- 无标题文档
查看论文信息

论文中文题名:

 磷酸铁锂动力电池发热特性及散热系统设计    

姓名:

 曹有琪    

学号:

 18211203019    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085204    

学科名称:

 工学 - 工程 - 材料工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 材料科学与工程学院    

专业:

 材料工程    

研究方向:

 新能源材料与器件    

第一导师姓名:

 杜立飞    

第一导师单位:

  西安科技大学    

论文提交日期:

 2021-06-20    

论文答辩日期:

 2021-05-30    

论文外文题名:

 磷酸铁锂动力电池发热特性及散热系统设计    

论文中文关键词:

 磷酸铁锂电池 ; 热特性 ; 容量衰减 ; 液冷散热 ; 温度场    

论文外文关键词:

  Lithium iron phosphate battery ; thermal characteristics ; capacity attenuation ; liquid cooling heat dissipation ; temperature field    

论文中文摘要:

由于受能源危机和环境污染的双重压力,电动汽车成为当今汽车产业发展的趋势。锂离子电池作为电动汽车的动力来源,其具有比能量高、输出功率大、倍率性能优异、循环寿命长、安全性好等特点,但是随着电动汽车的发展,动力电池的热安全性问题日益突出。锂离子电池长时间循环使用过程中内部会产生大量的热,如果无法及时散去而积聚在内部,会使电池工作温度逐渐升高,而高温容易导致电池工作性能急剧下降及电池寿命衰减,严重时会引起着火甚至爆炸等安全性问题。因此,关于动力电池使用过程发热及散热特性的研究已经成为电动汽车设计领域的重要研究课题。本文首先基于电化学-热耦合模型,首先对磷酸铁锂单体电池和电池模组进行热特性研究,分析了电池产热及散热基本特征及主要影响因素;在此基础上建立了电池容量衰减模型,分析了不同温度下电池容量衰减的特征及规律;最后基于磷酸铁锂发热及散热特征,设计了电池模组液冷散热结构,并分析其对电池组温度场的影响规律,优化了液冷散热的参数及结构。具体研究内容如下:

(1)基于电化学-热耦合模型,建立了磷酸铁锂单体电池热仿真模型,研究了放电倍率、环境温度和交流换热系数对单体电池及电池组热特性的影响,分析了其对电池温度场的影响。结果表明:电池放电倍率、对流换热系数和环境温度对单体电池及电池组的温度场具有重要的影响,放电倍率越高,对流换热系数越大,电池温差越大,温度均匀性越差,高温和低温环境使电池温差变大,温度均匀性变差。

(2)基于电池负极SEI生长理论建立了磷酸铁锂单体电池容量衰减模型,研究不同温度条件下放电倍率、负极粒径大小和充电截至电压对电池容量衰减的影响,分析了温度对电池容量衰减过程的影响规律,结果表明:放电倍率、负极粒径及充电最大截至电压对电池容量衰减具有明显的影响,放电倍率越高,充电截至电压越大,电池容量衰减速度越快,负极材料的粒径变小可减缓容量衰减速率。温度升高将加快电池内部副反应的发生,使电池活性锂的降低,正负极材料结构破坏,金属离子溶出,最终导致容量衰减过程加速,降低其使用寿命。

(3)针对6个软包磷酸铁锂电池组,设计了板式和蛇形弯管液冷结构,分析了流体流向、流体入口温度和流体流速对电池组温度场的影响,结果表明:蛇形弯管散热系统降温效果优于板式散热系统,这是因为弯管结构使流体曲折回旋,避免进出口温度冷却效果差异,提高了电池组温度均匀性。

综上,本文对锂离子电池单体及电池组的热特性、容量衰减及液冷散热等关键问题进行了研究,探讨了热行为及容量衰减的影响因素,采用液冷散热方式对电池组散热并进行液冷性能优化,本文研究结果为电池安全使用提供理论指导,液冷散热优化结果为电池热管理策略的开发提供一定的参考,以便进一步保证动力电池的使用性能以及提高电池的热安全性。

论文外文摘要:

Due to the dual pressure of energy crisis and environmental pollution, electric vehicles have become the development trend of today's automobile industry. As the power source of electric vehicles, lithium-ion batteries have the characteristics of high specific energy, large output power, excellent rate performance, long cycle life, and good safety. However, with the development of electric vehicles, the thermal safety of power batteries has become increasingly problematic. prominent. Lithium-ion batteries will generate a lot of internal heat during long-term cycling. If they cannot be dissipated in time and accumulate inside, the battery's operating temperature will gradually rise, and high temperature will easily lead to a sharp decline in battery performance and degradation of battery life. Sometimes it will cause safety problems such as fire or even explosion. Therefore, the research on the heating and heat dissipation characteristics of power batteries during use has become an important research topic in the field of electric vehicle design. Based on the electrochemical-thermal coupling model, this paper first studies the thermal characteristics of lithium iron phosphate single cells and battery modules, and analyzes the basic characteristics and main influencing factors of battery heat generation and heat dissipation; on this basis, the battery capacity attenuation is established The model analyzes the characteristics and laws of battery capacity attenuation at different temperatures; finally, based on the heating and heat dissipation characteristics of lithium iron phosphate, the liquid cooling structure of the battery module is designed, and its influence on the temperature field of the battery pack is analyzed, and the liquid is optimized. Parameters and structure of cooling and heat dissipation. The specific research content is as follows:

(1) Based on the electrochemical-thermal coupling model, a thermal simulation model of lithium iron phosphate single battery was established, and the effects of discharge rate, ambient temperature and AC heat transfer coefficient on the thermal characteristics of single battery and battery pack were studied and analyzed The impact on the battery temperature field. The results show that the battery discharge rate, convective heat transfer coefficient and ambient temperature have an important influence on the temperature field of single cells and battery packs. The higher the discharge rate, the greater the convective heat transfer coefficient, the greater the battery temperature difference, and the greater the temperature uniformity. Poor, high temperature and low temperature environment make the temperature difference of the battery become larger, and the temperature uniformity becomes worse.

(2) Based on the SEI growth theory of the negative electrode of the battery, the capacity decay model of lithium iron phosphate single battery was established, and the influence of the discharge rate, the size of the negative electrode size and the charge cut-off voltage on the battery capacity decay under different temperature conditions was studied, and the temperature on the battery capacity was analyzed. The influence law of the decay process, the results show that: the discharge rate, the negative electrode particle size and the maximum charge cut-off voltage have obvious effects on the battery capacity attenuation. The higher the discharge rate, the greater the charge cut-off voltage, and the faster the battery capacity decays. A smaller particle size can slow down the rate of capacity decay. Increasing temperature will accelerate the occurrence of side reactions inside the battery, reduce the active lithium of the battery, destroy the structure of the positive and negative electrodes, and dissolve metal ions, which will eventually accelerate the capacity decay process and reduce its service life.

(3) For 6 soft-packed lithium iron phosphate battery packs, the plate and serpentine elbow liquid cooling structure was designed, and the influence of fluid flow direction, fluid inlet temperature and fluid velocity on the temperature field of the battery pack was analyzed. The results showed that: serpentine The cooling effect of the elbow cooling system is better than that of the plate cooling system. This is because the elbow structure causes the fluid to twist and turn, avoiding the difference in the cooling effect of the inlet and outlet temperature, and improving the temperature uniformity of the battery pack.

In summary, this paper studies the thermal characteristics, capacity attenuation and liquid cooling heat dissipation of lithium-ion battery cells and battery packs, and discusses the factors affecting thermal behavior and capacity attenuation, and uses liquid cooling to dissipate heat from the battery pack. And optimize the liquid cooling performance. The research results of this paper provide theoretical guidance for the safe use of batteries. The optimization results of liquid cooling heat dissipation provide a certain reference for the development of battery thermal management strategies, so as to further ensure the performance of the power battery and improve the thermal safety of the battery.

参考文献:

[1] 张微. 新能源汽车电池技术发展瓶颈分析及对策研究[J]. 金属功能材料, 2021, 28(01):78-84.

[2] 徐燕. 新能源汽车发展现状及趋势[J]. 汽车实用技术, 2020, 45(24):13-15.

[3] 吕纯池. 新能源电动汽车核心技术发展现状与趋势综述[J]. 科技与创新, 2020(17): 80-81.

[4] Bi H J, Zhu H B, Zu L, et al. Low-temperature thermal pretreatment process for recycling inner core of spent lithium iron phosphate batteries[J]. Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA, 2021. 39 (1): 146-155.

[5] 郑志坤. 磷酸铁锂储能电池过充热失控及气体探测安全预警研究[D]. 郑州大学, 2020.

[6] 胡广, 廖承林, 张文杰.车用锂离子电池热失控研究综述[J]. 电工电能新技术, 2021, 40(02): 66-80.

[7] 郭亚洲, 田相军, 凌泽. 锂离子电池热失控机理研究现状[J]. 电源技术, 2020, 44(03): 461-463.

[8] 孙延先, 姜兆华. 锂离子电池模组过充热失控扩散仿真[J]. 电池, 2019, 49(06): 481-484.

[9] Bi H J, Zhu H B, Zu L, et al. Pneumatic separation and recycling of anode and cathode materials from spent lithium iron phosphate batteries[J]. Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA, 2019, 37(4) :374-385.

[10] 贺兴, 林波, 缪文泉, 等. 磷酸铁锂正极锂离子电池安全性能影响因素[J]. 电池, 2021, 51(02): 152-156.

[11] Wang D, Liu W H, Zhang X H, et al. Review of Modified Nickel-Cobalt Lithium Aluminate Cathode Materials for Lithium-Ion Batteries[J]. International Joyrnal of Photoenergy, 2019. 2019(8):1-13.

[12] 崔志仙, 王青松, 孙金华. 锂枝晶导致的锂离子电池内短路模拟研究[J]. 火灾科学, 2019, 28(02):101-112.

[13] 赵磊. 局部高温面热源接触下锂离子电池热失控特性研究[D]. 江苏大学, 2019.

[14] 张凯. 纯电动汽车锂离子动力电池散热结构设计及仿真研究[D]. 长安大学, 2019.

[15] Yamada A, Hosoya M, Chung S C, et al. Olivine-type Cathodes Achievements and Problems[J]. J Power Source, 2003, 119-121(1-2):232-238.

[16] Arora P, White E R. Capacity Fade Mechanisms and Side Reactions in Lithium-ion Batteries[J]. J Electrochem Soc, 1998, 145:3647-3667.

[17] Morgan D, Ven A V, Ceder G. Li Conductivity in LixFePO4 (M=Mn, Fe, Co, Ni) Olivine Materials[J]. Electrochemical and Solid Letters, 2004, 7(2):A30-A32.

[18] Isiam M S, Driscoll D J, Crag A J, et al. Atomin-scale Investigation of Defects Dopants, and Lithium Transport in the LIFePO4 Olivine-type Battery Material[J]. Chem Mater, 2005, 17(20):5085-5092.

[19] Prosini P P, Lisi M, Zane D, et al. Determination of the Chemical Diffusion Coefficent of Lithium in LiFePO4[J]. Solid State Ionics, 2002, 148:45-51.

[20] Takahashi M, Tobishima S I, Takei K, et al. Reaction Behavior of LiFePO4 as a Cathode Material for Rechargeable Lithium Batteries[J]. Solid State Ionics, 2002, 148:283-289.

[21] Takahashi M, Tobishima S, Takei K, et al. Characterization of LiFePO4 as the Cathode Material for Rechargeable Lithium Batteries[J]. J Power Sources, 2001, 97-98:508-501.

[22] Andersson A S, Thomas J O. TheSource of First-cycle Capacity Loss in LiFePO4[J]. J Power Sources, 2001, 97-98:498-502.

[23] Andersson A S, Kalska B, Haggstrom L, et al. Lithium Extraction/insertion in LiFePO4: an X-ray Diffraction and Mossbauer Spectroscopy Study[J]. Solid State Ionics, 2000, 130:41-52.

[24] Andersson A S, Thomas J O, Kalska B, et al. Thermal Stability of LiFePO4 Based Cathodes[J]. Electrochemical and Solid State Letters, 2000, 3(2):66-68.

[25] Li G, Azuma H, Tohda M. Optimized Li MnyFe1-yPO4 as the Cathode for Lithium Batteries[J]. J Electrochem SOC, 2002, 149(6): A743-A747.

[26] 许昕. Ti含量对掺杂磷酸铁锂正极材料性能影响的研究[J]. 安徽化工, 2018, 44(06): 67-69.

[27] 陈慧慧. 锂离子电池正极材料磷酸铁锂的溶剂热制备及改性研究[D]. 西安建筑科技大学, 2018

[28] 李春雷, 解莹春, 李祥飞. 磷酸铁锂正极材料的制备及改性研究进展[J]. 化工新型材料, 2018, 46(07): 25-33.

[29] 邹渊博, 谭晓军. 一种车用锂离子电池包的充放电热特性研究[J]. 汽车实用技术, 2018(09): 3-5.

[30] 罗宗鸿. 电动汽车电池热特性及电池组风冷散热研究[D]. 南昌航空大学, 2018.

[31] 杨勇. 18650锂离子电池产热模型及运用研究[D]. 重庆大学, 2018.

[32] Bernardi D, Pawlikowsk E, Newman J. A General Energy-Balance for Battery Systems [J]. Journal of the Electrochemical Society, 1985, 132(1):5-12.

[33] Chen S C ,Wan C C. Thermal analysis of lithium-ion batteries[J]. Journal of Power Sources, 1996, 140(1):111-124.

[34] Hallaj S A, Maleki H, Hong J S, et al. Thermal modeling and design considerations of lithium-ion batteries[J]. Journal of Power Sources, 1999, 83(1-2):1-8.

[35] Hallaj S A, Prakash J, Selman J R. Characterization of commercial Li-ion batteries using electrochemical calorimetric measurements[J]. Journalof Power Sources, 2000, 87(1): 186-194.

[36] Zhang S S , Xu K , Jow T R . Electrochemical impedance study on the low temperature of Li-ion batteries[J]. Electrochimica Acta, 2004, 49(7): 1057-1061.

[37] 杨彦涛, 张研, 范光辉. 电池性能参数相关性及发热特性[J]. 电池, 2018, 48(03): 191-194.

[38] Birkl C R, Roberts M R, Mcturk E, et al. Degradation Diagnostics for Lithium ion Cells[J]. Journal of Power Sources, 2017. 341:373-386.

[39] Yang L J, Cheng X Q, Gao Y Z, et al. Lithium Deposition On Graphite Anode During Long-Term Cycles And The Effect On Capacity Loss[J]. RSC Advances, 2014. 4(50): 26335-26341.

[40] Yang L J, Cheng X Q, Gao Y Z, et al. Lithium Compound Deposition on Mesocarbon Microbead Anode of Lithium Ion Batteries after Long-Term Cycling. ACS Applied Materials & Interfaces[J]. 2014. 6(15):12962-12970.

[41] 秦红莲, 高飞. 温度对LiFePO4锂离子动力电池性能的影响[J]. 电源世界, 2015 (12): 32-34.

[42] Ramadass P, Haran B, White R, et al. Capacity fade of Sony 18650 cells cycled at elevated temperatures[J]. Journal of Power Sources, 2002, 112(2):614-620.

[43] 张军, 胡春姣, 卿剑平, 等. 新型车用软包锂离子电池模块温度特性研究[J]. 电源技术, 2018, 42(01): 8-11.

[44] 薛超坦. 基于液冷的纯电动汽车锂电池热管理研究[D]. 吉林大学, 2017.

[45] 彭波. 电动汽车用锂离子电池组风冷-热管复合式散热性能研究[D]. 南京师范大学, 2017.

[46] 吴克麟. 基于空调系统的交变式电池热管理系统性能研究[D]. 北京理工大学, 2016.

[47] 王天波, 陈茜, 张兰春, 等. 电动汽车锂离子电池风冷散热结构优化设计[J]. 电源技术, 2020, 44(03): 371-376.

[48] Wang T, Tseng K J, Zhao J Y, et al. Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies[J]. Applied Energy, 2014, 134(01):229-238.

[49] 马永笠, 徐自强, 吴孟强, 等. 电池组交替式风冷散热结构研究[J]. 电源技术, 2019, 43(11): 1810-1812.

[50] 赵国柱, 招晓荷, 徐晓明, 等. 基于最小能耗的动力电池风冷控制策略[J]. 储能科学与技术, 2019, 8(04): 751-758.

[51] 唐爱坤, 娄刘生, 单春贤, 等.大容量锂电池液冷冷却结构设计及仿真分析[J]. 电源技术, 2019, 43(05): 775-777.

[52] 卢宇奇. 基于液冷的电动挖掘机动力电池组散热研究[D]. 西南交通大学, 2019.

[53] 徐海峰, 苏林, 盛雷. 液冷板电池组散热性能仿真及优化[J]. 制冷技术, 2019, 39(02): 23-28+39.

[54] 邱焕尧. 基于锂离子动力电池液冷散热结构设计及仿真分析[D]. 长安大学, 2019.

[55] 张克鹏. 某新能源商用车电池组液冷板热管理方案研究[J]. 制冷与空调, 2020, 20(02): 21-24.

[56] 冯能莲, 董士康, 李德壮, 等. 蜂巢式液冷电池模块传热特性的试验研究[J]. 汽车工程, 2020, 42(05): 658-664.

[57] 柴家栋, 杜恒, 陈显达. 方形锂离子电池液冷管道结构优化设计[J]. 自动化应用, 2020 (03): 46-49.

[58] Jarrett A, Kim I Y. Design optimization of electric vehicle battery cooling plates for thermal performance[J]. Journal of Power Sources, 2011, 196(23): 10359-10368.

[59] Abduljalil A. Mat A, Mat S, et al. Numerical study of PCM solidification in a triplex tube heat exchanger with internal and external fins[J]. International Journal of Heat and Mass Transfer, 2013, 61:684-695.

[60] Hosseinizadeh S F, Tan F L, Moosania S M. Experimental and numerical studies on performance of PCM-based heat sink with different configurations of internal fins[J]. Applied Thermal Engineering, 2011, 31(17-18):3827-3838.

[61] 张国庆, 饶中浩, 吴忠杰, 等. 采用相变材料冷却的动力电池组的散热性能[J]. 化工进展, 2009, 28(01):23-40.

[62] 李扬, 陶于兵. 多孔复合相变材料电池热管理模型及结构优化[J]. 科学通报, 2020, 65(Z1):213-221.

[63] Bai F F, Chen M B, Song W J, et al. Thermal management performances of PCM/water cooling-plate using for lithium-ion battery module based on non-uniform internal heat source[J]. Applied Thermal Engineering, 2017, 126:17-27.

[64] Barcellona S, Piegari L G. Lithium Ion Battery Models and Parameter Identification Techniques[J]. Enegries, 2017,10(12):1962-1970.

[65] Oleg B, Ren X M, Jenel V. Modeling Insight into Battery Electrolyte Electrochemical Stability and Interfacial Structure[J]. Accounts of chemical Research, 2017, 50(12): 2886-2894.

[66] 韩雪冰. 车用锂离子电池机理模型与状态估计研究[D]. 北京: 清华大学, 2014.

[67] Remmlinger J, Buchholz M, Dietmayer K, et al. On-board State-of-health Monitoring of Lithium-ion Batteries Using Linear Parameter-varying Models [J]. Journal of Power Sources, 2013, 239(11):689-695.

[68] Wladislaw W, Fleischer C, Sauer D U. Critical Review of the Methods for Monitoring of Lithium-ion Batteries in Electric and Hybrid Vehicles[J]. Journal of Power Sources, 2014, 258:321-339.

[69] Chiang Y H, Sean W Y, Ke J C. Online Estimation of Internal Resistance and Open-circuit Voltage of Lithium-ion Batteries in Electric Vehicles[J]. Journal of Power Sources, 2011, 196(8): 3921-3932.

[70] 谭梅鲜. 磷酸铁锂电池充放电过程的电化学与热特性研究[D]. 华南理工大学, 2020.

[71] 饶中浩, 张国庆. 电池热管理[M]. 北京:科学出版社, 2015.

[72] 彭强. 电动汽车用锂离子动力电池热效应研究[D]. 吉林大学, 硕士论文,2012.

[73] Wang Q, Ping P, Zhao X, et al. Thermal runaway caused fire and explosion of lithium-ion battery[J]. Journal of Power Sources, 2012, 208(1):210-224.

[74] Zhao R, Zhang S J, Liu J. A Review of Thermal Performance Improving Methods of Lithium Ion Battery: Electrode Modification and Thermal Management System[J]. Journal of Power Sources, 2015(299):557-577.

[75] 程昀, 李劼, 贾明, 等. 动力锂离子电池模块散热结构仿真研究[J]. 中国有色金属学报, 2015, 25(06):1607-1616.

中图分类号:

 TM912    

开放日期:

 2021-06-21    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式