- 无标题文档
查看论文信息

论文中文题名:

 Kagome晶格中自旋电子输运和平带凝聚研究    

姓名:

 宋威    

学号:

 20201104027    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 070205    

学科名称:

 理学 - 物理学 - 凝聚态物理    

学生类型:

 硕士    

学位级别:

 理学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 理学院    

专业:

 物理学    

研究方向:

 凝聚态物理学    

第一导师姓名:

 炎正馨    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-15    

论文答辩日期:

 2023-05-26    

论文外文题名:

 The research of Spin transport and condensation of flat band in Kagome lattices    

论文中文关键词:

 Kagome晶格 ; 自旋极化输运 ; 量子霍尔电导 ; 平带 ; 超导电性    

论文外文关键词:

 Kagome Lattice ; Spin Polarized Transport ; Quantum Hall conductivity ; Flat Band Condensation ; Superconductivity    

论文中文摘要:

Kagome晶格独特的三角与六角嵌套结构导致电子色散能够产生狄拉克能带与平带共存的奇异能带结构。其中狄拉克能带具有无质量的电子,其电子态密度低,运动速度快。体系在自旋轨道耦合的作用下,线性交叉的狄拉克能带能够打开特定大小的能隙,当其能带受到拓扑保护时,边缘能隙处能够产生输运方向与自旋方向锁定的金属态。此外,自旋非对称分布对Kagome材料拓扑输运的影响也是当前亟待研究的一个重要的科学问题。一方面,材料的内禀磁性导致能带时间反演对称性破缺,会诱导四重简并的狄拉克点劈裂为两个二重简并的外尔点,这个过程能够产生奇异的量子现象,如量子反常霍尔效应;同时,内禀磁性也能调控电子的自旋极化强度,对于设计拓扑自旋电子器件有着极大的帮助。另一方面,内禀磁性导致体系的时间反演对称性破缺会破坏体系的拓扑稳定性,从而影响到表面电子拓扑非平庸输运。与狄拉克能带不同,准平带电子不发生明显色散,呈现出高度简并,电子运动速度慢、质量大,电子间主要以库伦相互作用为主,这会产生许多强关联电子效应,如可调控的声-电耦合和高温超导等。针对Kagome晶格的线性能带色散和平带凝聚,本文主要做了以下三个方面的研究:

(1)对三维磁性Kagome半金属材料SbV3S5的拓扑输运进行了理论计算研究。计算结果表明,在内禀磁性的影响下,费米面附近能带电子具有相同的自旋方向,即该材料出现自旋极化输运过程。磁性导致能带时间反演对称破缺,费米面附近出现多个能带交叉的外尔点,沿高对称点路径Γ-M-K-Γ费米面上的能带具有一定的弱拓扑结构,其能带中的两个外尔点是一对手性外尔点。此外,费米面附近的能带具有两个稳定存在的第二类范霍夫奇点,其对应的能级位置出现一个大的电子态密度变化。表面电子散射与拓扑电荷输运数据表明,内禀磁性破坏了表面拓扑输运的稳定性,电子拓扑输运局域在能谷边缘,费米能级上能谷边缘的局域拓扑输运导致了一个小的反常霍尔电导平台。

(2)为探究磁性强弱对Kagome晶格拓扑输运的影响,本文提出了一种非磁二维蜂窝-Kagome晶格材料Bi2Te3。相关计算数据表明,在不考虑自旋轨道耦合作用时,该材料是狄拉克半金属材料,费米面上存在两个四重简并的能带线性交叉点,对应能级位置电子态密度较小。在自旋轨道耦合作用下,费米面上的能带交叉点打开了一个0.486 eV的带隙,且价带顶到导带底的轨道翻转与宇称翻转表征了能带的强拓扑结构。此外,费米面附近也存在典型的Kagome晶格能带-平带,对应能级位置处出现了相应的电子态密度突变峰值。边缘电子态与拓扑电荷输运数据展示了该材料的边缘电子自旋锁定输运,其边缘拓扑输运导致了一个长程稳定的量子自旋霍尔电导平台,自旋霍尔电导的大小与空间对称性高低呈现正相关关联。

(3)为研究Kagome晶格平带的声-电耦合特性,本文人工设计了一种Kagome-石墨烯材料与两种Kagome-石墨炔材料。理论计算表明,Kagome-石墨烯具有符合研究要求的平带结构,且声子色散没有虚频。计算数据表明,Kagome-石墨烯具有与石墨烯相同的成键方式,主要表现为sp2、pz轨道杂化。一部分pz轨道电子局域在Kagome晶格的三角结构当中,电子运动速度低,质量大,基本不发生散射;即费米面上的平带电子都来自于pz轨道,其对应能级位置具有一个非常大的电子态密度。声-电耦合与超导电性计算数据表明,Kagome-石墨烯在Γ点有一个大的声子线宽峰值,且体系拥有大的声-电耦合强度和高的超导相变温度,其超导准粒子态密度大,超导能隙呈现各向同性的特征。

本文的研究工作给出了Kagome晶格的自旋电子输运与平带凝聚相关理论计算数据,揭示了Kagome晶格线性交叉能带的拓扑特征与平带的超导电性,为设计拓扑自旋电子器件与新型高温超导材料提供了丰富的理论数据。

论文外文摘要:

The unique triangular and honeycomb hexagonal nested structure of the Kagome lattice leads to the formation of an exotic band structure in which Dirac bands and flat bands coexist. The Dirac bands are composed of massless electrons with low electron state density and high velocity. Under the effect of spin-orbit coupling, the linearly intersecting Dirac bands can open a gap of a certain size. When the band is topologically protected, a metallic state with transport direction and spin direction locking can be generated at the edge of the gap. In addition, the spin-asymmetric distribution also has an impact on the topological transport of Kagome materials, which is currently an urgent scientific issue. On the one hand, the intrinsic magnetism of the material leads to a breaking of the time-reversal symmetry of the band structure, inducing the splitting of the four-fold degenerate Dirac point into two doubly degenerate Weyl points, which can produce unusual quantum phenomena, such as the Quantum Anomalous Hall Effect(QAHE). At the same time, the intrinsic magnetism can also regulate the spin polarization intensity of electrons, which is of great help in designing topological spintronic devices. On the other hand, the breaking of the time-reversal symmetry of the system due to the intrinsic magnetism will destroy the topological stability of the system, thus affecting the non-trivial surface electronic transport. Unlike the Dirac bands, the flat bands have no obvious dispersion, exhibiting high degeneracy, slow electron velocity, heavy mass, and mainly Coulomb interactions between electrons, which can produce many strong correlated electron effects, such as tunable phonon-electron coupling and high-temperature superconductivity. In this paper, we mainly investigate the linear band dispersion and flat band condensation of the Kagome lattice in the following three aspects:

(1) Theoretical calculations were conducted on the three-dimensional antiferromagnetic Kagome weak topological semimetal SbV3S5. The results show that under the influence of intrinsic magnetism, the spin directions of the band electrons near the Fermi surface are the same, indicating the occurrence of spin-polarized transport in the material. The magnetism-induced breaking of the band time-reversal symmetry results in multiple Weyl points near the Fermi surface where several bands cross. The bands along the high-symmetry point path Γ-M-K-Γ on the Fermi surface have a certain topological structure, and the two Weyl points in the band are a pair of chiral Weyl points. In addition, there are two stable Van Hove singularities near the Fermi surface, corresponding to a large electron density of states. Surface electron scattering and topological charge transport data show that intrinsic magnetism disrupts the stability of surface topological transport, and the electron topological transport is localized at the valley edge, resulting in a small anomalous Hall conductivity plateau at the Fermi level.

(2) To investigate the influence of magnetic strength on topological transport, this paper proposes a non-magnetic two-dimensional honeycomb-Kagome lattice material, Bi2Te3. Relevant computational data shows that when spin-orbit coupling is not considered, this material is a Dirac semimetal with two fourfold degenerate band linear crossing points on the Fermi surface, corresponding to a small electron state density in energy level positions. Under spin-orbit coupling, the band crossing points on the Fermi surface open a gap of approximately 0.486 eV, and the band inversion and parity inversion from the valence band top to the conduction band bottom characterize the topological structure of the band. In addition, there also exists a typical Kagome lattice band-flat band near the Fermi surface, corresponding to a sharp peak of electron state density at the corresponding energy level position. The edge electronic state and topological charge transport data demonstrate the edge electronic spin-locked transport of the material, and the edge topological transport results in a long-range stable quantum spin Hall conductivity platform, which exhibits a positive correlation between the size of spin Hall conductivity and the degree of spatial symmetry.

(3) To study the acoustoelectric coupling characteristics of the Kagome lattice flat band, this paper artificially designs a Kagome-graphene material and two Kagome-graphyne materials. Theoretical calculations show that the Kagome-graphene has a flat band structure that meets the research requirements, and the phonon dispersion has no imaginary frequency. Relevant computational data shows that Kagome-graphene has the same bonding mode as graphene, mainly manifested as sp2 and pz orbital hybridization. Some pz orbital electrons are localized in the triangular structure of the Kagome lattice, with a low electron velocity and a large mass, which results in minimal scattering. That is, the flat band electrons on the Fermi surface all come from the pz orbital, and their corresponding energy level positions have a very high electron state density. Acoustoelectric coupling and superconductivity computational data show that Kagome-graphene has a large phonon linewidth peak at the Γ point, and the system has a strong acoustoelectric coupling strength and a high superconducting transition temperature. The density of superconducting quasi-particles is large, and the superconducting gap exhibits isotropic characteristics.

The thesis provides theoretical computational data on the spin transport and flat band condensation of the Kagome lattice, revealing the topological characteristics of the linear crossing band and the superconductivity of the flat band. This provides rich theoretical data for designing topological spin electronic devices and new high-temperature superconducting materials.

参考文献:

[1] Johnson M, Silsbee R H. Interfacial charge-spin coupling: Injection and detection of spin magnetization in metals[J]. Physical Review Letters, 1985, 55(17): 1790-1793.

[2] Baibich M N, Broto J M, Fert A, et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices[J]. Physical Review Letters, 1988, 61:2472-2475.

[3] Datta S, Das B. Electronic analog of the electro‐optic modulator[J]. Applied Physics Letters, 1990, 56(7): 665-667.

[4] 谭稀, 宋玉哲, 史鑫等. 自旋阀多层膜磁化翻转场的调控和磁电阻特性[J]. 材料研究学报, 2020, 34(04): 272-276.

[5] Ray S C, Soin N, Makgato T, et al. Graphene Supported Graphone/Graphane Bilayer Nanostructure Material for Spintronics[J]. Scientific Reports, 2014, 4(1):1-7.

[6] Xiao, Hu. Half-Metallic Antiferromagnet as a Prospective Material for Spintronics[J]. Advanced Materials, 2012,24:294-298.

[7] 王振宇, 李志雄, 袁怀洋等. 磁子学中的拓扑物态与量子效应[J]. 物理学报, 2023, 72(05): 365-404.

[8] A Mühlbauer, Binz B, Jonietz F, et al. Skyrmion Lattice in a Chiral Manget[J]. Science, 2009,323(5916):915-919.

[9] Rohart S, Miltat J, Thiaville A. Path to collapse for an isolated Neel skyrmion[J]. Physical Review, 2016, 93(21):214412.

[10] Erb K C, Hlinka J. Vector, bidirector, and Bloch skyrmion phases induced by structural crystallographic symmetry breaking[J]. American Physical Society, 2020,102(2):024110.

[11] Heinze S, Bergmann K V, Menzel M, et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions[J]. Nature Physics, 2011, 7(9): 713-718.

[12] Neubauer A, Pfleiderer C, Binz B, et al. Topological Hall effect in the A phase of MnSi.[J]. Physical Review Letters, 2009, 102(18):186602.

[13] Zhang X, Zhou Y, Ezawa M. Magnetic bilayer-skyrmions without skyrmion Hall effect[J]. 物理学前沿:英文版, 2015, 5:71-79.

[14] 范开泉, 梁雪, 周艳. 磁性斯格明子的应用前景[J]. 物理, 2023, 52(01): 21-29.

[15] Hordequin C, Ristoiu D, Ranno L, et al. On the cross-over from half-metal to normal ferromagnet in NiMnSb[J]. The European Physical Journal B-Condensed Matter and Complex Systems, 2000, 16: 287-293.

[16] 瞿婧, 周岚. 铁磁/半金属/铁磁隧道结中的自旋极化输运[J]. 扬州大学学报(自然科学版), 2009, 12(02): 36-39.

[17] Groot D, Robert A . Half-metallic magnetism in the 1990s[J]. Physica B: Condensed Matter, 1991, 172(1-2):45-50.

[18] Chen, X., Shi, S., Shi, G. et al. Observation of the antiferromagnetic spin Hall effect. Nat. Mater.,2021, 20:800-804 .

[19] Lenin A, Arumugam P, Shanmugham R, et al. Hybrid Ni-Boron Nitride Nanotube Magnetic Semiconductor-A New Material for Spintronics[J]. ACS Omega, 2020, 5(32):20014-20020.

[20] Babu S H, Kaleemulla S, Rao N M, et al. Indium oxide: A transparent, conducting ferromagnetic semiconductor for spintronic applications[J]. Journal of Magnetism and Magnetic Materials, 2016, 416(38):66-74.

[21] Ohno H, Shen A, Matsukura F, et al. (Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs[J]. Applied Physics Letters, 1996, 69(3):363-365.

[22] Dietl T, Ohno H, Matsukura F, et al. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors[J]. Science, 2000, 287(5455): 1019-1022.

[23] 邓正, 赵国强, 靳常青. 自旋和电荷分别掺杂的新一类稀磁半导体研究进展[J]. 物理学报, 2019, 68(16): 64-75.

[24] Huang P R, He Y, Pal H K, et al. Prediction of switchable half semiconductor in d1 transition metal dichalcogenide monolayers[J]. Physical Review B, 92(24), 245443.

[25] Wang X L. Proposal for a new class of materials: spin gapless semiconductors[J]. Physical Review Letters, 2008, 100(15): 156404.

[26] Hadji T, Khalfoun H, Rached H, et al. Spin gapless semiconductor and nearly spin semimetal antiferromagnets: The case of the inverse Heusler compounds Mn2LiZ (Z= Al and Ga)[J]. Materials Research Bulletin, 2021, 143: 111461.

[27] Li X, Wu X, Li Z, et al. Bipolar magnetic semiconductors: a new class of spintronics materials[J]. Nanoscale, 2012, 4(18): 5680-5685.

[28] Li X, Wu X, Li Z, et al. Proposal of a general scheme to obtain room-temperature spin polarization in asymmetric antiferromagnetic semiconductors[J]. Physical Review B, 2015, 92(12): 125202.

[29] Li X, Lv H, Liu X, et al. Two-dimensional bipolar magnetic semiconductors with high Curie-temperature and electrically controllable spin polarization realized in exfoliated Cr(pyrazine) 2 monolayers[J]. Science China Chemistry, 2021, 64: 2212-2217.

[30] 何珂, 薛其坤. 拓扑量子材料与量子反常霍尔效应[J]. 材料研究学报, 2015, 29(03): 161-177.

[31] Klitzing K, Dorda G, Pepper M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance[J]. Physical Review Letters, 1980, 45(6): 494-497.

[32] 李海. 量子霍尔效应及量子反常霍尔效应的探索历程[J]. 大学物理, 2014, 33(12): 23-26.

[33] 朱方泽, 常治文, 黄侯迪等. 拓扑新材料研究前沿的理论基础导引Ⅰ: 量子霍尔效应[J]. 物理与工程, 2022, 32(06): 104-126.

[34] Kou L, Ma Y, Sun Z, et al. Two-dimensional topological insulators: Progress and prospects[J]. The Journal of Physical Chemistry Letters, 2017, 8(8): 1905-1919.

[35] Chen Y L, Analytis J G, Chu J H, et al. Experimental Realization of a Three-Dimensional Topological Insulator, Bi2Te3[J]. Science, 2009, 325(5937):178-181.

[36] Fu L, Kane C L. Superconducting Proximity Effect and Majorana Fermions at the Surface of a Topological Insulator[J]. Physical Review Letters, 2008, 100(9):096407.

[37] Ahn J, Yang B J. Unconventional topological phase transition in two-dimensional systems with space-time inversion symmetry[J]. Physical Review Letters, 2017, 118(15): 156401.

[38] Hasan M Z, Kane C L. Colloquium: topological insulators[J]. Reviews of modern physics, 2010, 82(4): 3045-3067.

[39] Qi X L, Wu Y S, Zhang S C. Topological quantization of the spin Hall effect in two-dimensional paramagnetic semiconductors[J]. Physical Review B, 2006, 74(8): 085308.

[40] Liu C X, Qi X L, Dai X, et al. Quantum anomalous Hall effect in Hg1-yMnyTe quantum wells[J]. Physical Review Letters, 2008, 101(14): 146802.

[41] Qi X L, Hughes T L, Zhang S C. Topological field theory of time-reversal invariant insulators[J]. Physical Review B, 2008, 78(19): 195424.

[42] Chang C Z, Zhang J, Feng X, et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator[J]. Science, 2013, 340(6129): 167-170.

[43] Butch N P, Syers P, Kirshenbaum K, et al. Superconductivity in the topological semimetal YPtBi[J]. Physical Review B, 2011, 84(22): 220504.

[44] Wang Z, Sun Y, Chen X Q, et al. Dirac semimetal and topological phase transitions in A3Bi(A=Na, K, Rb)[J]. Physical Review B, 2012, 85(19): 195320.

[45] Weng H, Fang C, Fang Z, et al. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides[J]. Physical Review X, 2015, 5(1): 011029.

[46] Burkov A A, Hook M D, Balents L. Topological nodal semimetals[J]. Physical Review B, 2011, 84(23): 235126.

[47] Wang Q, Xu Y, Lou R, et al. Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions[J]. Nature Communications, 2018, 9(1): 3681-3688.

[48] Liu E, Sun Y, Kumar N, et al. Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal[J]. Nature physics, 2018, 14(11): 1125-1131.

[49] Malaman B, Fruchart D, Le C G. Magnetic properties of Fe3Sn2. II. Neutron diffraction study (and Mossbauer effect)[J]. Journal of Physics F: Metal Physics, 1978, 8(11): 2389-2399.

[50] Chisnell R, Helton J S, Freedman D E, et al. Topological magnon bands in a kagome lattice ferromagnet[J]. Physical Review Letters, 2015, 115(14): 147201.

[51] Fåk B, Kermarrec E, Messio L, et al. Kapellasite: A kagome quantum spin liquid with competing interactions[J]. Physical Review Letters, 2012, 109(3): 037208.

[52] Ye L, Kang M, Liu J, et al. Massive Dirac fermions in a ferromagnetic kagome metal[J]. Nature, 2018, 555(7698): 638-642.

[53] Song Y, Ying T, Chen X, et al. Competition of superconductivity and charge density wave in selective oxidized CsV3Sb5 thin flakes[J]. Physical Review Letters, 2021, 127(23): 237001.

[54] Sun Z, Zhou H, Wang C, et al. Observation of topological flat bands in the kagome semiconductor Nb3Cl8[J]. Nano Letters, 2022, 22(11): 4596-4602.

[55] Kang M, Fang S, Kim J K, et al. Twofold van Hove singularity and origin of charge order in topological kagome superconductor CsV3Sb5[J]. Nature Physics, 2022, 18(3): 301-308.

[56] Wang Z, Zhang P. Quantum spin Hall effect and spin-charge separation in a kagome lattice[J]. Physics, 2009, 12(4): 39-87.

[57] Tomizawa T, Kontani H. Anomalous Hall effect in the t2g orbital kagome lattice due to noncollinearity: Significance of the orbital Aharonov-Bohm effect[J]. Physical Review B, 2009, 80(10): 100401.

[58] Wang W S, Liu Y C, Xiang Y Y, et al. Antiferromagnetism, f-wave, and chiral p-wave superconductivity in a kagome lattice with possible application to sd2 graphenes[J]. Physical Review B, 2016, 94(1): 014508.

[59] Hashmi A, Nakanishi K, Farooq M U, et al. Ising ferromagnetism and robust half-metallicity in two-dimensional honeycomb-kagome Cr2O3 layer[J]. npj 2D Materials and Applications, 2020, 4(1): 39-45.

[60] Zhang T, Zhu L. Two dimensional honeycomb-kagome Be3Pb2: a mechanically flexible topological insulator with high intrinsic carrier mobilities[J]. Physical Chemistry Chemical Physics, 2021, 23(2): 1292-1297.

[61] Zhang L, Zhang C, Zhang S F, et al. Two-dimensional honeycomb-kagome Ta2S3: a promising single-spin Dirac fermion and quantum anomalous hall insulator with half-metallic edge states[J]. Nanoscale, 2019, 11(12): 5666-5673.

[62] Sang P, Wang Q, Wei W, et al. Semiconducting silicene: A two-dimensional silicon allotrope with hybrid honeycomb-kagome lattice[J]. ACS Materials Letters, 2021, 3(8): 1181-1188.

[63] Doretto R L, Goerbig M O. Flat-band ferromagnetism and spin waves in topological Hubbard models[J]. Physical Review B, 2015, 92(24): 245124.

[64] Tian H, Gao X, Zhang Y, et al. Evidence for Dirac flat band superconductivity enabled by quantum geometry[J]. Nature, 2023, 614(7948): 440-444.

[65] Regnault N, Xu Y, Li M R, et al. Catalogue of flat-band stoichiometric materials[J]. Nature, 2022, 603(7903): 824-828.

[66] Lin Z, Choi J H, Zhang Q, et al. Flatbands and Emergent Ferromagnetic Ordering in Fe3Sn2 Kagome Lattices[J]. Physical Review Letters, 2018, 121(9):096401.

[67] Xu Y, Zhao J, Yi C, et al. Electronic correlations and flattened band in magnetic Weyl semimetal candidate Co3Sn2S2[J]. Nature Communications, 2020, 11(1):3985-3995.

[68] Beratan D N, Hopfield J J. Failure of the Born-Oppenheimer and Franck-Condon approximations for long distance electron transfer rate calculations[J]. Journal of Chemical Physics, 1984, 81(12):5753-5759.

[69] Huzinaga S. Analytical methods in Hartree-Fock self-consistent field theory[J]. Physical Review, 1961, 122(1): 131-138.

[70] Dhara A K, Ghosh S K. Local-density approximation to the energy density functionals in a magnetic field[J]. Physical Review A, 1990, 41(9): 4653-4658.

[71] Perdew J P, Yue W. Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation[J]. Physical Review B, 1986, 33(12): 8800-8802.

[72] Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50.

[73] Giannozzi P, Baroni S, Bonini N, et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials[J]. Journal of Physics: Condensed Matter, 2009, 21(39): 395502.

[74] Wang V, Xu N, Liu J C, et al. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code[J]. Computer Physics Communications, 2021, 267: 108033.

[75] Togo A, Tanaka I. First principles phonon calculations in materials science[J]. Scripta Materialia, 2015, 108: 1-5.

[76] Marzari N, Vanderbilt D. Maximally localized generalized Wannier functions for composite energy bands[J]. Physical review B, 1997, 56(20): 12847-12865.

[77] Wu Q S, Zhang S N, Song H F, et al. WannierTools: An open-source software package for novel topological materials[J]. Computer Physics Communications, 2018, 224: 405-416.

[78] Poncé S, Margine E R, Verdi C, et al. EPW: Electron–phonon coupling, transport and superconducting properties using maximally localized Wannier functions[J]. Computer Physics Communications, 2016, 209: 116-133.

[79] Ortiz B R, Gomes L C, Morey J R, et al. New kagome prototype materials: discovery of KV3Sb5, RbV3Sb5, and CsV3Sb5[J]. Physical Review Materials, 2019, 3(9): 094407.

[80] Arnold F, Naumann M, Wu S C, et al. Chiral Weyl pockets and Fermi surface topology of the Weyl semimetal TaAs[J]. Physical Review Letters, 2016, 117(14): 146401.

[81] Luo H, Gao Q, Liu H, et al. Electronic nature of charge density wave and electron-phonon coupling in kagome superconductor KV3Sb5[J]. Nature Communications, 2022, 13(1): 273-280.

[82] Zhao J, Wu W, Wang Y, et al. Electronic correlations in the normal state of the kagome superconductor KV3Sb5[J]. Physical Review B, 2021, 103(24): L241117.

[83] Rotter M, Tegel M, Johrendt D, et al. Spin-density-wave anomaly at 140 K in the ternary iron arsenide BaFe2As2[J]. Physical Review B, 2008, 78(2): 020503.

[84] Kidd T E, Miller T, Chou M Y, et al. Electron-Hole Coupling and the Charge Density Wave Transition in TiSe2[J]. Physical Review Letters, 2002, 88(22): 226402.

[85] Fu L, Kane C L. Superconducting Proximity Effect and Majorana Fermions at the Surface of a Topological Insulator[J]. Physical Review Letters, 2008, 100(9):096407.

[86] Xi D, Hughes T L, Qi X L, et al. Helical edge and surface states in HgTe quantum wells and bulk insulators[J]. Physical Review B, 2008, 77(12):647-652.

[87] Zhang Z F, Ye P. Compatible braidings with Hopf links, multiloop, and Borromean rings in (3+1)-dimensional spacetime[J]. Physical Review Research, 2021, 3(2):023132.

[88] Iraola M, Maes J L, Bradlyn B, et al. IrRep: Symmetry eigenvalues and irreducible representations of ab initio band structures[J]. Computer Physics Communications, 2022, 272:108226.

[89] Bardeen J, Cooper L N, Schrieffer J R. Theory of superconductivity[J]. Physical Review, 1957, 108(5): 377-385.

[90] Brison J P, Glémot L, Suderow H, et al. Heavy fermion superconductivity[J]. Physica B: Condensed Matter, 2000, 280(1-4): 165-171.

[91] Margine E R, Giustino F. Anisotropic Migdal-Eliashberg theory using Wannier functions[J]. Physical Review B, 2013, 87(2):024505.

[92] Schuster H G. Phonon line width in superconductors[J]. Physics Letters A, 1973, 46(3):163-164.

中图分类号:

 O469    

开放日期:

 2023-06-16    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式