论文中文题名: |
原位生长WC硬质相增强镍基激光熔覆组织与性能研究
|
姓名: |
刘豫皖
|
学号: |
19211025010
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
0805
|
学科名称: |
工学 - 材料科学与工程
|
学生类型: |
硕士
|
学位级别: |
工学硕士
|
学位年度: |
2022
|
培养单位: |
西安科技大学
|
院系: |
材料科学与工程学院
|
专业: |
材料加工工程
|
研究方向: |
材料表面防护
|
第一导师姓名: |
孙万昌
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2022-06-16
|
论文答辩日期: |
2022-05-31
|
论文外文题名: |
Study on microstructures and properties of in-situ grown WC hard phase reinforced nickel-based coating by laser cladding
|
论文中文关键词: |
激光熔覆 ; 原位生长 ; WC硬质相 ; 镍基熔覆层 ; 稀土氧化物 ; 摩擦磨损 ; 电化学性能
|
论文外文关键词: |
Laser cladding ; In-situ grown ; WC hard phase ; Nickel-base cladding layer ; Rare earth oxide ; Friction and wear ; Electrochemical performance
|
论文中文摘要: |
︿
~激光熔覆技术可以得到与基材形成良好冶金结合并具有优异使用性能熔覆层,而原位生长硬质相可以有效解决直接掺杂硬质颗粒的增强相分布不均匀的问题。本文采用矿用液压支架球阀常用的45钢作为基体材料,采用WO3、B4C、Al及Ni60粉末,制备原位生长WC硬质相增强镍基激光熔覆层,利用热力学计算评估了(WO3+B4C+Al)混合粉末体系制备原位生长WC增强相的可行性,分析了不同激光熔覆参数、粉末粒径、硬质相含量和掺杂CeO2/Y2O3稀土氧化物对原位生长WC硬质相增强镍基熔覆层的组织结构、相成分、摩擦磨损和电化学性能的影响。具体结论如下:
(1)在100-4500 K下,WC、W2C、WB、W2B和W2B5相的原位生长反应是可以自发进行的,均为放热反应,且W2C相形成的驱动力大于WC相。此外,热力学计算结果只是原位反应能够自发进行的必要条件而非充分条件。
(2)在激光功率为3000 W、扫描速率为3 mm/s时得到的熔覆层组织致密,截面组织未发现明显的裂纹、气孔等缺陷,WC颗粒大小适中,分布均匀,与基材的冶金结合良好。此时,熔覆层的物相为γ-(NiFe)固溶体、Al2O3、W2C、WC、WC3、WC1-x、WB2、WB4和Cr23C6相。熔覆层显微组织中浅灰色相为基体相γ-(NiFe)固溶体,深灰色相是Cr23C6相和其他金属间化合物的聚合相,白色块状颗粒相为WC硬质相。在较低的热输入状态下,熔覆层中会出现大量的蝴蝶状组织,在适当的热输入下,熔覆层中的WC颗粒为块状,均匀的分布在熔覆层中,而当热输入过大时,熔覆层中的块状WC颗粒会发生溶解和脱碳,在WC颗粒周围形成层片状的二次析出相。WC颗粒细化和富集形成的蝴蝶状组织对熔覆层硬度有一定的积极作用,但对熔覆层的耐磨性和耐蚀性的改善不如块状WC颗粒。
(3)在B4C粉末粒径为W5、掺杂(WO3+B4C+Al)混合粉末含量为25%时得到的熔覆层相较于45#钢基材,硬度、干摩擦磨损和乳化液环境下的耐磨性、耐蚀性均有明显的提高,硬度均提高了3-5倍。熔覆层的干摩擦磨损机理主要为WC硬质颗粒脱落造成的磨粒磨损和粘着磨损,而在乳化液环境下摩擦磨损的摩擦系数和磨损量均较小,对熔覆层未造成明显的损伤。
(4)在掺杂稀土氧化物CeO2含量为0.75%、Y2O3含量为1.50%时得到的熔覆层性能最优。掺杂CeO2的熔覆层的物相出现了CeO2相和反应生成的稳定的稀土化合物CeNi5及Ce3Ni6Si2相,掺杂Y2O3的熔覆层的物相出现了Y2O3相和稀土化合物Ni17Y3、YAl3及AlNiY相,稀土氧化物对熔覆层组织有较好的细化晶粒和纯化作用,使得各物相衍射峰得到增强,同时,较小的WC颗粒使得熔覆层的耐磨性得到提高,但也使得熔覆层的硬度相较于未掺杂的熔覆层稍低。但是,熔覆层中随着Y2O3含量的不断增加也会出现越来越多的层片状二次析出相。适量的稀土氧化物对熔覆层的耐磨耐蚀性存在积极作用,但当当稀土氧化物含量过高时,熔覆层的性能也会造成一定的降低。
﹀
|
论文外文摘要: |
︿
~Laser cladding technology can obtain a cladding layer with good metallurgical bonding with the substrate and excellent performance. In-situ growth of hard phase can effectively solve the problem of uneven distribution of reinforcements directly doped with hard particles. In this paper, 45# steel commonly used in ball valve of mine hydraulic support was adopted as the matrix material, WO3, B4C, Al and Ni60 powder were used to prepare laser clading and in-situ grown WC hard phase reinforced nickel-based cladding layers. The feasibility of in-situ grown WC reinforced phase prepared by (WO3+B4C+Al) mixed powder system was evaluated by thermodynamic calculation. The effects of different laser cladding parameters, powder particle size, hard phase content and CeO2/Y2O3 rare earth doping on the microstructure, phase composition, friction and wear and electrochemical properties of in-situ grown WC hard phase reinforced nickel-based cladding layer were analyzed. The conclusions are as follows:
(1) At 100-4500 K, the in-situ growth reactions of WC, W2C, WB, W2B and W2B5 phases are spontaneous and exothermic. Meanwhile, the driving force of W2C phase formation is greater than that of WC phase. In addition, the thermodynamic calculation results can only be a necessary condition rather than a sufficient condition for the spontaneous in-situ reaction.
(2) When the laser power is 3000 W and the scanning rate is 3 mm/s, the microstructure of the cladding layer is dense, no obvious defects such as cracks and pores are found in the cross-section structure, the WC particle size is moderate, the distribution is uniform, and the metallurgical combination with the substrate is good. At this time, the phases of the cladding layer are γ-(NiFe) solid solution, Al2O3, W2C, WC, WC3, WC1-x, WB2, WB4 and Cr23C6 phases. The light gray phase in the microstructures of the cladding layer is the matrix phase γ-(NiFe) solid solution, dark gray phase is the polymerization phase of Cr23C6 and other intermetallic compounds, and white massive particle phase is WC hard phase. Meanwhile, under the condition of low heat input, a large number of butterfly shaped structural precipitates will appear in the cladding layer. Under appropriate heat input, the WC particles in the cladding layer are massive and evenly distributed in the cladding layer. When the heat input is too large, the massive WC particles in the cladding layer will dissolve and decarburize, forming flake secondary precipitates around the WC particles. The butterfly structure formed by the refinement and enrichment of WC particles has a positive effect on the hardness of the cladding layer, but the improvement of wear and corrosion resistance of the cladding layer is not as good as that of massive WC particles.
(3) When the particle size of B4C powder is W5 and the content of doped (WO3+B4C+Al) mixed powder is 25%, compared with 45# steel substrate, the hardness, wear resistance of dry friction and wet friction in emulsion environment, and corrosion resistance of the cladding layer grown in situ are significantly improved, and the hardness is increased by 3-5 times. The dry friction and wear mechanism of the cladding layer is mainly the adhesive and abrasive wear caused by the falling off of WC hard particles, while the friction coefficient and wear amount of friction and wear in the emulsion environment are small, which does not cause obvious damage to the cladding layer.
(4) When the content of doped rare earth oxide CeO2 is 0.75% and the content of Y2O3 is 1.50%, the performance of the cladding layer is best. The CeO2 phase and stable rare earth compounds CeNi5 and Ce3Ni6Si2 phases generated by the reaction appear in the phase of the cladding layer doped with CeO2. The Y2O3 phase and stable rare earth compounds Ni17Y3, YAl3 and AlNiY phases appear in the phase of the cladding layer doped with Y2O3. Rare earth oxides have good grain refinement and purification effect on the cladding layer structure, which enhances the diffraction peaks of each phase. At the same time, the smaller WC particles improve the wear resistance of the cladding layer, but also make the hardness of the cladding layer slightly lower than that of the cladding layer without rare earth oxide. An appropriate amount of rare earth oxide has a positive effect on the wear and corrosion resistance of the cladding layer, but when the content of rare earth oxide is too high, the performance of the cladding layer will also be reduced.
﹀
|
参考文献: |
︿
[1] 李靖. 煤矿机械的发展现状及趋势探究[J]. 矿业装备, 2021(5): 272-273. [2] 黎文强, 马宗彬, 丁紫阳. 煤矿机械磨损失效及表面改性技术的研究[J]. 煤矿机械, 2017, 38(7): 114-116. [3] 曹振华. 煤矿机械磨损失效及表面改性技术研究[J]. 机械管理开发, 2018, 33(7): 80-81. [4] 付祖冈, 张自强, 孟贺超, 等. 激光熔覆技术在高腐蚀环境下液压支架的试验研究[J]. 煤炭科学技术, 2018, 46(5): 155-159+228. [5] 马峰, 陈华辉, 潘俊艳. 煤矿综采设备的腐蚀机理及其防腐蚀措施[J]. 煤矿机械, 2015, 36(7): 210-212. [6] 万宇杰, 熊顺源, 童幸生. 阀门密封面表面处理技术的探讨与展望[J]. 江汉大学学报(自然科学版), 2004, 32(4): 81-85. [7] 刘勇. 化工阀门采用激光熔覆技术的初探[J]. 盐业与化工, 2013, 42(7): 37-39. [8] 李海涛. 金属硬密封球阀表面处理工艺对比及寿命测试[D]. 兰州: 兰州理工大学, 2016. [9] 郦振声, 杨明安, 钱翰城, 等. 现代表面工程技术[M]. 北京: 机械工业出版社, 2007. [10] 宣天鹏. 材料表面功能镀覆层及其应用[M]. 北京: 机械工业出版社, 2008. [11] Huang L, Zhou J Z, Xu J L, et al. Microstructure and wear resistance of electromagnetic field assistedmulti-layer laser clad Fe901 coating[J]. Surface and Coatings Technology, 2020, 395: 125876. [12] Li B C, Zhu H M, Qiu C J, et al. Development of high strengthand ductile martensitic stainless steel coatings with Nb additionfabricated by laser cladding[J]. Journal of Alloys and Compounds, 2020, 832: 154985. [13] Lian G F, Zhang H, Zhang Y, et al. Control and prediction of forming quality in curved surface multi-track laser cladding with curve paths[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106: 3669-3682. [14] Khanna A S, Kumari S, Kanungo S, et al. Hard coatings based on thermal spray and laser cladding[J]. International Journal of Refractory Metals and Hard Materials, 2009, 27(2): 485-491. [15] Liang G Y, Wong T T, An G, et al. Atmosphere corrosion behavior of plasma sprayed and laser remelted coatings on copper[J]. Chinese Optics Letters, 2006, 4(1): 59-62. [16] Liu S, Liu W, Kovacevic R. Experimental investigation of laser hot-wire cladding[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2015, 231(6): 1007-1020. [17] Fu Y L, Guo N, Cheng Q, et al. In-situ formation of laser-cladded layer on Ti-6Al-4 V titanium alloy in underwater environment[J]. Optics and Lasers in Engineering, 2020, 131: 106104. [18] 黄弋力, 朱平, 孟氢钡. 司太立合金激光增材制造用于2Cr13叶片的修复技术研究[J]. 电焊机, 2019, 49(11): 84-87. [19] 许磊, 杜彦斌, 张磊. 表面损伤叶轮激光增材再制造研究[J]. 重庆工商大学学报: 自然科学版, 2021, 38(1): 1-6. [20] Sušnik J, Grum J, Šturm R. Effect of pulse laser energy density on tic cladding of aluminium substrate[J]. Tehnicki Vjesnik, 2015, 22(6): 1553-1560. [21] Marzban J, Ghaseminejad P, Ahmadzadeh M H, et al. Experimental investigation and statistical optimization of laser surface cladding parameters[J]. International Journal of Advanced Manufacturing Technology, 2015, 76(5-8): 1163-1172. [22] Hu G F, Yang Y, Qi K, et al. Investigation of the microstructure and properties of NiCrBSi coating obtained by laser cladding with different process parameters[J]. Transactions of the Indian Institute of Metals, 2020, 73: 2623-2634. [23] Riquelme A, Rodrigo P, Escalera-Rodriguez M D, et al. Analysis and optimization of process parameters in Al-SiCp laser cladding[J]. Optics and Lasers in Engineering, 2016, 78: 165-173. [24] Shakti K, Amitava M, Das A K, et al. Parametric study and characterization of AlN-Ni-Ti6Al4V composite cladding on titanium alloy[J]. Surface and Coatings Technology, 2018, 349: 37-49. [25] Bourahima F, Helbert A L, Rege M, et al. Laser cladding of Ni based powder on a Cu-Ni-Al glassmold: Influence of the process parameters on bonding quality and coating geometry[J]. Journal of Alloys and Compounds, 2018, 771: 1018-1028. [26] 齐勇田, 刘世玺, 曹朝霞. 激光熔覆制备原位自生增强颗粒复合涂层[J]. 应用激光, 2014, 14(2): 105-108. [27] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540. [28] Shi C, Lei J B, Zhou S F, et al. Microstructure and mechanical properties of carbon fibers strengthened Ni-based coatings by laser cladding: the effect of carbon fiber contents[J]. Journal of Alloys and Compounds, 2018, 744: 146-155. [29] Lei J B, Shi C, Zhou S F, et al. Enhanced corrosion and wear resistance properties of carbon fiber reinforced Ni-based composite coating by laser cladding[J], Surface and Coatings Technology, 2018, 334: 274-285. [30] Kooi B J, Pei Y T, Hosson J T M D. The evolution of microstructure in a laser clad TiB-Ti composite coating[J]. Acta Materialia, 2003, 51(3): 831-845. [31] Xiang K, Chen L Y, Chai L J, et al. Microstructural characteristics and properties of CoCrFeNiNb x high-entropy alloy coatings on pure titanium substrate by pulsed laser cladding[J]. Applied Surface Science, 2020, 517: 146214. [32] Liu Y, Wu Y, Ma Y M, et al. High temperature wear performance of laser cladding Co06 coating on high-speed train brake disc[J]. Applied Surface Science, 2019, 481: 761-766. [33] Yan X C, Gao S h, Chang C, et al. Effect of building directions on the surface roughness, microstructure, and tribological properties of selective laser melted Inconel 625[J]. Journal of Materials Processing Technology, 2021, 288: 116878. [34] Devojno O G, Feldshtein E, Kardapolava M A, et al. On the formation features, microstructure and microhardness of single laser tracks formed by laser cladding of a NiCrBSi self-fluxing alloy[J]. Optics and Lasers in Engineering, 2018, 106: 32-38. [35] Chun E J, Park C, Nishikawa H, et al. Microstructural characterization of Ni-based self-fluxing alloy after selective surface-engineering using diode laser[J]. Applied Surface Science, 2018, 442: 726-735. [36] Liu J X, Yan H, Li Z Y, et al. Microstructure and properties of Ni-based self-lubrication coatings by laser cladding/friction stir processing[J]. Optik-International Journal for Light and Electron Optics, 2020, 241: 166143. [37] 董刚, 白万金, 张九渊, 等. 激光熔覆Ni基合金/SiC涂层耐冲蚀性能的研究[J]. 表面技术, 2004, 33(2): 36-37+42. [38] Arabi Jeshvaghani R, Shamanian M, Jaberzadeh M. Enhancement of wear resistance of ductile iron surface alloyed by stellite 6[J]. Materials and Design, 2011, 32(4): 2028-2033. [39] 张松, 张春华, 孙泰礼, 等. 激光熔覆钴基合金组织及其抗腐蚀性能[J]. 中国激光, 2001, 28(9): 860-864. [40] 郭士锐, 姚建华. 半导体激光熔覆钴基合金的组织与性能研究[J]. 热加工工艺, 2016, 45(16): 103-106. [41] 胡晓蕾, 李正秋, 黄恩泽, 等. 激光熔覆矿井液压支架用FeCrNiBSiC系合金组织性能的研究[J]. 热喷涂技术, 2019, 11(3): 51-56. [42] 刘泽. Ni-65WC激光熔覆涂层微观结构及性能研究[D]. 西安: 西安科技大学, 2021. [43] Agrawal A K, Chattopadhyaya S, Murthy V M S R, et al. A Novel Method of Laser Coating Process on Worn-Out Cutter Rings of Tunnel Boring Machine for Eco-Friendly Reuse[J]. Symmetry, 2020, 12(3): 471. [44] Zhai L L, Ban C Y, Zhang J W. Investigation on laser cladding Ni-base coating assisted by electromagnetic field[J]. Optics and Laser Technology, 2019, 114: 81-88. [45] Ding L, Hu S S, Quan X M, et al. Effect of Mo and nano-Nd2O3 on the microstructure and wear resistance of laser cladding Ni-based alloy coatings[J]. Applied Physics A: Materials Science and Processing, 2016, 122: 288. [46] Li M, Han B, Song L, et al. Enhanced surface layers by laser cladding and ion sulfurization processing towards improved wear-resistance and self-lubrication performances[J]. Applied Surface Science, 2020, 503: 144226. [47] Ortiz A, García A, Cadenas M, et al. WC particles distribution model in the cross-section of laser cladded NiCrBSi+WC coatings, for different wt.% WC[J]. Surface and Coatings Technology, 2017, 324: 298-306. [48] 黎文强. 液压支架激光熔覆强化层的组织与性能[J]. 金属热处理, 2019, 44(5): 83-86. [49] 那帅, 曹贺, 李晶晶. 阀门用06Cr18Ni11Ti钢化学成分优化配比工艺的研究[J]. 阀门, 2020(3): 33-35. [50] 魏宏璞. 核阀密封面无钴铁基合金及激光涂层性能研究[D]. 苏州: 苏州大学, 2010. [51] Xiao Q, Sun W L, Yang K X, et al. Wear mechanisms and micro-evaluation on WC particles investigation of WC-Fe composite coatings fabricated by laser cladding[J]. Surface and Coatings Technology, 2021, 420: 127341. [52] Liu Y W, Sun W C, Tian S S, et al. Microstructures and high-temperature friction and wear behavior of high-velocity oxygen-fuel-sprayed WC-12%Co-6%Cr coatings before and after sealing[J]. Journal of Materials Engineering and Performance. 2022, 31(1): 448-460. [53] Deschuyteneer D, Petit F, Gonon M, et al. Influence of large particle size-up to 1.2 mm-and morphology on wear resistance in NiCrBSi/WC laser cladded composite coatings[J]. Surface and Coatings Technology, 2017, 311: 365-373. [54] Huang S W, Samandi M, Brandt M. Abrasive wear performance and microstructure of laser clad WC/Ni layers[J]. Wear, 2004, 256(11-12): 1095-1105. [55] Lian G, Xiao S, Zhang Y, et al. Multi-objective optimization of coating properties and cladding efficiency in 316L/WC composite laser cladding based on grey relational analysis[J]. The International Journal of Advanced Manufacturing Technology, 2021, 112: 1449-1459. [56] Ma Q, Li Y, Wang J, et al. Investigation on cored-eutectic structure in Ni60/WC composite coatings fabricated by wide-band laser cladding[J]. Journal of Alloys and Compounds, 2015, 645:151-157. [57] Yan X H, Chang C, Deng Z Y, et al. Microstructure, interface characteristics and tribological properties of laser cladded NiCrBSi-WC coatings on PH 13-8 Mo steel[J]. Tribology International, 2021, 157: 106873. [58] 韩德伟. 金属的硬度及其试验方法[M]. 湖南: 科学技术出版社, 1983. [59] Acker K V, Vanhoyweghen D, Persoons R, et al. Influence of tungsten carbide particle size and distribution on the wear resistance of laser clad WC/Ni coatings[J]. Wear, 2005, 258(1-4): 194-202. [60] Zhou S F, Lei J B, Dai X Q, et al. A comparative study of the structure and wear resistance of NiCrBSi/50 wt.% WC composite coatings by laser cladding and laser induction hybrid cladding[J]. International Journal of Refractory Metals and Hard Materials, 2016, 60: 17-27. [61] Guo C, Zhou J S, Chen J M, et al. High temperature wear resistance of laser cladding NiCrBSi and NiCrBSi/WC-Ni composite coatings[J]. Wear, 2011, 270(7-8): 492-498. [62] Rong T, Gu D D, Shi Q M, et al. Effects of tailored gradient interface on wear properties of WC/Inconel 718 composites using selective laser melting[J]. Surface and Coatings Technology, 2016, 307: 418-427. [63] Muvvala G, Karmakar D P, Nath A K. In-process detection of microstructural changes in laser cladding of in-situ Inconel 718/TiC metal matrix composite coating[J]. Journal of Alloys and Compounds, 2018, 740: 545-558. [64] Chen T, Wu F, Wang H J, et al. Laser cladding in-situ Ti(C,N) particles reinforced Ni-based composite coatings modified with CeO2 nanoparticles[J]. Metals, 2018, 8(8): 601-619. [65] Tao C, Li W B, Liu D B, et al. Effects of heat treatment on microstructure and mechanical properties of TiC/TiB composite bioinert ceramic coatings in-situ synthesized by laser cladding on Ti6Al4V[J]. Ceramics International, 2021, 47(1): 755-768. [66] Hu D W, Liu Y, Chen H, et al. Microstructure and properties of in-situ synthesized Ni3Ta-TaC reinforced Ni-based coatings by laser cladding[J]. Surface and Coatings Technology, 2020, 405: 126599. [67] Zhang D, Cui X, Jin G, et al. Effect of in-situ synthesis of multilayer graphene on the microstructure and tribological performance of laser cladded Ni-based coatings[J]. Applied Surface Science, 2019, 495: 143581. [68] Lu Y, Huang G, Wang Y, et al. Crack-free Fe-based amorphous coating synthesized by laser cladding[J]. Materials Letters, 2018, 210: 46-50. [69] Yu H L, Zhang W, Wang H M, et al. In-situ synthesis of TiC/Ti composite coating by high frequency induction cladding[J]. Journal of Alloys and Compounds, 2017, 701, 244-255. [70] Zhang M, Zhao G L, Wang X H, et al. Microstructure evolution and properties of in-situ ceramic particles reinforced Fe-based composite coating produced by ultrasonic vibration assisted laser cladding processing[J]. Surface and Coatings Technology, 2020, 403: 126445. [71] Gu D D, Jia Q B. Novel crystal growth of in situ wc in selective laser-melted W-C-Ni ternary system[J]. Journal of the American Ceramic Society, 2014, 97(3): 684-687. [72] 张艳梅, 帅歌国, 黄杰煌, 等. 激光熔覆原位自生WxC颗粒增强镍基复合涂层[J]. 金属热处理, 2016, 41(2): 79-83. [73] 杨宁, 李立凯, 晁明举. 激光熔覆原位生长VC-WxC颗粒增强镍基涂层研究[J]. 激光技术, 2012, 36(5): 627-631. [74] 李楠, 张吉庆. 激光熔覆原位自生碳化钨陶瓷涂层的研究[J]. 热加工工艺, 2017, 46(2): 127-129+133. [75] He L M, Xu Z H, Cao X Q, et al. Adhesive strength of new thermal barrier coatings of rare earth zirconates[J]. Vacuum, 2009, 83(11): 1388-1392. [76] Liu Q B, Zou J L, Zheng M, et al. Effect of Y2O3 content on microstructure of gradient bioceramic composite coating produced by wide-band laser cladding[J]. Journal of Rare Earths, 2005, 23(4): 446-450. [77] Wu C F, Ma M X, Liu W J, et al. Laser cladding in-situ carbide particle reinforced Fe-based composite coatings with rare earth oxide addition[J]. Journal of Rare Earths, 2009, 27(6): 997-1002. [78] Xing X G, Han Z J, Wang H F, et al. Electrochemical corrosion resistance of CeO2-Cr/Ti coatings on 304 stainless steel via pack cementation[J]. Journal of Rare Earths, 2015, 33(10): 1122-1128. [79] Yu D Q, Zhao J, Wang L. Improvement on the micro-structure stability, mechanical and wetting properties of Sn-Ag-Cu lead-free solder with the addition of rare earth elements[J]. Journal of Alloys and Compounds, 2004, 376(1-2): 170-175. [80] Li J, Luo X, Li G J. Effect of Y2O3 on the sliding wear re-sistance of TiB/TiC-reinforced composite coatings fabri-cated by laser cladding[J]. Wear, 2014, 310(1-2): 72-82. [81] Wang D S, Liang E J, Chao M J, et al. Investigation on the microstructure and cracking susceptibility of laser-clad V2O5/NiCrBSiC alloy coatings[J]. Surface and Coatings Technology, 2008, 202(8): 1371-1378. [82] Zhu R D, Li Z Y, Li X X, et al. Microstructure and properties of the low-power-laser clad coatings on magnesium alloy with different amount of rare earth addition[J]. Applied Surface Science, 2015, 353: 405-413. [83] Li H C, Wang D G, Chen C Z, et al. Effect of CeO2 and Y2O3 on microstructure, bioactivity and degradability of laser cladding CaO-SiO2 coating on titanium alloy[J]. Colloids and Surfaces B-Biointerfaces, 2015, 127: 15-21. [84] Wang K L, Zhang Q B, Sun M L, et al. Rare earth elements modification of laser-clad nickel-based alloy coatings[J]. Applied Surface Science, 2001, 174(3-4): 191-200. [85] Tian Y S, Chen C Z, Chen L X, et al. Effect of RE oxides on the microstructure of the coatings fabricated on titanium alloys by laser alloying technique[J]. Scripta Materialia, 2006, 54(5): 847-852. [86] Wu C M L, Yu D Q, Law C M T, et al. Properties of lead-free solder alloys with rare earth element additions[J]. Materials Science and Engineering R Reports, 2004, 44(1): 1-44. [87] Wang K L, Zhang Q B, Sun M L, et al. Effect of laser surface cladding of ceria on the wear and corrosion of nickel-based alloys[J]. Surface and Coatings Technology, 1997, 96(2-3): 267-271. [88] Wang W J, Fu Z K, Cao X, et al. The role of lanthanum oxide on wear and contact fatigue dam-age resistance of laser cladding Fe-based alloy coating under oil lubrication condition[J]. Tribology International, 2016, 94: 470-478. [89] Lu D H, Liu S S, Zhang X Y, et al. Effect of Y2O3 on microstructural characteristics and wear resistance of cobalt-based composite coatings produced on TA15 tita-nium alloy surface by laser cladding[J]. Surface and Interface Analysis, 2015, 47(2): 239-244. [90] Quazi M M, Fazal M A, Haseeb A S M A, et al. Effect of rare earth elements and their oxides on tribo-mechanical performance of laser claddings: A review[J]. Journal of Rare Earths, 2016, 34(6): 549-564. [91] 王海川, 董元篪. 冶金热力学数据测定与计算方法[M]. 北京: 冶金工业出版社, 2005. [92] 战磊. Ni-Ti-C/B4C-BN 体系燃烧合成反应行为与机制[D]. 长春: 吉林大学, 2010. [93] Zhong M, Liu W. Laser surface cladding: the state of the art and challenges[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2010, 224(5): 1041-1060. [94] Yilbas B S, Akhtar S S, Karatas C. Laser surface treatment of Inconel 718 alloy: thermal stress analysis[J]. Optics and Lasers in Engineering, 2010, 48(7-8): 740-749. [95] Sun Y W, Hao M Z. Statistcal analysis and optimization of process parameters in Ti6Al4V laser cladding using Nd:YAG laser[J]. Optics and Lasers in Engineering 2012, 50(7): 985-995. [96] Liu Y H, Guo Z X, Yang Y, et al. Laser (a pulser Nd:YAG) cladding of AZ91D magnesium alloy with Al and Al2O3 powders[J]. Applied Surface Science, 2006, 253(4): 1722-1728. [97] Lee H K. Effects of the cladding parameters on the deposition efficiency in pulsed Nd:YAG laser cladding[J]. Journal of Materials Processing Technology, 2008, 202(1-3): 321-327. [98] Gao W Y, Zhao S S, Liu F L, et al. Effects of defocus plane on laser cladding of Fe-based alloy powder[J]. Surface and Coatings Technology, 2014, 248: 54-62. [99] 周远东. 45#钢表面超高速激光熔覆X-M6V耐磨涂层组织性能研究[D]. 哈尔滨: 哈尔滨工业大学,2020. [100] Zheng H P, Shao Y W, Wang Y Q, et al. Reinforcing the corrosion protection property of epoxy coating by using graphene oxide-poly (urea-formaldehyde) composites[J]. Corrosion Science, 2017, 123(1): 267-277. [101] Do Q Q, An H Z, Wang G X, et al. Effect of cupric sulfate on the microstructure and corrosion behavior of nickel-copper nanostructure coatings synthesized by pulsed electrodeposition technique[J]. Corrosion Science, 2019, 147: 246-259. [102] Aliyu A, Rekha M Y, Srivastava C. Microstructure-electrochemical property correlation in electrodeposited CuFeNiCoCr high-entropy alloy-graphene oxide composite coatings[J]. Philosophical Magazine, 2019, 99(6): 718-735. [103] 刘其斌, 朱维东, 陈江. 高温合金激光熔覆涂层中裂纹防止方法的研究[J]. 贵州工业大学学报, 2000(5): 56-59. [104] 赵玉兰. 钛合金激光熔覆金属陶瓷复合涂层组织性能研究[D]. 大连: 大连理工大学, 2007. [105] 张栋栋. 高硬度激光熔覆层裂纹的产生机理及控制方法研究[D]. 长春: 长春理工大学, 2014. [106] 疏达. 激光熔覆碳化钨增强镍基涂层的原位合成机制及性能研究[D]. 上海: 上海交通大学, 2017. [107] 赵高敏, 王昆林, 刘家浚. La2O3对激光熔覆铁基合金层硬度及其分布的影响[J]. 金属学报, 2004, 40(10): 1115-1120.
﹀
|
中图分类号: |
TG174.4
|
开放日期: |
2022-06-16
|