- 无标题文档
查看论文信息

论文中文题名:

 汞污染土壤耐汞菌的分离生长特性及除汞效果研究    

姓名:

 张文媛    

学号:

 19209215080    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 地质与环境学院    

专业:

 环境工程    

研究方向:

 土壤污染与防治    

第一导师姓名:

 荆秀艳    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-21    

论文答辩日期:

 2022-05-30    

论文外文题名:

 Isolation and growth characteristics of mercury-tolerant bacteria in mercury-contaminated soil and study on mercury removal effect    

论文中文关键词:

 汞土壤污染 ; 生物修复 ; 复合菌 ; 重金属    

论文外文关键词:

 Mercury soil pollution ; Bioremediation ; Compound bacteria ; Heavy metal    

论文中文摘要:

随着我国工矿企业的发展,土壤汞污染问题日益突现,部分受汞污染的土壤仍然用于农作物种植,对人类健康和生态环境造成了极大的危害。旬阳汞资源富集,汞矿开发历史悠久,前期炼汞排放的废气、废水和废渣已对周围的大气、水体以及土壤造成污染,部分农作物出现汞超标现象。汞在农作物中的累积给当地人民群众饮食安全带来了严重威胁,因此土壤汞污染治理势在必行。微生物修复因具有经济和安全特点,受到众多学者的关注,成为土壤汞污染治理的潜在技术。本文以旬阳汞锑矿周边土壤为采样区,通过野外调查、室内试验和表征手段,在筛选出具有抗汞特性的土著菌株的基础上,进一步研究分离菌的培养条件、生长特性和去汞效果与机理,旨在为该区土壤汞污染的微生物修复提供菌种资源和理论依据,主要得出以下研究成果:

(1)试验区土壤汞的浓度分布范围为6.28~46.5 mg/kg,平均值为17.4 mg/kg。pH值范围为5.63~8.69,平均值为7.54,总体呈中性偏酸性。汞污染土壤中分离出两种耐汞菌株,微生物菌剂中分离出一种耐汞菌株,16S rRNA鉴定分别为东京芽孢杆菌(K型)、肺炎克雷伯氏菌(N型)和枯草芽孢杆菌(W型)。三种菌株的耐汞浓度分别为30 mg/L、30 mg/L和15 mg/L,分离时间一般为12~30 h,且汞含量越高,分离时间越长。

(2)在30℃、室内震荡培养条件下,三种菌株均经历适应期、对数期、稳定期和衰亡期四个生长阶段,时间分别为3~20 h、20~40 h、45~50 h和20~27 h,生长周期约为120 h,其中菌在含汞环境中适应期较长,表现为N型和复合型菌适应期最短,W型菌适应期最长,适应期以后,三种菌株的生长规律基本与无汞时相一致。

(3)菌株种类,培养方式、汞浓度和pH值对菌株的生长均有一定影响。复合菌优于单菌生长,在pH值为6~8、汞浓度在5~15 mg/L、震荡培养时均有利于菌的生长,OD600值达到1.6。静态培养时生长周期要延至5~7 d,OD600值下降0.5左右。

(4)共存重金属离子对KNW型菌对汞的去除具有明显的胁迫作用。Zn2+、Cu2+、Cd2+、Cr6+、Ni2+或多种重金属离子共存时,对复合菌在去汞的过程中起到抑制作用,其中Zn2+和多种金属离子共存胁迫作用最为明显,Cu2+和Cd2+次之,Cr6+和Ni2+作用最小;而Pb2+与其它离子表现不同,在复合菌去汞的过程中起到了促进作用,汞的吸附率提高了10%。此外,复合菌对其它重金属也表现出一定的吸附作用,表明该菌对汞是非选择性吸附。

(5)单菌、两种菌复合以及三种菌复合在培养72 h后,对10 mg/L汞的去除率分别为30~40%、50~60%和84%。复合菌的去汞效果明显优于单菌,表明菌种之间为共生关系,可以协同作用来提高汞的去除效果。SEM、EDS、FTIR表征与Zeta电位分析结果表明,分离菌去汞机制是生物吸附、沉淀和挥发共同作用的结果,其中菌体表面的氨基和磷酸基官能团发挥了重要作用。

关 键 词:汞土壤污染;生物修复;复合菌;重金属

研究类型:基础研究

论文外文摘要:

With the development of industrial and mining enterprises in China, the problem of soil mercury pollution has become increasingly prominent. Some mercury contaminated soils are still used for crop planting, which has caused great harm to human health and ecological environment. Xunyang is rich in mercury resources and has a long history of mercury mine development. The waste gas, wastewater and waste residue discharged from Mercury Smelting in the early stage have polluted the surrounding atmosphere, water and soil, and some crops have exceeded the standard of mercury. The accumulation of mercury in crops poses a serious threat to the food safety of local people, so the treatment of soil mercury pollution is imperative. Microbial remediation has attracted the attention of many scholars because of its economic and safety characteristics, and has become a potential technology for the treatment of soil mercury pollution. In this paper, the soil around the Xunyang mercury-antimony mine was taken as the sampling area, and the culture conditions, growth characteristics and mercury removal of the isolated bacteria were further studied on the basis of screening out indigenous strains with mercury-resistant properties through field investigations, laboratory tests and characterization methods. The purpose of this study is to provide bacterial resources and theoretical basis for the microbial remediation of soil mercury pollution in this area. The main research results are as follows:

(1) The distribution range of soil mercury concentration in the experimental area was 6.28~46.5 mg/kg, with an average value of 17.4 mg/kg. The pH range is 5.63~8.69, the average is 7.54, and the overall is neutral to acid. Two mercury-resistant strains were isolated from the mercury-contaminated soil, and one mercury-resistant strain was isolated from the microbial inoculum. 16S rRNA was identified as Bacillus tokyo (type K), Klebsiella pneumoniae (type N) and Bacillus subtilis (type W). The mercury-tolerant concentrations of the three strains were 30 mg/L, 30 mg/L and 15 mg/L, respectively, and the separation time was generally 12~30 h, and the higher the mercury content, the longer the separation time.

(2) Under the condition of 30℃ and indoor shaking culture, the three strains all experienced four growth stages: adaptation period, logarithmic period, stable period and decay period, and the time was 3~20 h, 20~40 h, 45~50 h and 20~27 h, the growth period is about 120 h, among which the bacteria have a longer adaptation period in the mercury-containing environment, and the N type and compound type bacteria have the shortest adaptation period, and the W type bacteria have the longest adaptation period. The growth laws of the strains were basically the same as those without mercury.

(3) Bacterial species, cultivation method, mercury concentration and pH value all have certain influence on the growth of strains. Compound bacteria are better than single bacteria growth. When the pH value is 6~8, the mercury concentration is 5~15 mg/L, and the shaking culture is conducive to the growth of bacteria, the OD600 value can reach 1.6. In static culture, the growth cycle was extended to 5~7 days, and the OD600 value decreased by about 0.5.

(4) The coexistence of heavy metal ions has obvious stress on the removal of mercury by KNW bacteria. When Zn2+, Cu2+, Cd2+, Cr6+, Ni2+ or a variety of heavy metal ions coexist, it can inhibit the complex bacteria in the process of mercury removal. Among them, the coexistence of Zn2+ and various metal ions has the most obvious stress effect, followed by Cu2+ and Cd2+. Cr6+ and Ni2+ have the least effect; while Pb2+ is different from other ions, it plays a promoting role in the process of mercury removal by compound bacteria, and the adsorption rate of mercury is increased by 10%. In addition, the composite bacteria also showed a certain adsorption effect on other heavy metals, indicating that the bacteria were non-selective adsorption of mercury.

(5) The removal rates of 10 mg/L mercury for single bacteria, two bacteria compound and three bacteria compound were 30~40%, 50~60% and 84% respectively after culturing for 72 h. The mercury removal effect of the compound bacteria was significantly better than that of the single bacteria, indicating that the bacteria were in a symbiotic relationship and could synergize to improve the mercury removal effect. The results of SEM, EDS, FTIR characterization and Zeta potential analysis showed that the mercury removal mechanism of the isolated bacteria was the result of the combined action of biosorption, precipitation and volatilization, and the amino and phosphate functional groups on the surface of the bacteria played an important role.

Key words: Mercury soil pollution; Bioremediation; Compound bacteria; Heavy metal

Thesis type: Fundamental research

参考文献:

[1] 王晓娟, 华雯, 万阳, 等. 旬阳县红军镇汞污染农田土壤污染治理与修复技术应用试点项目实施方案[R]. 西安: 西安中地环境科技有限公司, 2019.

[2] 葛峰, 徐坷坷, 刘爱萍, 等. 国外土壤环境基准研究进展及对中国的启示[J]. 土壤学报, 2021, 58(02): 331-343.

[3] 窦韦强, 安毅, 秦莉, 等. 土壤pH对汞迁移转化的影响研究进展[J]. 农业资源与环境学报, 2019, 36(1): 1-8.

[4] 任丽英, 赵敏, 董玉良, 等. 两种铁氧化物对土壤有效态汞的吸附作用研究[J]. 环境科学学报, 2014, 34(3): 749-753.

[5] Li X, Zhang J, Gong Y, et al. Status of mercury accumulation in agricultural soils across China (1976–2016)[J]. Ecotoxicology and Environmental Safety, 2020, 197: 110564.

[6] Natasha, Shahid M, Khalid S, et al. A critical review of mercury speciation, bioavailability, toxicity and detoxification in soil-plant environment: Ecotoxicology and health risk assessment[J]. Science of the Total Environment, 2020, 711: 134749.

[7] Yang B, Gao Y, Zhang C X, et al. Mercury accumulation and transformation of main leaf vegetable crops in Cambosol and Ferrosol soil in China[J]. Environmental Science and Pollution Research, 2020, 27(1): 391-398.

[8] 骆永明, 滕应. 中国土壤污染与修复科技研究进展和展望[J]. 土壤学报, 2020: 57(05):1137-1142.

[9] Mello I S, Pietro-Souza W, Breno B M, et al. Endophytic bacteria mitigate mercury toxicity to host plants[J]. Symbiosis, 2019, 79(3): 251-262.

[10] Mariano C, Mello I S, Barros B M, et al. Mercury alters the rhizobacterial community in Brazilian wetlands and it can be bioremediated by the plant-bacteria association[J]. Environmental Science and Pollution Research, 2020, 27(12): 13550-13564.

[11] 邱蓉, 董泽琴, 张军方, 等. 土壤汞污染及修复措施研究进展[J]. 环保科技, 2013, 19(03): 21-26.

[12] 赖飞, 刘彤, 赵洪江, 等. 土壤汞污染生物修复法的研究现状及发展前景[J]. 广东化工, 2014, 41(06): 123-124.

[13] 余高, 陈芬, 张红丽, 等. 生物炭基复合材料对酸性污染土壤汞钝化的初探[J]. 西北农林科技大学学报(自然科学版), 2021, 49(06): 104-113

[14] 吴霄霄, 曹榕彬, 米长虹, 等. 重金属污染农田原位钝化修复材料研究进展[J]. 农业资源与环境学报, 2019, 36(3): 253-263.

[15] 戚鑫, 陈晓明, 肖诗琦, 等. 生物炭固定化微生物对U、Cd污染土壤的原位钝化修复[J]. 农业环境科学学报, 2018, 37(08): 1683-1689.

[16] 李梦杰, 王翠玲, 李荣春, 等. 汞、铅、铬污染土壤的微生物修复[J]. 环境工程学报, 2013, 7(04): 1568-1572.

[17] 刘顺翱, 吴昊, 胡钧铭, 等. 农田重金属土壤健康钝化技术研究及应用趋势[J]. 农学学报, 2020, 10(03): 6-11.

[18] 郑燕平, 钱妃彦, 陈文秀, 等. 一株耐汞细菌的筛选及其特性研究[J]. 环境科学导刊, 2019, 38(5): 7-9.

[19] 徐辉. 抗汞细菌的筛选、鉴定及其特性研究[D]. 安徽农业大学, 2012.

[20] 杨文, 陈小敏, 朱保虎, 等. 一株耐汞菌的分离鉴定及其去汞特性[J]. 环境工程学报, 2017, 11(1): 602-607.

[21] Wang X N, He Z F, Luo H W, et al. Multiple-pathway remediation of mercury contamination by a versatile selenite-reducing bacterium[J]. Science of the Total Environment, 2018, 615: 615-623.

[22] 王卓娅, 李志红, 李荷. 抗汞菌株的筛选、鉴定及其特性研究[J]. 三峡大学学报(自然科学版), 2008(05): 72-75.

[23] Slawomir, Wierzba. Biosorption of lead(II), zinc(II) and nickel(II) from industrial wastewater by Stenotrophomonas maltophilia and Bacillus subtilis[J]. Polish Journal of Chemical Technology, 2015, 17(1): 79-87.

[24] Chasanah U, Nuraini Y, Handayanto E. The Potential of Mercury-Resistant Bacteria Isolated from Small-Scale Gold Mine Tailings for Accumulation of Mercury[J]. Journal of Ecological Engineering, 2018, 19(2): 236-245.

[25] 谭颖, 周进宏, 张雯静, 等. 根际微生物-植物联合修复土壤重金属污染的研究进展[J]. 节能与环保, 2020(Z1): 80-81.

[26] Hassan A, Pariatamby A, Ahmed A, et al. Enhanced Bioremediation of Heavy Metal Contaminated Landfill Soil Using Filamentous Fungi Consortia: a Demonstration of Bioaugmentation Potential[J]. Water, Air, and Soil Pollution, 2019, 230(9): 211-220.

[27] 李信茹, 米屹东, 魏源, 等. 丛枝菌根真菌-植物共生体系在重金属污染土壤修复上的研究进展[J]. 现代化工, 2020, 40(05): 14-18.

[28] 赵盛开. 微生物法治理汞污染农田土壤的过程研究[D]. 中国石油大学(北京), 2016.

[29] Pietro-Souza W, Pereira F, Mello I S, et al. Mercury resistance and bioremediation mediated by endophytic fungi[J]. Chemosphere, 2020, 240: 124874.

[30] 司光正, 杨清晨, 董佳, 等. 1株汞挥发真菌的分离及特性分析[J]. 环境工程, 2020, 38(9): 247-252.

[31] 郭同同. 耐汞微生物的分离及其对汞污染土壤的修复[D]. 云南大学, 2018.

[32] 张梅华, 孙璐, 朱彤, 等. 耐汞真菌的分离及其对废水中Hg(Ⅱ)吸附的研究[J]. 环境科学与技术, 2015, 38(S2): 1-6.

[33] 郭世财, 杨文权. 重金属污染土壤的植物修复技术研究进展[J]. 西北林学院学报, 2015, 30(06): 81-87.

[34] Kumari S, Amit, Jamwal R, et al. Recent Developments in Environmental Mercury Bioremediation and its Toxicity: A Review[J]. Environmental Nanotechnology Monitoring & Management, 2020, 13(1): 100283.

[35] Chang J J, Shi Y, Si G Z, et al. The bioremediation potentials and mercury(II)-resistant mechanisms of a novel fungus Penicillium spp. DC-F11 isolated from contaminated soil[J]. Journal of Hazardous Materials, 2020, 396: 122638.

[36] 范桃桃, 赵萌萌, 薛林贵, 等. 抗汞细菌及其生物修复机制的研究现状[J]. 湖南农业科学, 2019(02): 115-119.

[37] Teng D, Mao K, Ali W, et al. Describing the toxicity and sources and the remediation technologies for mercury-contaminated soil[J]. Rsc Advances, 2020, 10(39): 23221-23232.

[38] 杨清晨. 抗汞真菌的分离及其抗汞机制研究[D]. 云南大学, 2019.

[39] 胡国成, 张丽娟, 齐剑英, 等. 贵州万山汞矿周边土壤重金属污染特征及风险评价[J]. 生态环境学报, 2015, 24(5): 879-885.

[40] 谷超. 燃煤电厂周边环境中汞、铅分布特征及其迁移转化规律研究[D]. 浙江大学, 2017.

[41] 冯轲. 旬阳县汞矿区污染综合防治现状及土壤修复[J]. 环境与发展, 2019, 31(1): 29-30.

[42] Gray J E, Theodorakos P M, Fey D L, et al. Mercury concentrations and distribution in soil, water, mine waste leachates, and air in and around mercury mines in the Big Bend region, Texas, USA[J]. Environmental Geochemistry and Health, 2015, 37(1): 35-48.

[43] 李柳. 溪口汞矿地区汞环境污染现状及风险评价研究[D]. 重庆大学, 2014.

[44] 李宝磊. 某有色冶炼企业周围土壤中汞等重金属分布的特征研究[J]. 环境工程, 2017, 35(2): 180-183.

[45] 单平, 伍震威, 黄界颍, 等. 安徽某燃煤电厂周边土壤汞分布特征及风险评价[J]. 中国环境监测, 2015, 31(5): 86-92.

[46] Yang X P, Wang L Q. Spatial analysis and hazard assessment of mercury in soil around the coal-fired power plant: a case study from the city of Baoji, China[J]. Environmental Geology, 2008, 53(7): 1381-1388.

[47] Cheng H X, L M, Zhao C D, et al. Overview of trace metals in the urban soil of 31 metropolises in China[J]. Journal of Geochemical Exploration, 2014, 139: 31-52.

[48] Zhang Y X, Wang M, Huang B, et al. Soil mercury accumulation, spatial distribution and its source identification in an industrial area of the Yangtze Delta, China[J]. Ecotoxicology and Environmental Safety, 2018, 163: 230-237.

[49] Rocha-Román L, Olivero-Verbel J , Caballero-Gallardo K R. Impacto de la minería del oro asociado con la contaminación por mercurio en suelo superficial de san martín de loba, sur de bolívar (colombia)[J]. Revista Internacional De Contaminacion Ambiental, 2018, 34(1): 93-102.

[50] 王夏晖. 一项关系美丽中国目标的重大任务——关于推进净土保卫战的若干思考[J]. 中国生态文明, 2019(1): 37-38.

[51] Bieber E, Bingh L P, Bunyana P, et al. Technical Background Report for the Global Mercury Assessment[M]. 2013.

[52] 高锦玉. 东南沿海地区燃煤电厂周围环境中汞的分布特征研究[D]. 浙江大学, 2017.

[53] Matsumoto M, Liu H Z. Mercury speciation and remediation strategies at a historically elemental mercury spilled site[J]. Journal of Hazardous Materials, 2020, 384: 121351.

[54] USEPA. Mercury study report to Congress[R]. 1997.

[55] Li R, Wu H, Ding J, et al. Mercury pollution in vegetables, grains and soils from areas surrounding coal-fired power plants[J]. Scientific Reports, 2017, 7(1): 46545.

[56] 李家飞. 不同污染区土壤中汞的赋存形态及分布规律[D]. 贵州大学, 2018.

[57] 包正铎, 王建旭, 冯新斌, 等. 贵州万山汞矿区污染土壤中汞的形态分布特征[J]. 生态学杂志, 2011, 30(5): 907-913.

[58] 刘培桐. 环境学概论[M]. 北京: 高等教育出版社, 1985: 113-120.

[59] 郑舒雯. 汞污染场地土壤中汞的空间分布及污染评价[D]. 兰州大学, 2013.

[60] Liu S J, Wang X D, Guo G L, et al. Status and environmental management of soil mercury pollution in China: A review[J]. Journal of Environmental Management, 2021, 277: 111442.

[61] Teng D Y, Mao K, Ali W, et al. Describing the toxicity and sources and the remediation technologies for mercury-contaminated soil[J]. Rsc Advances, 2020, 10(39): 23221-23232.

[62] 许妍, 陈永青. 我国环境汞污染现状及其对健康的危害[J]. 职业与健康, 2012, 28(7): 879-881.

[63] 杨国栋, 张梦竹, 冯涛, 等. 土壤重金属污染修复技术研究现状及展望[J]. 现代化工, 2020, 40(12): 50-54+58.

[64] 樊霆, 叶文玲, 陈海燕, 等. 农田土壤重金属污染状况及修复技术研究[J]. 生态环境学报, 2013, 22(10): 1727-1736.

[65] Li X Y, Zhang J R, Gong Y W, et al. Status of mercury accumulation in agricultural soils across China (1976-2016)[J]. Ecotoxicology and Environmental Safety, 2020, 197: 110564.

[66] 张倩, 许端平, 董泽琴, 等. 汞污染土壤热解吸处理过程中不同形态汞的温度效应[J]. 环境科学研究, 2012, 25(8): 870-874.

[67] 李银. 土壤汞污染的来源及修复方法[J]. 乡村科技, 2019(8): 113-114.

[68] 贾俊峰, 黄阳, 刘方, 等. 汞矿区汞污染土壤的淋洗修复[J]. 化工环保, 2018, 38(2): 231-235.

[69] Liu L W, Li W, Song W P, et al. Remediation techniques for heavy metal-contaminated soils: Principles and applicability[J]. Science of the Total Environment, 2018, 633: 206-219.

[70] Marrugo, Negrete, José, et al. Electrokinetic remediation of mercury- contaminated soil, from the mine El Alacran-San Jorge river basin, Cordoba - Colombia[J]. Revista Facultad De Ingeniería Universidad De Antioquia, 2013(68): 136-146.

[71] 卢光华, 岳昌盛, 彭犇, 等. 汞污染土壤修复技术的研究进展[J]. 工程科学学报, 2017, 39(1): 1-12.

[72] 马小娜, 王睿, 徐圣君, 等. 汞污染土壤修复技术研究进展[J]. 煤炭与化工, 2016, 39(12): 65-70+79.

[73] 吴学勇, 张涛. 汞污染土壤稳定化固化修复技术工程应用试验研究[J]. 环境科学导刊, 2014, 33(1): 6-10.

[74] 晁波阳. 汞污染土壤水泥固化/稳定化处理方法探究[D]. 兰州大学, 2014.

[75] 王立辉, 邹正禹, 张翔宇, 等. 土壤中汞的来源及土壤汞污染修复技术概述[J]. 现代化工, 2015, 35(5): 43-47.

[76] 李宝磊, 邵春岩, 陈刚, 等. 我国含汞土壤处置新技术解析[J]. 土壤通报, 2018, 49(5): 1247-1253.

[77] 张汝壮. 土壤固化/稳定化修复技术应用研究进展[J]. 科技导报, 2017, 35(9): 81-86.

[78] Chaney R L, Malik M, Li Y M, et al. Phytoremediation of soil metals[J]. Current Opinion in Biotechnology, 1997, 8(3): 279-284.

[79] 刘忠闯. 几种草本植物体内汞富集转移及汞污染土壤修复应用[D]. 重庆大学, 2016.

[80] Wang Y, Stauffer C, Keller C, et al. Changes in Hg fractionation in soil induced by willow[J]. Plant and Soil, 2005, 275(1): 67-75.

[81] 王璐, 陈功锡, 杨胜香, 等.汞污染土壤植物修复研究现状与展望[J/OL]. 地球与环境: 1-13[2022-05-24].

[82] Xun Y, Feng L, Li Y D, et al. Mercury accumulation plant Cyrtomium macrophyllum and its potential for phytoremediation of mercury polluted sites[J]. Chemosphere, 2017, 189: 161-170.

[83] Marrugo-Negrete J, Marrugo-Madrid S, Pinedo-Hernandez J, et al. Screening of native plant species for phytoremediation potential at a Hg-contaminated mining site[J]. Science of the Total Environment, 2016, 542: 809-816.

[84] Rehman M Z U, Rizwan M, Ali S, et al. Remediation of heavy metal contaminated soils by using Solanum nigrum: A review[J]. Ecotoxicology and Environmental Safety, 2017, 143: 236-248.

[85] Wang J X, Feng X B, Anderson C W N, et al. Implications of mercury speciation in thiosulfate treated plants.[J]. Environmental Science & Technology, 2012, 46(10): 5361-5368.

[86] Williams J W, Silver S. Bacterial resistance and detoxification of heavy metals[J]. Enzyme & Microbial Technology, 1984, 6(12): 530-537.

[87] 王韶梅. 唐山莱茵默氏菌汞污染生物修复能力及修复机制研究[D]. 兰州交通大学, 2021.

[88] Ginting R C B, Solihat N, Hafsari A R, et al. Potential bacteria capable of remediating mercury contaminated soils[J]. Iop Conference Series Earth and Environmental Science, 2021, 648(1): 012136.

[89] Matsui K, Endo G. Mercury bioremediation by mercury resistance transposon-mediated in situ molecular breeding[J]. Applied Microbiology & Biotechnology, 2018, 102(7): 1-12.

[90] 范桃桃. 汞耐受菌株的筛选、鉴定及其汞转化机理研究[D]. 兰州交通大学, 2019.

[91] Dash H R, Das S. Bioremediation of mercury and the importance of bacterial mer genes[J]. International Biodeterioration & Biodegradation, 2012, 75: 207-213.

[92] Dash H R, Mangwani N, Das S. Characterization and potential application in mercury bioremediation of highly mercury-resistant marine bacterium Bacillus thuringiensis PW-05[J]. Environmental Science and Pollution Research, 2014, 21(4): 2642-2653.

[93] Mahbub K R, Krishnan K, Naidu R, et al. Mercury resistance and volatilization by Pseudoxanthomonas sp SE1 isolated from soil[J]. Environmental Technology & Innovation, 2016, 6: 94-104.

[94] Sinha A, Kumar S, Khare S K. Biochemical basis of mercury remediation and bioaccumulation by Enterobacter sp. EMB21[J]. Applied Biochemistry and Biotechnology, 2013, 169(1): 256-267.

[95] 郑茗月, 李海梅, 赵金山, 等. 微生物肥料的研究现状及发展趋势[J]. 江西农业学报, 2018, 30(11): 52-56.

[96] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000: 12.

[97] 党志, 姚谦, 李晓飞, 等. 矿区土壤中重金属形态分布的地球化学机制[J]. 矿物岩石地球化学通报, 2020, 39(1): 1-11+173.

[98] Vanegas J, Landazabal G, Melgarejo L M, et al. Structural and functional characterization of the microbial communities associated with the upland and irrigated rice rhizospheres in a neotropical Colombian savannah[J]. European Journal of Soil Biology, 2013, 55: 1-8.

[99] 魏艳晨, 陈吉祥, 王永刚, 等. 荒漠植物珍珠猪毛菜根际土壤细菌多样性与土壤理化性质相关性分析[J/OL]. 中国农业科技导报: 1-9[2022-05-24].

[100]Gonzalez D, Robas M, Probanza A, et al. Selection of Mercury-Resistant PGPR Strains Using the BMRSI for Bioremediation Purposes[J]. International Journal of Environmental Research and Public Health, 2021, 18(18): 9867-9872.

[101]刁展. 外源重金属对不同类型土壤养分及微生物活性的影响[D]. 西北农林科技大学, 2016.

[102]Zhang C, Nie S, Liang J, et al. Effects of heavy metals and soil physicochemical properties on wetland soil microbial biomass and bacterial community structure[J]. Science of the Total Environment, 2016, 557: 785-790.

[103]郑涵, 田昕竹, 王学东, 等. 锌胁迫对土壤中微生物群落变化的影响[J]. 中国环境科学, 2017, 37(4): 1458-1465.

[104]Kang C H, Kwon Y J, So J S. Bioremediation of heavy metals by using bacterial mixtures[J]. Ecological Engineering, 2016, 89: 64-69.

[105]Zhao M M, Kou J B, Chen Y P, et al. Bioremediation of wastewater containing mercury using three newly isolated bacterial strains[J]. Journal of Cleaner Production, 2021: 299: 126869.

[106]李兰松, 杨永珍, 贾虎生, 等. 铜抗性菌株的筛选及其对Cu2+的吸附性能[J]. 化工学报, 2013, 64(09): 3381-3389.

[107]黄志钧, 李大平. 重金属铜离子抗性菌株的筛选和吸附性能[J]. 应用与环境生物学报, 2012, 18(6): 964-970.

[108]Srivastava V C, Swamy M M, Mall I D, et al. Adsorptive removal of phenol by bagasse fly ash and activated carbon: Equilibrium, kinetics and thermodynamics[J]. Colloids & Surfaces a Physicochemical & Engineering Aspects, 2006, 272(1): 89-104.

[109]Bartnicki-Garcia S. Cell wall chemistry, morphogenesis, and taxonomy of fungi[J]. Annual Review of Microbiology, 1968, 22(1): 87-108.

[110]Lin Y B, Wang X Y, Wang B P, et al. Bioaccumulation characterization of zinc and cadmium by Streptomyces zinciresistens, a novel actinomycete.[J]. Ecotoxicology and Environmental Safety, 2012, 77: 7-17.

[111]Oves M, Khan M S, Zaidi A. Biosorption of heavy metals by Bacillus thuringiensis strain OSM29 originating from industrial effluent contaminated north Indian soil[J]. Saudi Journal of Biological Sciences, 2013, 20(2): 121-129.

[112]鲁霞. 环境微生物与铀和汞的相互作用和机理[D]. 兰州大学, 2016.

[113]Wang X N, Zhang D Y, Pan X L, et al. Aerobic and anaerobic biosynthesis of nano-selenium for remediation of mercury contaminated soil[J]. Chemosphere, 2017, 170: 266-273.

[114]Noroozi M, Amoozegar M A, Pourbabaee A A, et al. Isolation and characterization of mercuric reductase by newly isolated halophilic bacterium, Bacillus firmus MN8[J]. Global Journal of Environmental Science and Management, 2017, 3(4): 427-436.

[115]Mahbub K R, Krishnan K, Naidu R, et al. Mercury remediation potential of a mercury resistant strain Sphingopyxis sp SE2 isolated from contaminated soil[J]. Journal of Environmental Sciences, 2017, 51: 128-137.

[116]Giovanella P, Cabral L, Costa A P, et al. Metal resistance mechanisms in Gram-negative bacteria and their potential to remove Hg in the presence of other metals[J]. Ecotoxicology & Environmental Safety, 2017, 140: 162-169.

[117]Giovanella P, Cabral L, Bento F M, et al. Mercury (II) removal by resistant bacterial isolates and mercuric (II) reductase activity in a new strain of Pseudomonas sp B50A[J]. New Biotechnology, 2016, 33(1): 216-223.

[118]Vacar C L, Covaci E, Chakraborty S, et al. Heavy Metal-Resistant Filamentous Fungi as Potential Mercury Bioremediators[J]. Journal of Fungi, 2021, 7(5). 386.

[119]Pushkar B, Sevak P, Sounderajan S. Assessment of the bioremediation efficacy of the mercury resistant bacterium isolated from the Mithi River[J]. Water Science & Technology, 2019, 19(1): 191-199.

[120]Ji H B, Zhang Y, Bararunyeretse P, et al. Characterization of microbial communities of soils from gold mine tailings and identification of mercury-resistant strain[J]. Ecotoxicology and Environmental Safety, 2018, 165(DEC.): 182-193.

[121]Figueiredo N L, Canário J, O’Driscoll N J, et al. Aerobic Mercury-resistant bacteria alter Mercury speciation and retention in the Tagus Estuary (Portugal)[J]. Ecotoxicology and Environmental Safety, 2016, 124: 60-67.

[122]Kotwal D R, Shewale N B, Tambat U S, et al. Bioremediation of mercury using mercury resistant bacteria[J]. Research Journal of Life Sciences, Bioinformatics,pharmaceutical and Chemical Sciences, 2018, 4: 145-156.

[123]Chen J Q, Dong J, Shen S L, et al. Isolation of the Hg(II)-volatilizing Bacillus sp. strain DC-B2 and its potential to remediate Hg(II)-contaminated soils[J]. Journal of Chemical Technology and Biotechnology, 2019, 94(5): 1433-1440.

[124]Yao Y, Hu L, Li S Z, et al. Exploration on the bioreduction mechanisms of Cr(VI) and Hg(II) by a newly isolated bacterial strain Pseudomonas umsongensis CY-1[J]. Ecotoxicology and Environmental Safety, 2020, 201: 110850.

[125]Khan I, Ali M, Aftab M, et al. Mycoremediation: a treatment for heavy metal-polluted soil using indigenous metallotolerant fungi[J]. Environmental Monitoring and Assessment, 2019, 191(10) 1-15.

[126]Wei Q G, Yan J K, Chen Y, et al. Cell Surface Display of MerR on Saccharomyces cerevisiae for Biosorption of Mercury[J]. Molecular Biotechnology, 2018, 60(1): 12-20.

[127]Chang J, Duan Y, Dong J, et al. Bioremediation of Hg-contaminated soil by combining a novel Hg-volatilizing Lecythophora sp. fungus, DC-F1, with biochar: Performance and the response of soil fungal community[J]. Science of the Total Environment, 2019, 671: 676-684.

中图分类号:

 X53    

开放日期:

 2022-06-22    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式