论文中文题名: | 西卓煤矿1509综采面底板破坏深度分析与现场测试研究 |
姓名: | |
学号: | 21204053021 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 081401 |
学科名称: | 工学 - 土木工程 - 岩土工程 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2024 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 采场围岩变形破坏规律 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2024-06-13 |
论文答辩日期: | 2024-05-30 |
论文外文题名: | Analysis and field test of floor failure depth of 1509 fully mechanized mining face in Xizhuo Coal Mine |
论文中文关键词: | |
论文外文关键词: | Ordovician limestone confined water ; floor failure depth ; plastic slip line ; on-site monitoring ; numerical simulation ; water inrush prediction |
论文中文摘要: |
近年来,随着澄合矿区煤矿开采活动的持续扩大和深入,下伏奥灰承压水以及K2含水层对采场底板的潜在危害日益凸显,这些工程地质及水文地质因素显著增加了采场底板遭受破坏的风险,进而提升了底板突水事故发生的概率,对煤矿的安全生产以及人民群众的生命财产安全构成了不容忽视的威胁。在承压水矿区,煤层底板破坏深度的研究对于预防底板突水事故至关重要,这也是澄合矿区煤矿安全生产所面临的主要问题。本文选取澄合矿区西卓煤矿1509综采面作为具体研究对象,综合运用室内试验、理论计算、现场测试以及数值模拟相结合的方法,对该综采面底板破坏深度进行深入研究。研究成果为西卓煤矿的安全生产提供了有力支撑,保证工作面顺利回采。以下是本文研究主要成果: (1)在分析总结西卓煤矿矿井概况和1509综采面工程地质、水文地质资料的基础上,系统研究影响西卓煤矿1509综采面安全回采的主要因素,即奥灰含水层充分的水源和K2灰岩含水层在采动作用下发生的水力联系。通过确定水力联系的位置,采用钻孔取芯的方式对1509综采面回风顺槽煤层底板下23m范围内的煤岩体取样,并进行室内物理力学参数测试,测试结果可为理论计算和数值模拟提供相应的基础参数。 (2)基于1509综采面概况和矿山压力与岩层控制理论,分别建立与综采面倾走向相关的力学计算模型,并以弹性理论分析沿综采面倾向和走向的应力变化规律与破坏特征;运用莫尔-库伦准则确定采煤过程中综采面前方煤壁边缘在极限平衡条件下产生的塑性区宽度,并利用塑性滑移线理论计算综采面回采过程中的底板最大塑性破坏深度,从理论分析的角度对1509综采面底板破坏深度进行预测。 (3)使用超声波围岩裂隙探测仪和钻孔应力计对煤层底板破坏深度进行现场实测,通过分析实测数据,确定底板破坏深度;在考虑底板岩层承压水压力的情况下,采用FLAC3D模拟不同采宽和推进距离下煤层底板岩体的垂直应力变化规律和破坏特征情况,通过现场测试与数值模拟进一步验证理论分析的正确性。 (4)基于工程地质和水文地质资料,并结合前文计算结果,采用突水系数法和弹性理论对西卓煤矿1509综采面煤层底板突水危险性进行预测分析,并对比1509综采面底板奥灰承压水最大静压力,说明该综采面的安全回采与否。根据分析结果,提出西卓煤矿1509综采面具体的煤层底板突水防治建议与加固措施。 |
论文外文摘要: |
In recent years, with the continuous expansion and deepening of coal mining activities in Chenghe mining area, the potential hazards of underlying Ordovician limestone confined water and K2 aquifer to the stope floor have become increasingly prominent. These engineering geological and hydrogeological factors have significantly increased the risk of damage to the stope floor, thereby increasing the probability of water inrush accidents from the floor, which poses a threat to the safety of coal mine production and the safety of people 's lives and property that cannot be ignored. In the confined water mining area, the research on the failure depth of coal seam floor is very important for preventing floor water inrush accidents, which is also the main problem faced by coal mine safety production in Chenghe mining area. In this paper, 1509 fully mechanized mining face of Xizhuo Coal Mine in Chenghe mining area is selected as the specific research object. The failure depth of the floor of the fully mechanized mining face is deeply studied by means of indoor test, theoretical calculation, field test and numerical simulation. The research results provide strong support for the safe production of Xizhuo Coal Mine and ensure the smooth mining of the working face. The following are the main results of this study : (1) Based on the analysis and summary of the general situation of Xizhuo Coal Mine and the engineering geological and hydrogeological data of 1509 fully mechanized mining face, the main factors affecting the safe mining of 1509 fully mechanized mining face in Xizhuo Coal Mine are systematically studied, that is, the sufficient water source of Ordovician limestone aquifer and the hydraulic connection of K2 limestone aquifer under mining action. By determining the location of the hydraulic connection, the coal and rock mass within 23 m below the coal seam floor of the return air gateway in 1509 fully mechanized mining face is sampled by means of drilling coring, and the indoor physical and mechanical parameters are tested. The test results can provide the corresponding basic parameters for theoretical calculation and numerical simulation. (2) Based on the general situation of 1509 fully mechanized mining face and the theory of mine pressure and strata control, the mechanical calculation models related to the dip direction of fully mechanized mining face are established respectively, and the stress variation law and failure characteristics along the dip direction and direction of fully mechanized mining face are analyzed by elastic theory. The Mohr-Coulomb criterion is used to determine the width of the plastic zone generated by the edge of the coal wall in front of the fully mechanized mining face under the limit equilibrium condition, and the plastic slip line theory is used to calculate the maximum plastic failure depth of the floor during the mining process of the fully mechanized mining face. From the perspective of theoretical analysis, the failure depth of the floor of 1509 fully mechanized mining face is predicted. (3) The ultrasonic surrounding rock crack detector and borehole stress meter are used to measure the failure depth of coal seam floor, and the failure depth of floor is determined by analyzing the measured data. Considering the confined water pressure of floor strata, FLAC3D is used to simulate the vertical stress variation law and failure characteristics of coal seam floor rock mass under different mining width and advancing distance. The correctness of theoretical analysis is further verified by field test and numerical simulation. (4) Based on the engineering geological and hydrogeological data, combined with the previous calculation results, the water inrush coefficient method and elastic theory are used to predict and analyze the water inrush risk of coal seam floor in 1509 fully mechanized mining face of Xizhuo Coal Mine, and the maximum static pressure of Ordovician limestone confined water in 1509 fully mechanized mining face floor is compared to illustrate whether the fully mechanized mining face is safe or not. According to the analysis results, the specific prevention and control suggestions and reinforcement measures of coal seam floor water inrush in 1509 fully mechanized mining face of Xizhuo Coal Mine are put forward. |
参考文献: |
[1] 中国能源战略战略研究小组.中国可持续能源发展战略专题研究[M].北京:科学出版社,2006. [2] 董书宁,虎维岳.中国煤矿水害基本特征及其主要影响因素[J].煤田地质与勘探,2007(05):34-38. [3] 武强.我国矿井水防控与资源化利用的研究进展、问题和展望[J].煤炭学报,2014,39(05):795-805.DOI:10.13225/j.cnki.jccs.2014.0478. [4] 董书宁.煤矿安全高效生产地质保障技术现状与展望[J].煤炭科学技术,2007(03):1-5.DOI:10.13199/j.cst.2007.03.5.dongshn.001. [5] 白海波,缪协兴.晚古生代煤田水文地质特征与防治水理论及技术[J].中国矿业大学学报,2016,45(01):1-10.DOI:10.13247/j.cnki.jcumt.000450. [6] 仵彦卿,张倬元.《岩体水力学导论》[M].成都:西南交通大学出版社,1995. [9] 李富宁,曹百胜.浅析澄合矿区煤层底板奥灰水突水机理[J].陕西煤炭,2010,29(02):7-8. [10] 缪协兴,刘卫群,陈占清.采动岩体渗流理论[M].科学出版社,2004 [11] 胡新宇.采场底板隐伏断层活化及突水机理研究[D].中国矿业大学,2015. [12] 蓝航,陈东科,毛德兵.我国煤矿深部开采现状及灾害防治分析[J].煤炭科学技术,2016,44(01):39-46.DOI:10.13199/j.cnki.cst.2016.01.007. [18] 王作宇.底板零位破坏带最大深度的分析计算[J].煤炭科学技术,1992(02):2-6+60-61.DOI:10.13199/j.cst.1992.02.3.wangzy.001. [19] 付国彬,洪允和.缓倾斜综采面的底板破坏区[J].矿山压力与顶板管理,1992,(01):62-65+102-103. [20] 张金才,肖奎仁.煤层底板采动破坏特征研究[J].煤矿开采,1993,(03):44-49. [21] 关英斌,李海梅,金瞰昆.煤层底板采动破坏特征研究[J].煤炭科学技术,2002,(06):35-38.DOI:10.13199/j.cst.2002.06.37.guanyb.013. [22] 李海梅,关英斌.综采综采面底板破坏深度的研究[J].矿山压力与顶板管理,2002,(03):52-54+118. [23] 关英斌,李海梅,金瞰昆.煤层底板采动破坏特征的研究[J].煤矿安全,2003,(02):29-32. [25] 鲁海峰,姚多喜,梁修雨,等.采动底板横观各向同性岩体应力解析解[J].地下空间与工程学报,2013,9(05):1050-1056. [27] 刘启蒙,刘瑜,张缓缓.基于损伤变量的煤层底板采动破坏深度计算[J].煤田地质与勘探,2017,45(06):123-128+138. [34] 刘宗才.用钻孔声波法观测采后底板破坏深度[J].山东矿业学院学报,1985,(01):6-13.DOI:10.16452/j.cnki.sdkjzk.1985.01.002. [35] 刘宗才.用钻孔放注水法探测煤层采动后底板的破坏深度[J].山东矿业学院学报,1986,(01):14-19.DOI:10.16452/j.cnki.sdkjzk.1986.01.002. [36] 翟培合.采场底板破坏及底板水动态监测系统研究[D].山东科技大学,2005. [37] 关英斌,李海梅,路军臣.显德汪煤矿9号煤层底板破坏规律的研究[J].煤炭学报,2003(02):121-125. [38] 张平松,吴基文,刘盛东.煤层采动底板破坏规律动态观测研究[J].岩石力学与工程学报,2006(S1):3009-3013. [39] 朱术云,鞠远江,赵振中,等.超化煤矿“三软”煤层采动底板变形破坏的实测研究[J].岩土工程学报,2009,31(04):639-642. [40] 唐鑫,姜振泉,曹丁涛,等.厚煤层开采底板变形破坏特征实测研究[J].煤炭技术,2014,33(10):153-156.DOI:10.13301/j.cnki.ct.2014.10.060. [41] 汪佩,刘超,丁亚恒.直流激电仪在综采面底板破坏深度监测中的应用[J].中州煤炭,2015,(10):117-119. [42] 孙斌杨,张平松,付茂如,等.采场底板岩层破坏规律光纤测试方法与效果[J].合肥工业大学学报(自然科学版),2017,40(05):701-707. [47] 冯启言,陈启辉.煤层开采底板破坏深度的动态模拟[J].矿山压力与顶板管理,1998,(03):72-74. [48] 褚廷民,谭可夫.承压开采底板破坏深度数值模拟研究[J].陕西煤炭技术,1999,(01):13-19. [49] 李海梅,关英斌.显德汪煤矿煤层底板采动破坏效应的有限元模拟[J].煤炭工程,2002,(10):38-40. [50] 关英斌,李海梅,路军臣.显德汪煤矿9号煤层底板破坏规律的研究[J].煤炭学报,2003,(02):121-125. [52] 吴基文,樊成,刘小红.杨庄煤矿六煤底板采动效应研究[J].岩土力学,2003,(04):549-552.DOI:10.16285/j.rsm.2003.04.014. [53] 刘洋.矿山压力对煤层底板破坏深度的数值分析[J].西安科技大学学报,2008,(01):11-14+60.DOI:10.13800/j.cnki.xakjdxxb.2008.01.008. [54] 董东林,洪益清,钱增江.基于FLAC~(3D)的千米埋深的煤层底板影响深度模拟[J].煤炭工程,2010,(02):71-74. [57] 徐智敏,孙亚军,巩思园,等.高承压水上采煤底板突水通道形成的监测与数值模拟[J].岩石力学与工程学报,2012,31(08):1698-1704. [58] 李江华,许延春,谢小锋,等.采高对煤层底板破坏深度的影响[J].煤炭学报,2015,40(S2):303-310.DOI:10.13225/j.cnki.jccs.2015.0033. [59] 代革联,杨韬,郭国强,等.带压开采首采综采面底板破坏深度研究[J].煤炭科学技术,2016,44(08):56-60.DOI:10.13199/j.cnki.cst.2016.08.010. [60] 赵春虎.孤岛综采面底板破坏深度微震测试与模拟分析[J].煤田地质与勘探,2019,47(04):110-116. [64] 王梦玉.冀鲁豫石炭二迭纪煤田的煤层底板突水机理及预测方法[J].煤田地质与勘探,1977,(05):21-32. [65] 张金才.煤层底板突水预测的理论与实践[J].煤田地质与勘探,1989,(04):38-41+71. [66] 张金才.煤层底板突水预测的理论判据及其应用[J].力学与实践,1990,(02):35-38. [67] 黎良杰,张建军.煤层底板突水的计算预测及应用[J].煤田地质与勘探,1995,(04):34-38. [68] 王希良,郑世书,孙亚军,等.GIS支持下的煤矿底板突水预报研究[J].工程勘察,2001,(01):20-22. [69] 王连国,宋扬,缪协兴.基于尖点突变模型的煤层底板突水预测研究[J].岩石力学与工程学报,2003,(04):573-577. [70] 姜谙男,梁冰.基于最小二乘支持向量机的煤层底板突水量预测[J].煤炭学报,2005,(05):71-75. [72] 杨天鸿,唐春安,谭志宏,等.岩体破坏突水模型研究现状及突水预测预报研究发展趋势[J].岩石力学与工程学报,2007,(02):268-277. [73] 刘再斌,靳德武,刘其声.基于二项logistic回归模型与CART树的煤层底板突水预测[J].煤田地质与勘探,2009,37(01):56-61. [75] 宋振骐,郝建,汤建泉,等.断层突水预测控制理论研究[J].煤炭学报,2013,38(09):1511-1515.DOI:10.13225/j.cnki.jccs.2013.09.011. [77] 余国锋,袁亮,任波,等.底板突水灾害大数据预测预警平台[J].煤炭学报,2021,46(11):3502-3514.DOI:10.13225/j.cnki.jccs.2020.1788. |
中图分类号: | TD323 |
开放日期: | 2024-06-13 |