- 无标题文档
查看论文信息

论文中文题名:

 海藻酸钠基复合水凝胶材料的制备 及吸附性能研究    

姓名:

 赵坤    

学号:

 20211025009    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080502    

学科名称:

 工学 - 材料科学与工程 - 材料学    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 材料科学与工程学院    

专业:

 材料科学与工程    

研究方向:

 高分子材料    

第一导师姓名:

 陈进    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-19    

论文答辩日期:

 2023-06-06    

论文外文题名:

 Preparation and adsorption properties of sodium alginate based composite hydrogel materials    

论文中文关键词:

 吸附法 ; 水凝胶 ; 海藻酸钠 ; 高岭土 ; 单层吸附    

论文外文关键词:

 Adsorption method ; Hydrogel ; Sodium alginate ; Kaolin ; Monolayer adsorption    

论文中文摘要:

目前,在水处理领域中吸附法因为具有操作简便,净化效率高,适用范围广的特点被认为是大体量、低浓度的重金属吸附工作中最重要的技术之一。吸附材料的性能是决定吸附工艺的效果的重要影响因素,因此如何制备具有高吸附性能、环境友好型、成本低廉、性质稳定的吸附材料是使用吸附法处理重金属离子污水的关键。海藻酸钠含有大量的羟基与羧基,能够与二价或三价的金属离子发生络合构成水凝胶结构吸附重金属离子。壳聚糖可以提供丰富的氨基,在酸性环境中可以质子化转变为NH3+并与污染物中的含负电的基团产生静电作用,以此吸附污染物。高岭土是自然界中分布最广泛、储量最丰富的矿物资源之一,被认为是一种极具开发价值的低成本天然吸附材料,其出色的耐酸性可以改善海藻酸钠吸附材料在酸性溶液中稳定性较差的缺陷。本文基于国内外研究现状,选择将海藻酸钠,壳聚糖与高岭土进行复合得到一种制备流程简便,具有良好吸附性能且能多次循环工作的新型水凝胶吸附材料。研究内容总结如下:

(1)以海藻酸钠(SA),壳聚糖(CTS)为原料,采用半溶解酸化-溶胶-凝胶转变法与冷冻干燥结合的技术制备出SA/CTS复合水凝胶吸附材料,对其进行基础表征证明海藻酸钠分别与Ca2+,壳聚糖发生交联,生成了双网络水凝胶结构,具有可观的吸附容量。通过配置多组不同比例的水凝胶材料,对其进行红外光谱(FTIR)、扫描电子显微镜(SEM)与压汞法(MIP)等测试,发现当海藻酸钠与壳聚糖比例为2:1时水凝胶结构最好。并且其吸附过程与准二级动力学拟合更好,既有物理吸附又有化学吸附,其中化学吸附为主要吸附行为,对于Pb2+与Cu2+的平衡吸附容量分别为165.36 mg/g,68.03 mg/g。经过吸附-脱附循环后所得复合水凝胶对Pb2+与Cu2+的吸附性能仍有72.9 %与78.51%,考虑到吸附剂对Cu2+吸附性能较差,后续实验着重考察吸附剂对Cu2+的吸附性能。

(2)通过引入高岭土(Kaolin)改善SA/CTS复合水凝胶在低pH环境中的吸附性能,并避免高岭土粉体吸附剂在水处理领域中难以回收的缺陷。对所得SA/CTS/K复合水凝胶进行了SEM、FTIR等表征,结果显示高岭土的添加量越大,水凝胶的网络结构的孔隙率越低,选择添加1 g高岭土制备SA/CTS/K复合水凝胶吸附材料,并且确定了高岭土与海藻酸钠,壳聚糖的相互作用。吸附测试结果表明:吸附剂对Cu2+的平衡吸附容量提升至85.17 mg/g,且在pH为2的条件下吸附性能有一定的提升。但多次吸附-脱附循环后的吸附循环稳定性弱于SA/CTS复合水凝胶的78.51%,仅为73.6 %。

(3)采用聚丙烯酰胺(PAM)对高岭土进行改性,之后将所得改性高岭土进行超声分散并与海藻酸钠,壳聚糖经过半溶解酸化-溶胶-凝胶转变法与冷冻干燥结合的技术制备复合水凝胶。以此避免高岭土表面携带的含铝氢氧化物与海藻酸钠表面的羧基形成氢键,减少高岭土对海藻酸钠与壳聚糖生成水凝胶时的交联过程的干扰。对所得复合水凝胶进行表征发现SA/CTS/P复合水凝胶是一种空隙繁多的非均匀表面材料,这些分布不均匀的孔径有利于溶胀从而吸附金属离子。吸附测试结果表明:SA/CTS/P复合水凝胶对Cu2+的饱和吸附容量为117.51 mg/g,在pH为2的极端环境中仍具有13.46 mg/g的吸附量。其次吸附剂的吸附行为与Langmuir模型拟合程度更好,说明其吸附过程为均质表面的单分子层吸附。在5次吸附-脱附循环实验后其吸附性能仍能保持在80%以上。

论文外文摘要:

Currently, adsorption is considered one of the most crucial technologies for large-scale, low-concentration heavy metal adsorption in water treatment due to its simplicity, high purification efficiency, and broad applicability. The performance of adsorbent materials plays a vital role in determining the effectiveness of the adsorption process. As a result, the key to employing adsorption for treating heavy metal ion wastewater lies in developing high-performance, eco-friendly, low-cost, and stable adsorbent materials. Sodium alginate, containing numerous hydroxyl and carboxyl groups, forms hydrogel structures with divalent or trivalent metal ions to adsorb heavy metal ions. Chitosan, providing an abundance of amino groups, protonates to NH3+ in acidic environments and generates electrostatic interactions with negatively charged groups in pollutants, facilitating adsorption. Kaolin, one of the most widely distributed and abundant mineral resources in nature, is deemed a highly valuable low-cost natural adsorbent due to its excellent acid resistance. This resistance can enhance the poor stability of sodium alginate adsorbents in acidic solutions. Based on current research, this study combines sodium alginate, chitosan, and kaolin to develop a novel hydrogel adsorbent material with a straightforward preparation process, excellent adsorption performance, and recyclability. The research findings are summarized as follows:

(1) Using sodium alginate (SA) and chitosan (CTS) as raw materials, a semi-dissolved acidification-sol-gel transition method, combined with freeze-drying, is employed to create SA/CTS composite hydrogel adsorbent materials. Basic characterization demonstrates that sodium alginate forms a double-network hydrogel structure through cross-linking with Ca2+ and chitosan, offering considerable adsorption capacity. SEM and MIP tests reveal that the optimal hydrogel structure is achieved when the sodium alginate-to-chitosan ratio is 2:1. The adsorption process aligns more closely with pseudo-second-order kinetics, involving both physical and chemical adsorption, with the latter being the primary behavior. The equilibrium adsorption capacities for Pb2+ and Cu2+ are 165.36 mg/g and 68.03 mg/g, respectively. After adsorption-desorption cycles, the composite hydrogel retains 72.9% and 78.51% of its adsorption performance for Pb2+ and Cu2+, respectively. Due to the adsorbent's poorer performance for Cu2+, subsequent experiments focus on its adsorption capabilities for Cu2+.

(2) By incorporating kaolin, the adsorption performance of the SA/CTS composite hydrogel in low pH environments is improved, and the challenge of recovering kaolin powder adsorbents in water treatment is addressed. SEM and FTIR characterization of the obtained SA/CTS/K composite hydrogel indicates that the more kaolin is added, the lower the porosity of the hydrogel network structure. A composite hydrogel adsorbent material is prepared by adding 1 g of kaolin, and the interactions between kaolin, sodium alginate, and chitosan are determined. Adsorption test results show that the equilibrium adsorption capacity of the adsorbent for Cu2+ rises to 85.17 mg/g, with a moderate improvement in adsorption performance at pH 2. However, after multiple adsorption-desorption cycles, the adsorption cycle stability is weaker than that of the SA/CTS composite hydrogel, at just 73.6%.

(3) Polyacrylamide (PAM) is used to modify kaolin, which is then ultrasonically dispersed and combined with sodium alginate and chitosan using the semi-dissolved acidification-sol-gel transition method and freeze-drying technology to create composite hydrogels. This approach prevents hydrogen bonds from forming between the aluminum hydroxide on the kaolin surface and the carboxyl groups on the sodium alginate surface, reducing kaolin's interference in the cross-linking process between sodium alginate and chitosan during hydrogel formation. Characterization of the resulting composite hydrogel reveals that the SA/CTS/P composite hydrogel is a material with a non-uniform surface and numerous pores. The uneven distribution of pore sizes is advantageous for swelling and adsorbing metal ions. Adsorption test results show that the saturated adsorption capacity of the SA/CTS/P composite hydrogel for Cu2+ is 117.51 mg/g, and it still maintains an adsorption capacity of 13.46 mg/g even in extreme environments with a pH of 2. Moreover, the adsorption behavior of the adsorbent fits the Langmuir model better, indicating that its adsorption process is a homogeneous surface monolayer adsorption. After five adsorption-desorption cycles, the adsorbent's performance remains above 80%.

参考文献:

[1] De Gisi S, Lofrano G, Grassi M, et al. Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: a review [J]. Sustainable Materials and Technologies, 2016, 9: 10-40.

[2] Zhu R, Chen Q, Zhou Q, et al. Adsorbents based on montmorillonite for contaminant removal from water: A review [J]. Applied Clay Science, 2016, 123: 239-258.

[3] Lofrano G. Emerging compounds removal from Wastewater, Springer[J]. Netherlands, 2012, 15-37.

[4] Qiaoqiao Zhou, Nan Yang, Youzhi Li, et al. Total concentrations and sources of heavy metal pollution in global river and lake water bodies from 1972 to 2017 [J]. Global Ecology and Conservation, 2020, 22-29.

[5] 宋剑飞. 活性炭吸附VOCs及其构效关系研究 [D]. 中南大学, 2014: 24-27.

[6] 邹学权. 水处理用活性炭的微波改性与再生 [D]. 浙江大学, 2008: 14-20.

[7] 苏慧, 朱兆武, 王丽娜, 等. 从盐湖卤水中提取与回收锂的技术进展及展望 [J]. 材料导报, 2019, 33(13): 2119-2126.

[8] Cprrescu S, Zgrian R G, Tihan G T, et al. Biopolymeric membrane enriched with chitosan and silver for metallic ions removal [J]. Polymers, 2020, 12(8):1792-1803.

[9] Verma B, Balomajumder C. Hexavalent chromium reduction from real electroplating wastewater by chemical precipitation [J]. Bulletin of the Chemical Society of Ethiopia, 2020, 34(1):67-74.

[10] Cimen, Aysel. Removal of chromium from wastewater by reverse osmosis [J]. Russian Journal of Physical Chemistry, 2015, 89(7):1238-1243.

[11] Amit Shivputra Dharnaik, Pranab Kumar Ghosh. Hexavalent chromium [Cr (VI)] removal by the electrochemical ion-exchange process [J]. Environmental Technology, 2014, 35(18): 2272-2279.

[12] Belachew N, Hinsene H. Preparation of cationic surfactant-modified kaolin for enhanced adsorption of hexavalent chromium from aqueous solution [J]. Applied Water Science, 2020, 10(1):1-8.

[13] Burakov A. E, Galunin E. V, Burakova I. V, et al. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: a review [J]. Ecotoxicology & Environmental Safety, 2017, 148:702-710.

[14] Wang Q, Shaheen S. M., Jiang, Y., Li R., et al. Fe/mn- and p-modified drinking water treatment residuals reduced cu and pb phytoavailability and uptake in a mining soil [J]. Journal of Hazardous Materials, 2021, 403: 628-637.

[15] 赵次娴, 刘陈, 刘锐利, 等. 重金属污水处理技术研究进展 [J]. 广东化工, 2021, 48(08): 179-181.

[16] 《水污染防治行动计划》主题发刊词——暨《环境保护科学》的解析 [J]. 环境保护科学, 2015, 41(03): 2-4.

[17] Chang C, Duan B, Cai J, et al. Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery [J]. European Polymer Journal, 2010, 46(1):92-100.

[18] Dehkordi, Khodadadi D. Effect of superabsorbent polymer on soil and plants on steep surfaces [J]. Water and environment journal: Journal of the Chartered Institution of Water and Environmental Management, 2018, 32(2):158-163.

[19] Ahmed, Enas M. Hydrogel: Preparation, characterization, and applications: A review [J]. Journal of Advanced Research, 2015, 6(2): 84-89.

[20] Chen X, Li P, Kang Y, et al. Preparation of temperature-sensitive Xanthan/NIPA hydrogel using citric acid as crosslinking agent for bisphenol A adsorption [J]. Carbohydrate Polymers, 2019, 206: 94-101.

[21] Sharifzadeh G, Hezaveh H, Muhamad I, et al. Montmorillonite-based polyacrylamide hydrogel rings for controlled vaginal drug delivery [J]. Materials Science and Engineering: C, 2020, 110:116-124.

[22] 林本兰, 吴兰兰, 崔升, 等. 新型重金属离子吸附剂的研究进展 [J]. 材料导报, 2015, 29(19): 18-23.

[23] Bao Y X, Yan X M, Du W, et al. Application of amine-functionalized MCM-41 modified ultrafiltration membrane to remove chromium (VI) and copper (IN) [J]. Chemical Engineering Journal, 2015, 281: 460-467.

[24] Peng Q, Liu M, Zheng J, et al. Adsorption of dyes in aqueous solutions by chitosan–halloysite nanotubes composite hydrogel beads [J]. Microporous & Mesoporous Materials, 2015, 201:190-201.

[25] Wang S, Thierry V, Catherine F. Alginate and algal-based beads for the sorption of metal cations: Cu (II) and Pb (II) [J]. International Journal of Molecular Sciences, 2016, 17(9):1453-1472.

[26] Hamza M F. Grafting of quaternary ammonium groups for uranium (VI) recovery: application on natural acidic leaching liquor [J]. Journal of Radioanalytical and Nuclear Chemistry, 2019, 322(2):519-532.

[27] 朱楠, 石博文, 袁华, 等. 吸附法脱除费托合成油中含氧化合物的研究进展 [J]. 化学工程师, 2021, 35(03): 62-65.

[28] Lin Z, Yang Y, Liang Z, et al. Preparation of chitosan/calcium alginate/bentonite composite hydrogel and its heavy metal ions adsorption properties [J]. Polymers, 2021, 13(11):1891-1902.

[29] T.A. Zidan, Ahmed E. Abdelhamid, E.G. Zaki. N-Aminorhodanine modified chitosan hydrogel for antibacterial and copper ions removal from aqueous solutions [J]. International Journal of Biological Macromolecules, 2020, 158:32–42.

[30] Bhattacharyya K G, Gupta S S. Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review [J]. Adv Colloid Interface, 2008, 140(2):114-131.

[31] Li Y, Bing X, Zhao Q, et al. Removal of copper ions from aqueous solution by calcium alginate immobilized kaolin [J]. J Environ, 2011, 23(003): 404-411.

[32] Babel S, Kurniawan T A. Low-cost adsorbents for heavy metals uptake from contaminated water: a review [J]. Journal of Hazardous Materials, 2003, 97(1-3): 219-243.

[33] 蒋剑春, 孙康. 活性炭制备技术及应用研究综述 [J]. 林产化学与工业, 2017, 37(01): 1-13.

[34] Xia W, Li Y, Wu F, & Niu C. Enhanced flotation selectivity of fine coal from kaolinite by anionic polyacrylamide pre-conditioning [J]. Journal of Molecular Liquids, 2021, 334-343.

[35] Haohe Huang, Qifeng Yang, Chongxing Huang. Facile and low-cost fabrication of composite hydrogels to improve adsorption of copper ions [J]. Environmental Technology & Innovation, 2022, 27: 427-436.

[36] 宁可心, 张婷, 王毅, 等. 粘土类吸附剂去除水中污染物的研究进展 [J]. 化工新型材料, 2020, 48(08): 276-280.

[37] 李超, 王丽萍. 矿物材料处理废水的研究进展 [J]. 矿产保护与利用, 2020, 40(01): 65-71.

[38] Fernandez J G, Ingber D E. Unexpected strength and toughness in chitosan-fibroin laminates inspired by insect cuticle [J]. Advanced Materials, 2012, 24(420): 480-492.

[39] Ostrowska-Czubenko J, Gierszewska-Druzynska M. Effect of ionic crosslinking on the water state in hydrogel chitosan membranes [J]. Carbohydrate Polymers, 2009, 77(3): 590-598.

[40] Yanjun Huang, Wu H, Shao T, Zhao X, et al. Enhanced copper adsorption by DTPA-chitosan/alginate composite beads: mechanism and application in simulated electroplating wastewater [J]. Chemical Engineering Journal, 2018, 339: 322-333.

[41] Huang H, Yang Q, Zhang L, et al. Polyacrylamide modified kaolin enhances adsorption of sodium alginate/carboxymethyl chitosan hydrogel beads for copper ions [J]. Chemical Engineering Research and Design, 2022, 180: 296-305.

[42] 聂发辉, 吴钦, 吴道, 等. 改性蒙脱石在污水处理中的应用现状及进展 [J]. 应用化工, 2021, 50(03): 805-811.

[43] Zhang Z, Yuan Z, Zhuang L, et al. Adsorption mechanism of polyacrylamide on kaolinite surface in the presence of Ca2+: Insights from DFT calculation [J]. Chemical Physics Letters, 2021, 776(193): 672-686.

[44] Cjz A, Min H. A, Qfk B, et al. Nacre-inspired hydroxyapatite/chitosan layered composites effectively remove lead ions in continuous-flow wastewater – ScienceDirect [J]. Journal of Hazardous Materials, 2020, 386: 121-134.

[45] Aman N, Mishra T, Hait J, et al. Simultaneous photoreductive removal of copper (II) and selenium (IV) under visible light over spherical binary oxide photocatalyst [J]. Journal of Hazardous Materials, 2011, 186(1):360-366.

[46] 王丽萍, 李超. 粉煤灰资源化技术开发与利用研究进展 [J]. 矿产保护与利用, 2019, 39(04): 38-45.

[47] Ahmadijokani F, Tajahmadi S, Bahi A, et al. Ethylenediamine-functionalized Zr-based MOF for efficient removal of heavy metal ions from water [J]. Chemosphere, 2021, 264(2): 466-473.

[48] Chai J. B, Au P. I, Mubarak N. M, et al. Adsorption of heavy metal from industrial wastewater onto low-cost Malaysian kaolin clay–based adsorbent [J]. Environmental Science and Pollution Research, 2020, 27(12): 32-47.

[49] 施周, 邓林.水中重金属离子吸附材料的研究现状与发展趋势 [J]. 建筑科学与工程学报, 2017, 34(05): 21-30.

[50] S. Bensalem, B. Hamdi, S. Del Confetto, et al. Characterization of chitosan/montmorillonite bionanocomposites by inverse gas chromatography [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 516: 336-344.

[51] Baowei Yu, Jing Xu, Jia-Hui Liu, et al. Adsorption behavior of copper ions on graphene oxide–chitosan aerogel[J]. Journal of Environmental Chemical Engineering, 2013, 1(4): 1044-1050.

[52] 张化文. 螯合树脂在重金属废水资源化处理中的工艺应用 [J]. 绿色科技, 2019, (12): 84-87.

[53] Jianming Wu, Xi Cheng, Yulin Li, et al. Constructing biodegradable nanochitin-contained chitosan hydrogel beads for fast and efficient removal of Cu(II) from aqueous solution [J]. Carbohydrate Polymers, 2019, 211: 152-160.

[54] Nadia Sahebjamee, Mohammad Soltanieh, Seyed Mahmoud Mousavi, et al. Removal of Cu2+, Cd2+ and Ni2+ ions from aqueous solution using a novel chitosan/polyvinyl alcohol adsorptive membrane [J]. Carbohydrate Polymers, 2019, 210: 264-273.

[55] Vunain E, Mishra A K, Mamba B B. Dendrimers, mesoporous silicas and chitosan-based nanosorbents for the removal of heavy-metal ions; a review [J]. International Journal of Biological Macromolecules, 2016, 86: 570-586.

[56] Baghbadorani N. B, Behzad T, Etesami N, et al. Removal of Cu2+ ions by cellulose nanofibers-assisted starch-g-poly (acrylic acid) super adsorbent hydrogels [J]. Composites Part B: Engineering, 2019, 176: 84-97.

[57] 常秀莲, 王文华, 冯咏梅. 海藻吸附重金属离子的研究 [J]. 海洋通报, 2003, 22(2): 39-44.

[58] Fischer F G, Dorfel H. Polyuronic acids in brown algae [J]. Hoppe- Seyler's Zeitschrift fur physiologische Chemie, 1955, 302(4-6): 186-203.

[59] Papageorgiou S K, Katsaros F K, Favvas E P, et al. Alginate fibers as photocataly st immobilizing agents applied in hybrid photocataly tic/ultrafiltration water treatment processes [J]. Water research, 2012, 46(6): 1858-1872.

[60] Maurya N S, Mittal A K. Biosorptive uptake of cationic dyes from aqueous phase using immobilised dead macro fungal iomass [J]. International Journal of Environmental Technology and Management, 2011, 14(1): 282-294.

[61] Balamurugan B, Thirumarimurugan M, Kannadasan T. Anaerobic degradation of textile dye bath effluent using Halomonas sp [J]. Bioresource Technology, 2011, 102(10): 6365-6369.

[62] Li Q, Feng X L, Li T T, et al. Anaerobic decolorization and detoxification of cationic red X-GRL by Shewanella oneidensis MR-1 [J]. Environmental Technology, 2018, 39(18): 2382-2389.

[63] Karthik R, Meenakshi S. Removal of Cr (VI) ions by adsorption onto sodium alginate-poly aniline nanofibers [J]. International Journal of Biological Macromolecules, 2015, 72: 711-717.

[64] Crini G, Badot P M. Application of chitosan, a natural aminopoly saccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature [J]. Progress in Polymer Science, 2008, 33(4): 399-447.

[65] Yi X, Sun F, Han Z, et al. Graphene oxide encapsulated polyvinyl alcohol/sodium alginate hydrogel microspheres for Cu (II) and U (VI) removal [J]. Ecotoxicology and Environmental Safety, 2018, 158: 309-318.

[66] Zhang H, Omer A M, Hu Z, et al. Fabrication of magnetic bentonite/carboxymethyl chitosan/sodium alginate hydrogel beads for Cu (II) adsorption [J]. International Journal of Biological Macromolecules, 2019, 135: 490-513.

[67] Xiong, Paging, Chen, et al. Sodium alginate/graphene oxide aerogel with enhanced strength–toughness and its heavy metal adsorption study [J]. International Journal of Biological Macromolecules, 2016, 83: 133-141.

[68] Kumar M N V R, Muzzarelli R A A, Muzzarelli C, et al. Chitosan chemistry and pharmaceutical perspectives [J]. Chemical Reviews, 2004, 104(12): 6017-6084.

[69] Zhao D-Y, Yu S, Sun B, et al. Biomedical applications of chitosan and its derivative nanoparticles [J]. Polymers, 2018, 10(4): 462 -468.

[70] Jia Wei, Han, Luis, et al. Food Packaging: A comprehensive review and future trends [J]. Comprehensive Reviews in Food Science & Food Safety, 2018, 62: 689-694.

[71] Kumar M N V R. A review of chitin and chitosan applications [J]. Reactive & Functional Polymers, 2000, 46(1): 1-27.

[72] TIAN X, LIAN S, WEN J, et al. Egg albumin-assisted sol–gel synthesis and photo-catalytic activity of SnO2 micro/nano-structured biscuits [J]. Sol-Gel Sci. Technol, 2018, 85(2):402-147.

[73] Adnan B, Iyad R, Mahmoud O, et al. Chitin and chitosan as direct compression excipients in pharmaceutical applications [J]. Marine Drugs, 2015, 13(3): 1519-1547.

[74] Divya K, Jisha M S. Chitosan nanoparticles preparation and applications [J]. Environmental Chemistry Letters, 2017, 16: 101-112.

[75] Song Z, Li G, Guan F, et al. Application of chitin/chitosan and their derivatives in the papermaking industry [J]. Polymers, 2018, 10(4): 389 -395.

[76] Yang S, Hu J, Chen C, et al. Mutual Effects of Pb(I) and humic acid adsorption on multiwalled carbon nanotubes/polyacrylamide composites from aqueous solutions [J]. Environmental Science &Technology, 2011, 45(8): 3621-3627.

[77] Divya K, Jisha M S. Chitosan nanoparticles preparation and applications [J]. Environmental Chemistry Letters, 2017, 16: 101-112.

[78] Kehan Xu, Long Li, Zuohua Huang, et al. Efficient adsorption of heavy metals from wastewater on nanocomposite beads prepared by chitosan and paper sludge [J]. Science of The Total Environment, 2022, 84: 157-169.

[79] Unugul T, Nigiz F U. Optimization of Sodium Alginate Graphene Nanoplate Kaolin Bio composite Adsorbents in Heavy Metal Adsorption by Response Surface Methodology (RSM) [J]. Arabian journal for science and engineering, 2022, 32(5):47-54.

[80] 黄明, 鲁秀国, 李绍峰. Cu (II) 和Ni (II) 在磁性高岭土上的吸附动力学和热力学研究 [J]. 离子交换与吸附, 2017, 33(02): 97-106.

[81] 周丽萍. 氨基改性高岭土对Pb(Ⅱ)的吸附性能研究 [J]. 广州化工, 2020, 48(14): 69-74.

[82] Nurul A. Choudhury, Jia Ma, Yogeshwar Sahai, High performance and eco-friendly chitosan hydrogel membrane electrolytes for direct borohydride fuel cells [J]. Journal of Power Sources, 2012, 210: 358-365.

[83] M. Soledad, Lara F. Medina, Ana M, M. Susana, Ultrasonic compatibilization of polyelectrolyte complex based on polysaccharides for biomedical applications [J]. Ultrasonics Sonochemistry, 2016, 30: 1-8.

[84] Florin, Augustin, Dana Schwarz. Layer-by-layer polyelectrolyte architectures with ultra-fast and high loading/release properties for copper ions [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 579: 704-721.

[85] Yang Cao, Dong, Dai, Adsorption model identification for chromium (VI) transport in unconsolidated sediments [J]. Journal of Hydrology, 2021, 589: 228-234.

[86] M.L.C.M., E. Worrell, Reviewing the availability of copper and nickel for future generations. The balance between production growth, sustainability and recycling rates [J]. Journal of Cleaner Production, 2020, 264: 460-473.

[87] Marius-Mihai, Florin, Florican. Multifunctional CaCO3/polyelectrolyte sorbents for heavy metal ions decontamination of synthetic waters [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 613: 84-97.

[88] ZHENG Y, HUANG D, WANG A. Chitosan-g-poly (acrylic acid) hydrogel with crosslinked polymeric networks for Ni2+ recovery [J]. Analytica Chimica Acta, 2011, 687(2): 193-200.

[89] PARISA M P, JAMALEDDIN P S. Review on recent progress in chitosan-based hydrogels for wastewater treatment application [J]. Carbohydrate Polymers, 2018, 201: 264-279.

中图分类号:

 TB33    

开放日期:

 2023-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式