann tube and 20L spherical explosive device to study the minimum ignition energy, explosion limits and explosion strength of BHT dust. Hartmann tube test results show that: with the increase in powder pressure, the minimum ignition energy of BHT dust is first decreasing and then increasing trend, 90kPa for the best powder pressure, the minimum ignition energy of BHT dust at this time 5mJ, dust concentration on the minimum ignition energy of the law of change and powder pressure on the minimum ignition energy of the same law, the best dust concentration of 150g/m3; 20L spherical explosion Device test results show that: the lower explosion limit of BHT dust is 18g/m3 ~ 38g/m3; the smaller the particle size of BHT dust, the greater the maximum explosion pressure, the higher the explosion risk; calculated the maximum explosion pressure of BHT dust under different working conditions mathematical model formula, the predicted value is close to the experimental value, the results have universal applicability.

Finally, NaHCO3, expanded graphite powder (EG) and melamine polyphosphate powder (MPP) were selected as inhibitors, and their inhibitory effects on BHT dust explosion at different mass fractions were studied and the mechanism was discussed using a 20L spherical explosion device. The results show that: the inhibition effect increases with the increase of the mass fraction of inert powder in the mixed system; the mechanism of inhibition of BHT dust explosion by EG is physical inhibition, while NaHCO3 and MPP are physicochemical co-inhibition, when the inhibitor mass fraction is the same, the inhibition effect is from large to small: EG50 (300-500) > NaHCO3 > MPP. The results can provide a theoretical basis for BHT dust explosion control.

参考文献:

[1] 陈刚, 张晓蕾, 徐帅等. 我国2005-2020年粉尘爆炸事故统计分析[J]. 中国安全科学学报, 2022, 32(08): 76-83.

[2] Amyotte P, Eckhoff R. Dust explosion causation, prevention and mitigation: An overview[J]. Journal of Chemical Health and Safety, 2010, 17(01): 15-28.

[3] Cocero M, Gonzalez S, Perez S, et al. Supercritical extraction of unsaturated products degradation of bcarotene in supercritical extraction processes[J]. Journal of Supercritical Fluids, 2000, 19: 39-44.

[4] Criado S, Allevi C, Ceballos C, et al. Visible-light promoted degradation of the commercial antioxidants butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT): A kinetic study[J]. Redox Report, 2007, 12(06): 282-288.

[5] Wageeh A, Yehye. Understanding the chemistry behind the antioxidant activities ofbutylated hydroxytoluene (BHT): A review[J]. European Journal of Medicinal Chemistry, 2015, 101(41): 295-312.

[6] 欧阳平, 邢晓晨, 张贤明等. 油品中抗氧剂的研究进展[J]. 应用化工, 2016, 45(03): 538-541, 546.

[7] Wang W, Kannan K. Inventory, loading and discharge of synthetic phenolic antioxidants and their metabolites in wastewater treatment plants[J]. Water Research, 2018, 129 (FEB. 1): 413-418.

[8] 饶运章, 肖春瑜, 许威等. 硫化矿尘云爆炸下限浓度研究[J]. 矿业研究与开发, 2020, 40(10): 123-127.

[9] 张睿冲, 邓越洋, 邓红卫等. 木薯淀粉爆炸下限的实验研究[J]. 爆破, 2020, 37(03): 134-140.

[10] 杨瑞霞, 于秋. 不同粒径锌粉尘爆炸特性研究[J]. 当代化工研究, 2022, 112(11): 21-23.

[11] 方伟, 赵省向, 张奇等. 微/纳米铝粉粉尘爆炸特性研究[J]. 火工品, 2021, 199(02): 32-36.

[12] 田长顺, 饶运章, 苏港等. 磁黄铁矿对黄铁矿粉尘爆炸特性参数的影响[J/OL]. 有色金属科学与工程, 2023, 1-8.

[13] 张睿冲, 刘炜, 谢承煜. 木薯淀粉粉尘层最小引燃温度实验研究[J]. 广西大学学报(自然科学版), 2022, 47(06): 1700-1708.

[14] 文虎, 李凯, 王秋红等. 彩色玉米粉粉尘云最低引燃温度试验研究[J]. 安全与环境学报, 2018, 18(03): 915-919.

[15] 赵江平, 万杭炜. 桑木粉尘最低着火温度的试验研究[J]. 中国安全科学学报, 2017, 27(12): 26-31.

[16] 董海佩, 程贵海, 李晓泉等. 钛粉尘的最小引燃温度[J]. 中国粉体技术, 2018, 24(05): 48-52.

[17] 张睿冲, 张明坤, 刘炜等. 超细三七粉最小引燃温度实验研究[J]. 工业安全与环保, 2021, 47(04): 6-9.

[18] 李知衍, 司荣军, 李润之. 混合金属粉尘爆炸最小点火能量影响因素研究[J]. 中国安全生产科学技术, 2020, 16(09): 127-132.

[19] 郑秋雨, 齐宇萱, 韩睿. 聚丙烯粉尘最小点火能研究[J]. 山东化工, 2022, 51(20): 186-189.

[20] 逄智宏, 李万兆, 郭露等. 速生杨木粉尘最小点火能的实验研究[J]. 中国安全生产科学技术, 2018, 14(11): 138-143.

[21] 郑秋雨, 刘琳, 刘天奇等. HDPE粉尘云最小点火能试验研究[J]. 消防科学与技术, 2021, 40(06): 801-804.

[22] Lu Q, Wang Z, Zhang S, et al. Dust explosion in fusion reactors: Explosion characteristics and reaction mechanism of tungsten micro-powder[J]. Combustion and Flame, 2023, 248: 112551.

[23] Wan H, Wen Y, Niu S, et al. Explosion hazards of mixed aluminum/aluminum hydride dust cloud in a closed vessel[J]. Powder Technology, 2023, 420: 118374.

[24] 张云, 赵懿明, 许张归等. MgH2粉尘爆炸的能量释放特性规律[J]. 火炸药学报, 2022, 45(06): 898-904.

[25] 刘浩雄, 刘贞堂, 钱继发等. 煤尘二次爆炸特性研究[J]. 工矿自动化, 2018, 44(06): 80-86.

[26] Jia J, Wang F, Li J, et al. Effect of coal dust parameters on gas-coal dust explosions in pipe networks[J]. Energy Science & Engineering, 2022, 3(01): 1-15.

[27] 曹卫国, 郑俊杰, 彭于怀等. 玉米淀粉粉尘爆炸特性及火焰传播过程的试验研究[J]. 爆破器材, 2016, 45(01): 1-6.

[28] 陈春燕, 龙思华, 肖国清等. 基于响应面方法的甘薯粉尘爆炸研究[J]. 中国安全科学学报, 2017, 27(01): 42-47.

[29] 王秋红, 杨宋萍, 代爱萍. 小苏打对红色彩跑粉粉尘云爆炸极限氧浓度的影响[J]. 中国安全生产科学技术, 2022, 18(10): 162-168.

[30] 刘天奇. 微米级玉米粉尘爆炸压力特性及抑爆实验研究[J]. 消防科学与技术, 2019, 38(10): 1345-1349.

[31] 张庆武, 骆泰愚, 李云浩等. 甲磺草胺粉尘燃爆特性实验研究[J]. 南京工业大学学报(自然科学版), 2019, 41(05): 549-553.

[32] 覃欣欣, 李润之, 司荣军. 酚醛树脂粉尘爆炸危险性实验研究[J]. 工业安全与环保, 2015, 41(12): 12-14.

[33] 王彦, 杨娟, 王继业等. 玉米淀粉和墨粉粉尘爆炸对无火焰爆炸泄压装置性能的影响[J]. 工业安全与环保, 2023, 49(02): 10-14.

[34] 张延松, 李南, 郭瑞等. 月桂酸与硬脂酸粉尘爆炸过程热解动力学与火焰传播特性关系[J]. 爆炸与冲击, 2022, 42(07): 161-172.

[35] 郑秋雨, 孙永强, 王旭等. 粉尘爆炸超压及响应研究[J]. 电气防爆, 2017, (02): 1-4.

[36] Pietraccini M, Badu P, Tait T, et al. Study of flash pyrolysis and combustion of biomass powders using the Godbert-Greenwald furnace: An essential step to better understand organic dust explosions[J]. Process Safety and Environmental Protection, 2023, 169: 458-471.

[37] Bagaria P, Zhang J, Yang E, et al. Effect of dust dispersion on particle integrity and explosion hazards[J]. Journal of Loss Prevention in the Process Industries, 2016, 44(11): 424-432.

[38] Danzi E, Pio G, Marmo L, et al. The explosion of non-nano iron dust suspension in the 20L spherical bomb[J]. Journal of Loss Prevention in the Process Industries, 2021, 71(01): 104447.

[39] Islas A, Fernández A, Betegón C, et al. Computational assessment of biomass dust explosions in the 20L sphere[J]. Process Safety and Environmental Protection, 2022, 165: 791-814.

[40] Jerome D, Christophe P, Guillaume L. Propagation of a confined explosion to an external cloud[J]. Journal of Loss Prevention in the Process Industries, 2017, 49(09): 805-813.

[41] Torrado D, Pinilla A, Amin M. Numerical study of the influence of particle reaction and radiative heat transfer on the flame velocity of gasnanoparticles hybrid mixtures[J]. Process Safety and Environmental Protection, 2018, 118(01): 211-226.

[42] Guhathakurta S, Houim R. Impact of particle diameter and thermal radiation on the explosion of dust layers[J]. Proceedings of the Combustion Institute, 2022, 15: 18.

[43] Chen X, Zhang H, Chen X, et al. Effect of dust explosion suppression by sodium bicarbonate with different granulometric distribution[J]. Journal of Loss Prevention in the Process Industries, 2017, 49(09): 905-911.

[44] 王燕, 何佳, 杨晶晶等. 草酸盐和碳酸氢盐抑制聚乙烯粉尘爆炸特性[J]. 化工学报, 2022, 73(09): 4207-4216.

[45] 伍毅, 袁旌杰, 蒯念生等. 碳酸盐对密闭空间粉尘爆炸压力影响的试验研究[J]. 中国安全科学学报, 2010, 20(10): 92-96.

[46] 鲁昆仑, 陈晓坤, 王媛媛等. 碳酸氢钠及其固态分解产物对玉米淀粉爆炸抑制实验研究[J]. 中国安全生产科学技术, 2021, 17(09): 126-131.

[47] 梁瑞, 李雷, 李珍宝等. 惰性粉体抑制玉米淀粉的爆炸特性研究[J]. 应用化工, 2022, 51(07): 1960-1964.

[48] Wang Q, Shen Z, Jiang J, et al. Suppression effects of ammonium dihydrogen phosphate dry powder and melamine pyrophosphate powder on an aluminium dust cloud explosion[J]. Journal of Loss Prevention in the Process Industries, 2020, 68(01): 104312.

[49] 王秋红, 闵锐, 王清峰. 3种阻燃粉体抑制锆粉云爆炸强度的效果和机理[J]. 华南理工大学学报(自然科学版), 2020, 48(08): 72-81, 90.

[50] Jiang H, Bi M, Ma D, et al. Flame suppression mechanism of aluminum dust cloud by melamine cyanurate and melamine polyphosphate[J]. Journal of Hazardous Materials, 2019, 368: 797-810.

[51] Jiang H, Bi M, Gao W. Suppression mechanism of Al dust explosion by melamine polyphosphate and melamine cyanurate[J]. Journal of Hazardous Materials, 2020, 386: 121648.

[52] Ma X, Meng X, Li Z, et al. Study of the influence of melamine polyphosphate and aluminum hydroxide on the flame propagation and explosion overpressure of aluminum magnesium alloy dust[J]. Journal of Loss Prevention in the Process Industries, 2020, 68(10): 104291.

[53] Zheng L, Yu Y, Yang J, et al. Inhibiting effect of inhibitors on ignition sensitivity of wood dust[J]. Journal of Loss Prevention in the Process Industries, 2021, 70: 104391.

[54] 王琼慧. 糖粉粉尘爆炸特性研究[D]. 成都: 西南石油大学, 2018.

[55] 喻源, 刘斐斐, 马香香等. 橡胶粉尘的爆炸特性及抑爆的试验研究[J]. 安全与环境学报, 2018, 18(03): 920-924.

[56] Yba B, Zm A, Chang L, et al. Effect of admixed solid inertants on dispersibility of combustible dust clouds in a modified hartmann tube[J]. Process Safety and Environmental Protection, 2020, 135: 1-11.

[57] Huang L, Jiang H, Zhang T, et al. Effect of superfine KHCO3 and ABC powder on ignition sensitivity of PMMA dust layer[J]. Journal of Loss Prevention in the Process Industries, 2021, 72(01): 104567.

[58] Liu L, Dong Z, Qiu D, et al. Effect of powder inhibitors on ignition sensitivity evolution of wood-plastic mixed dust: Based on thermal decomposition behavior and deflagration residues[J]. Process Safety and Environmental Protection, 2022, 160: 265-273.

[59] 关文玲, 李雪源, 董呈杰. 无机惰性介质对面粉爆炸的抑制效果与机理[J]. 中国粉体技术, 2021, 27(01): 65-70.

[60] Zhang T, Bi M, Jiang H, et al. Suppression of aluminum dust explosions by expandable graphite[J]. Powder Technology, 2020, 366: 52-62.

[61] 黄子超. 抛光铝粉爆炸及ABC粉体抑爆特性的实验研究[J]. 中国安全生产科学技术, 2020, 16(07): 119-124.

[62] 卫园梦, 王庆慧, 杨晓明等. 微米级硅粉粉尘爆炸特性及抑爆试验研究[J]. 消防科学与技术, 2019, 38(06): 775-779.

[63] 王林元, 吕瑞琪, 邓洪波. 不同粒径镁铝合金粉尘爆炸与抑爆特性研究[J]. 中国安全生产科学技术, 2017, 13(01): 34-38.

[64] 梁一鸣, 贺锋, 张鏖等. 含磷酸盐对聚乙烯粉尘爆燃的抑制影响实验研究[J]. 中国安全生产科学技术, 2023, 19(04): 135-141.

[65] 叶亚明, 胡双启, 胡立双等. 锰粉尘云最小点火能及其抑爆研究[J]. 消防科学与技术, 2016, 35(05): 600-603.

[66] 李洋, 葛涛. 基于XPS对不同密度级炼焦煤表面碳氧结构的分析[J]. 安徽理工大学学报(自然科学版), 2019, 39(06): 56-60.

[67] EN 13821-2002. Potentially explosive atmospheres-Explosion prevention and protection- Determination of minimum ignition energy of dust/air mixtures[S]. Brussels: Comité Européen de Normalisation, 2002.

[68] 任纯力. 粉尘云最小点火能试验研究与数值模拟[D]. 沈阳: 东北大学, 2011.

[69] VDI 2263-1990. Dust fires and dust explosions; hazards, assessment, protective measures; test methods for the determination of the safety characteristic of dusts[S]. Germany: DE-VDI, 1990.

[70] Siwek R, Cesana C. Ignition behavior of dusts: Meaning and interpretation[J]. Process Safety Progress, 2010, 14(02): 107-119.

[71] 代濠源, 樊建春, 刘迪等. 粒径对硫磺燃烧爆炸特性影响的试验研究[J]. 中国安全生产科学技术, 2015, 11(02): 120-124.

[72] 张博, 张奇, 谭汝媚. 喷粉压力及点火延迟时间对粉尘爆炸参数的影响[J]. 高压物理学报, 2014, 28(02): 183-190.

[73] 赵梦圆. 硬脂酸粉尘爆炸特性及抑爆技术研究[D]. 成都: 西南石油大学, 2017.

中图分类号:

 X932    

开放日期:

 2024-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式