- 无标题文档
查看论文信息

论文中文题名:

 Al3Ti增强铜基复合材料的制备与性能研究    

姓名:

 安玉姣    

学号:

 20211025017    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0805    

学科名称:

 工学 - 材料科学与工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 材料科学与工程学院    

专业:

 材料科学与工程    

研究方向:

 金属基复合材料    

第一导师姓名:

 牛立斌    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-18    

论文答辩日期:

 2023-06-06    

论文外文题名:

 Preparation and properties of Al3Ti reinforced copper matrix composites    

论文中文关键词:

 铜基复合材料 ; Al3Ti金属间化合物 ; 粉末冶金 ; 无压渗透 ; 磨损性能    

论文外文关键词:

 Copper matrix composites ; Al3Ti intermetallic compound ; powder metallurgy ; pressureless infiltration ; wear resistance    

论文中文摘要:

金属铜因具有良好的导电导热性,常被用于电气电子、轨道交通等领域,但由于机械强度及高温性能较差,限制了其在工业及军事领域的应用。本文选用比强度高、高温抗蠕变性能及抗氧化性能优异的金属间化合物Al3Ti作为增强相,分别采用粉末冶金法和无压渗透法合成Al3Ti增强铜基复合材料。通过试验对增强体制备方案、复合材料组元配比及熔渗温度、保温时间等工艺参数进行调整优化,研究其对复合材料显微组织、孔隙率以及力学性能等的影响规律。最后对两种方法制备的复合材料进行对比。

首先分别采用冷压与热压成型工艺制备预制体,随后高温烧结合成Al3Ti颗粒增强体和多孔骨架。结果表明,多孔试样的开孔隙率随冷压载荷增大不断减小。同时,热压成型条件下,高温烧结可获得开孔隙率达74.57%的多孔骨架。而两种成型工艺对物相组成影响较小,始终保持为单一的Al3Ti相。

随后将冷压成型制备的Al3Ti颗粒用于粉末冶金法制备铜基复合材料。结果表明,当Al3Ti和石墨分别为15wt. %和5wt. %时,物相组成中仅包括Cu相及其固溶体、Al3Ti和石墨,Al3Ti和石墨始终弥散分布在铜基体上,与基体保持良好界面结合。此时复合材料硬度达145.79 HV0.5,相比纯铜提高58.76%,摩擦磨损性能最佳,摩擦系数和磨损率相比纯铜分别降低27.27%和71.81%。摩擦磨损试验表明,复合材料摩擦系数和磨损率随Al3Ti含量增加先减小后增大,磨损机制由粘着磨损、剥层磨损转变为磨粒磨损;随石墨含量增加,摩擦系数先增大后减小,磨损率先减小后增大,磨损机制为磨粒磨损。

最后将热压成型制备的Al3Ti多孔骨架用作无压渗透法制备铜基复合材料。结果表明,复合材料渗透区宽度随熔渗温度升高不断增大,随保温时间延长先增大后减小,1300°C保温6 h试样渗透区宽度可达1351.90 μm,硬度可达165.91 HV0.5,相比纯铜提高113.77%。此时显微组织中的灰色颗粒细小均匀地弥散分布在基体上,与基体保持良好的界面结合。然而,无压渗透过程中高的渗透温度导致Al3Ti发生分解,分解后的Al原子和Ti原子分别向Cu基体扩散形成Cu-Al、Cu-Ti金属间化合物。

在Al3Ti质量分数为10wt. %时,粉末冶金试样增强相与基体界面结合良好,显微组织中的灰色颗粒为Al3Ti相,平均尺寸为15.66 μm。1300°C保温6 h的无压渗透试样微观组织中存在的微小孔隙严重影响基体连续性,其中灰色颗粒成分主要为Ti元素,平均尺寸为1.07 μm,相比粉末冶金减小93.17%。此外,无压渗透试样硬度相比粉末冶金试样提高14.48%,粉末冶金试样是通过Al3Ti增强颗粒的载荷传递强化的,而无压渗透试样是通过Cu-Al、Cu-Ti金属间化合物及Ti颗粒的弥散分布强化的。

论文外文摘要:

Copper is widely used in electrical, rail transport and other fields due to its good conductivity and thermal conductivity, but its poor mechanical strength and high temperature performance limit its application in industrial and military fields. Al3Ti intermetallic compound with high specific strength, high temperature creep resistance and excellent oxidation resistance was selected as reinforcement phase in this paper. Al3Ti reinforced copper matrix composites were synthesized by powder metallurgy and pressureless infiltration respectively. The influence of different process parameters on the microstructure, phase composition, porosity and mechanical properties of the composites were studied by adjusting and optimizing the process parameters such as preparation scheme of reinforcement, composition of composites, infiltration temperature and infiltration time. Finally, the composites prepared by the two methods were compared.

The preforms were prepared by cold-pressing and hot-pressing processes respectively, followed by high-temperature sintering to synthesize Al3Ti particle reinforcement and porous skeleton. The results shown that the open porosity of porous materials decreased with increasing cold-pressing load and high strength porous skeleton with open porosity of 74.57% could be obtained by high temperature sintering under hot-pressing. In addition, the two preform forming processes had little impact on the phase composition and remained as a single Al3Ti phase.

Subsequently, the Al3Ti particle reinforcement prepared by cold-pressing was used to prepare copper matrix composites by powder metallurgy. The results shown that when the Al3Ti and graphite content were 15wt. % and 5wt. % respectively, the phase composition only included copper phase and its solid solution, Al3Ti, and graphite. Furthermore, Al3Ti and graphite were always dispersed on the copper matrix, maintaining a good interfacial bonding with matrix. At this time, the hardness of the composite reached 145.79 HV0.5, which was 58.76% higher than that of pure copper and the wear performance was the best, with the friction coefficient and wear rate reduced by 27.27% and 71.81% compared to pure copper, respectively. The wear tests shown that the friction coefficient and wear rate of the composite first decreased and then increased with the increase of Al3Ti content, and the wear mechanism changed from adhesive wear and delamination wear to abrasive wear. With the increase of graphite content, the friction coefficient first increased and then decreased, and the wear rate shown opposite trend. The wear mechanism was abrasive wear.

Finally, Al3Ti porous framework prepared by hot-pressing was used as the pressureless infiltration to prepare copper matrix composites and the width of infiltration zone of composites increased with the increase of infiltration temperature, and increased first and then decreased with the extension of infiltration time. The width of infiltration zone of samples heated at 1300°C for 6 h can reach 1351.90 μm, hardness up to 165.91 HV0.5, which was 113.77% higher than that of pure copper. At this time, the gray particles in the microstructure were evenly distributed, maintaining a good interfacial bonding with copper matrix. However, Al3Ti was decomposed due to high infiltration temperature, thus made Al and Ti atoms diffuse to copper matrix to form Cu-Al and Cu-Ti intermetallic compounds respectively.

When the mass fraction of Al3Ti was 10wt. %, the interfacial bonding between the reinforcement phase and matrix was good and the gray particles were Al3Ti phase with an average size of 15.66 μm. The existence of micropores in the microstructure of pressureless infiltration sample with insulation at 1300°C for 6 h seriously affected the continuity of matrix, in which the gray particle composition was mainly Ti element with an average size of 1.07 μm, which was 93.17% lower than that of powder metallurgy sample. Furthermore, the hardness of the pressureless infiltration sample was 14.48% higher than that of powder metallurgy. Powder metallurgy specimens were strengthened by load transfer of Al3Ti reinforced particles, while pressureless infiltration specimens were strengthened by dispersion distribution of Cu-Al, Cu-Ti intermetallics and Ti particles.

参考文献:

[1]Huang Z X, Zheng Z, Zhao S, et al. Copper matrix composites reinforced by aligned carbon nanotubes: mechanical and tribological properties [J]. Materials & Design, 2017, 133: 570-578.

[2]曲春浴, 陆宗奎. 浅谈电力机车受电弓滑板发展趋势 [J]. 炭素, 2008, 36(03): 45-48.

[3]罗辉, 王国凡, 周峥. 紫铜表面渗Fe-Al合金层的耐磨性分析 [J]. 热加工工艺, 2008, 37(04): 69-70.

[4]鲍瑞, 张文府, 易健宏, 等. 粉末冶金法制备协同增强铜基复合材料的研究进展 [J]. 粉末冶金材料科学与工程, 2022, 27(01): 1-12.

[5]史盈鸽. 铜熔渗氧化铝的调控及Al2O3/Cu复合材料的研究 [D]. 西安理工大学, 2018.

[6]张小明. 无压渗透法制备SiCp/Cu复合材料 [D]. 南昌大学, 2008.

[7]Veillere A, Heintz J M, Chandra N, et al. Influence of the interface structure on the thermo-mechanical properties of Cu-X (X = Cr or B)/carbon fiber composites [J]. Materials Research Bulletin, 2012, 47(02): 375-380.

[8]Rosner M, Neubauer E, Eisenmenger-Sittner C, et al. Characterisation of the interface of sputter-deposited copper coatings on nitrogen plasma-treated carbon substrates [J]. Analytical and Bioanalytical Chemistry, 2004, 380(05): 838-842.

[9]Gohardani O, Elola M C, Elizetxea C. Potential and prospective implementation of carbon nanotubes on next generation aircraft and space vehicles: A review of current and expected applications in aerospace sciences [J]. Progress in Aerospace Sciences, 2014, 70: 42-68.

[10]Yoo S J, Han S H, Kim W J. A combination of ball milling and high-ratio differential speed rolling for synthesizing carbon nanotube/copper composites [J]. Carbon, 2013, 61: 487-500.

[11]Cha S I, Kim K T, Lee K H, et al. Strengthening and toughening of carbon nanotube reinforced alumina nanocomposite fabricated by molecular level mixing process [J]. Scripta Materialia, 2005, 53(07): 793-797.

[12]Wang H, Zhang Z H, Zhang H M, et al. Novel synthesizing and characterization of copper matrix composites reinforced with carbon nanotubes [J]. Materials Science and Engineering: A, 2017, 696: 80-89.

[13]潘信诚, 林政淇, 杨柳, 等. 石墨烯增强铜基复合材料制备工艺及性能的研究进展 [J]. 机械工程材料, 2023, 47(01): 1-10.

[14]范增奇. 三维网络石墨烯增强铜基复合材料的制备及性能研究 [D]. 哈尔滨工业大学, 2017.

[15]白伟伟, 杨琳, 肖治理. 石墨烯增强铜基复合材料的制备及性能研究 [J]. 热加工工艺, 2023, 52: 1-4.

[16]Zhang X, Li S, Pan B, et al. A novel strengthening effect of in-situ nano Al2O3 on CNTs reinforced aluminum matrix nanocomposites and the matched strengthening mechanisms [J]. Journal of Alloys and Compounds, 2018, 764: 279-288.

[17]Tan W, Jiang X, Shao Z, et al. Fabrication and mechanical properties of α-Al2O3 whisker reinforced cu-graphite matrix composites [J]. Powder Technology, 2020, 375: 124-135.

[18]张静平, 梅炳初, 朱教群, 等. 铜基复合材料的研究 [J]. 稀有金属快报, 2006, 25(10): 1-5.

[19]王文祥. Al2O3/Cu复合材料的界面润湿性及其力学性能研究 [D]. 西安理工大学, 2019.

[20]张胜利, 国秀花, 宋克兴, 等. 多粒径TiB2颗粒增强铜基复合材料的制备与载流摩擦磨损性能 [J]. 复合材料学报, 2019, 36(10): 2348-2356.

[21]李月英, 倪慨宇, 祝夫文. TiC颗粒增强铜基复合材料的研究 [J]. 粉末冶金技术, 2018, 36(02): 106-110.

[22]Solodkyi I, Bezdorozhev O, Loboda P. High electrical conductive copper matrix composites reinforced with LaB6-TiB2 eutectic particles [J]. Vacuum, 2020, 177: 109407-109410.

[23]黄颖, 李育川, 雷波, 等. 粉末冶金颗粒增强铝基复合材料的制备及研究进展 [J]. 功能材料, 2022, 53(10): 10071-10086.

[24]邹豪豪. 高速列车刹车片用铜基粉末冶金复合材料设计、制备及其摩擦学性能研究 [D]. 长春工业大学, 2020.

[25]刘林. SiC颗粒增强Cu基复合材料制备工艺及设备的研究 [D]. 东南大学, 2016.

[26]贾进浩. 无压浸渗制备金刚石/铜复合材料的研究 [D]. 国防科学技术大学, 2016.

[27]张雅丁, 张涛. 钛铜合金无压浸渗石墨基复合材料的制备及其组织与性能 [J]. 材料工程, 2011, 56(06): 39-42+47.

[28]Chmielewski M, Pietrzak K, Teodorczyk M, et al. Effect of metallic coating on the properties of copper-silicon carbide composites [J]. Applied Surface Science, 2016, 421: 159-169.

[29]Zhang L, Qu X H, He X B, et al. SiCp/Cu composites prepared by pressureless infiltration of copper into porous SiC preforms [J]. Powder Metallurgy, 2013, 51(01): 53-58.

[30]崔松, 邵国森, 张柯, 等. 搅拌铸造法制备石墨烯增强铝基复合材料的组织和力学性能研究 [J]. 有色金属材料与工程, 2022, 43(02): 19-29.

[31]Li M, Guo Q, Chen L, et al. Microstructure and properties of graphene nanoplatelets reinforced AZ91D matrix composites prepared by electromagnetic stirring casting [J]. Journal of Materials Research and Technology, 2022, 21: 4138-4150.

[32]牛立斌, 王晓刚, 樊子民. 溶渗法制备Al3Ti/Al复合材料的研究 [J]. 稀有金属材料与工程, 2014, 43(05): 1214-1218.

[33]Rai R N, Saha S C, Datta G L, et al. Studies on synthesis of in-situ Al-TiC metal matrix composites [J]. IOP Conference Series: Materials Science and Engineering, 2016, 117(01): 012042-012047.

[34]Azem S, Nechiche M, Taibi K. Development of copper matrix composite reinforced with FeAl particles produced by combustion synthesis [J]. Powder Technology, 2011, 208(02): 515-520.

[35]刘亚南, 焦欣洋, 冯培忠. 含Al金属间化合物多孔材料的研究进展 [J]. 中国材料进展, 2017, 36(07): 532-540+565.

[36]Quazi M M, Ishak M, Fazal M A, et al. Current research and development status of dissimilar materials laser welding of titanium and its alloys [J]. Optics & Laser Technology, 2020, 126(03): 106090-106125.

[37]冯培忠, 苏健, 周亚国, 等. 无压烧结Ti-Al多孔材料的组织结构与反应机制 [J]. 稀有金属材料与工程, 2015, 44(11): 2721-2727.

[38]黄虎军. Ti-Al合金多孔材料的制备与性能研究 [D]. 中南大学, 2007.

[39]王守仁. TiAl3金属间化合物网络结构增强镁铝基复合材料研究 [D]. 山东大学, 2007.

[40]张俊红, 黄伯云, 周科朝, 等. 包套轧制制备TiAl基合金板材 [J]. 中国有色金属学报, 2001, 11(06): 1055-1058.

[41]陈刚, 高海燕, 贺跃辉, 等. 梯度孔径FeAl金属间化合物多孔材料的制备与性能 [J]. 粉末冶金材料科学与工程, 2011, 16(01): 44-49.

[42]李周俊. 热爆合成多孔Ni-Al基金属间化合物的形成机制与氧化特性 [D]. 中国矿业大学, 2020.

[43]刘亚南. 多孔FeAl基金属间化合物的制备及性能研究 [D]. 中国矿业大学, 2018.

[44]Jiao X Y, Wang X H, Kang X Q, et al. Hierarchical porous TiAl3 intermetallics synthesized by thermal explosion with a leachable space-holder material [J]. Materials Letters, 2016, 181: 261-264.

[45]Gao H, He Y, Shen P, et al. Porous FeAl intermetallics fabricated by elemental powder reactive synthesis [J]. Intermetallics, 2009, 17(12): 1041-1046.

[46]Li K Y, Zhang T C, Zhu Y Z. Pore channel formation of porous TiAl3 intermetallics prepared by thermal explosion with space holder process [J]. Journal of Materials Engineering and Performance, 2023, 32(08): 3716-3728 .

[47]Jiao X, Ren X, Wang X, et al. Porous TiAl3 intermetallics with symmetrical graded pore-structure fabricated by leaching space holder and thermal explosion process [J]. Intermetallics, 2018, 95: 144-149.

[48]Peng Q, Yang B, Liu L, et al. Porous TiAl alloys fabricated by sintering of TiH2 and Al powder mixtures [J]. Journal of Alloys and Compounds, 2016, 656: 530-538.

[49]Ma S, Wang Y, Wang X. The in-situ formation of Al3Ti reinforcing particulates in an Al-7wt%Si alloy and their effects on mechanical properties [J]. Journal of Alloys and Compounds, 2019, 792: 365-74.

[50]马俊. 感应加热原位合成Al3Ti金属间化合物增强铝基复合材料研究 [D]. 西安科技大学, 2021.

[51]杨冠男, 刘英, 李卫. 不同粉末冶金方法制备的Al3Ti/Mg复合材料的性能研究 [J]. 热加工工艺, 2010, 39(18): 79-82.

[52]Sienkiewicz J, Kuroda S, Molak R M, et al. Fabrication of TiAl intermetallic phases by heat treatment of warm sprayed metal precursors [J]. Intermetallics, 2014, 49: 57-64.

[53]Shi Q, Qin B, Feng P, et al. Synthesis, microstructure and properties of Ti-Al porous intermetallic compounds prepared by a thermal explosion reaction [J]. RSC Advances, 2015, 5(57): 46339-46347.

[54]Du H, Liu X W, Li J, et al. Use of spark plasma sintering for fabrication of porous titanium aluminide alloys from elemental powders [J]. Materials and Manufacturing Processes, 2015, 31(06): 725-732.

[55]吴孝泉. 合金元素对铝基体中Al-Ti金属间化合物形貌的影响 [J]. 热加工工艺, 2016, 45(13): 21-25.

[56]Jafari R, Eghbali B. Influence of Nb and Cu elements on the intermetallic particles morphology in Ti/Al multilayer composite processed through hot pressing and rolling [J]. Transactions of the Indian Institute of Metals, 2018, 71(09): 2269-2274.

[57]Nayak S S, Murty B S. Synthesis and stability of L12-Al3Ti by mechanical alloying [J]. Materials Science and Engineering: A, 2004, 367(01): 218-224.

[58]刘森英, 胡荣泽, 王崇愚. Al3Ti+Zn金属间化合物中Ll2相模型原子团的电子结构 [J]. 钢铁研究学报, 1995, 2(02): 43-48.

[59]Lazurenko D V, Lozanov V V, Stark A, et al. In situ synchrotron X-ray diffraction study of reaction routes in Ti-Al3Ti-based composites: the effect of transition metals on L12 structure stabilization [J]. Journal of Alloys and Compounds, 2021, 875: 160004-160022.

[60]Jiang Y, He Y, Gao H. Recent progress in porous intermetallics: synthesis mechanism, pore structure, and material properties [J]. Journal of Materials Science & Technology, 2021, 74: 89-104.

[61]Chen M R, Jiang Y, He Y H, et al. Pore evolution regulation in synthesis of open pore structured Ti-Al intermetallic compounds by solid diffusion [J]. Journal of Alloys and Compounds, 2012, 521: 12-15.

[62]桂万元. 高Nb-TiAl基多孔材料的制备和高温抗氧化性能的研究 [D]. 北京科技大学, 2019.

[63]刘建秀, 潘胜利, 吴深, 等. 铜基粉末冶金摩擦材料增强相的研究发展状况 [J]. 粉末冶金工业, 2020, 30(01): 77-83.

[64]王秀飞, 尹彩流. 粉末冶金摩擦材料的应用现状及对原材料的要求 [J]. 粉末冶金工业, 2017, 27(03): 1-6.

[65]王帅. Ti2AlC/Cu复合材料的制备表征及其摩擦磨损行为研究 [D]. 哈尔滨工业大学, 2014.

[66]阎峰云, 张芳芳, 李小红, 等. MAX相增强金属基复合材料的研究现状及应用 [J]. 材料科学与工艺, 2020, 28(06): 88-96.

[67]郑翠华, 宋克兴, 国秀花, 等. 粉末冶金法制备纳米MgO颗粒增强铜基复合材料 [J]. 特种铸造及有色合金, 2011, 31(10): 955-958.

[68]Zein Eddine W, Mstteazzi P, Celis J P. Mechanical and tribological behavior of nanostructured copper-alumina cermets obtained by pulsed electric current sintering [J]. Wear, 2013, 297(01): 762-773.

[69]Zhang N, Hu Z, Du J H, et al. Wear mechanism of copper-based powder metallurgical friction materials with different graphite content [J]. Journal of Physics: Conference Series, 2020, 1622: 012005-012011.

[70]Martinez V, Ordonez S, Castro F, et al. Wetting of silicon carbide by copper alloys [J]. Journal of Materials Science, 2003, 38(19): 4047-4054.

[71]周晓薇, 陈金玉. 液态金属粘滞性的研究进展 [J]. 沈阳师范大学学报(自然科学版), 2003, 21(04): 255-259.

[72]胡昭朝, 高芒来, 谷峥, 等. Washburn高度法对新型双季铵盐复配改性膨润土的润湿性研究 [J]. 高校化学工程学报, 2013, 27(04): 669-675.

[73]于昕. 铜过渡层钢/钛扩散复合研究 [D]. 大连交通大学, 2009.

[74] Kim H J, Lee J Y, Paik K W, et al. Effects of Cu/Al intermetallic compound (IMC) on copper wire and aluminum pad bondability [J]. IEEE Transactions on Components and Packaging Technologies, 2003, 26(02): 367-374.

[75]鲍瑞, 李兆杰, 易健宏, 等. 粉末冶金制备高导热铜基复合材料的研究进展 [J]. 粉末冶金工业, 2022, 32(05): 1-11.

[76]黄永攀, 李道火, 王锐, 等. 铸造法制备颗粒增强铝基复合材料及技术问题 [J]. 中国铸造装备与技术, 2004, 39(02): 1-3.

[77]Lee J C, Park S B, Seok H K, et al. Prediction of Si contents to suppress the interfacial reaction in the SiCp/2014 Al composite [J]. Acta Materialia, 1998, 46(08): 1771-1780.

[78]周贤良, 张建云, 华小珍, 等. 无压渗透法制备颗粒增强铝基复合材料的工艺及渗透机理初探 [J]. 热加工工艺, 1995, 24(03): 25-27.

[79]任怀艳. 电子封装用β-SiCp/Al的无压浸渗工艺优化与定型 [D]. 西安科技大学, 2012.

[80]Shishkin R, Yuferov Y. Fabrication of SiC matrix composite material by pressureless aluminum melt infiltration in air atmosphere [J]. Composites Communications, 2022, 32:101176-101181.

中图分类号:

 TB331    

开放日期:

 2023-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式