论文中文题名: | 西安地铁车站PBA法暗挖施工导洞及支护结构变形规律研究 |
姓名: | |
学号: | 19304209001 |
保密级别: | 保密(1年后开放) |
论文语种: | chi |
学科代码: | 085213 |
学科名称: | 工学 - 工程 - 建筑与土木工程 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 应用基础研究 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2022-06-25 |
论文答辩日期: | 2022-05-31 |
论文外文题名: | Research on Deformation Law of Guide Hole and Support Structure in PBA Method Underground Excavation Construction of Xi'an Subway Station |
论文中文关键词: | |
论文外文关键词: | The PBA method ; Dig station ; Drift heading ; shaft ; Support structure ; FLAC simulation ; Construction process ; monitoring |
论文中文摘要: |
PBA法暗挖施工是复杂地面环境下城市地铁车站施工的重要方法之一,开展PBA法暗挖地铁车站竖井及导洞施工过程中围岩变形、支护结构变形、受力特性研究具有重要意义。本文以西安地铁八号环线某车站为背景,采用室内试验、数值模拟及现场监测相结合的手段开展研究工作,主要工作及结论为: (1)采用室内宏观试验和核磁共振细观试验研究了不同围压、不同含水率下地铁车站黄土的力学特性规律,给出了地铁车站黄土的宏细观破坏规律。含水率增加会对地层强度有一定的削弱作用,围压升高可以增强围岩的强度;土样T2谱曲线峰值随含水率的增加而增加。 (2)研究表明,黄土地区地铁车站PBA施工诱发地表沉降的主要影响因素包括:车站埋深、黄土性质、地下水位、地下管线、地面条件、开挖方法与步序、导洞的支护结构等七大因素。基于控制PBA施工诱发的地表沉降处于合理范围的理念,给出了PBA法暗挖施工地铁车站的施工工序。 (3)建立暗挖车站竖井三维FLAC模型,模拟现浇式与预制式支撑竖井施工对周围环境、内支撑及围护桩的影响,分析两种不同工况施工引起竖井及周围环境变形的影响规律,得到结论:采用钻孔灌注桩联合预制混凝土支撑施工,能有效克服现浇钢筋混凝土内支撑的施工缓慢、污染严重等缺点。 (4)利用FLAC数值计算方法研究双向导洞施工引起的空间效应及导洞施工过程中马头门处的力学特征,分析三种不同双向导洞开挖顺序下的地表沉降变形规律及马头门处应力变化规律,研究马头门最大主应力与最大剪应力随导洞开挖进尺的演化规律,并将模拟结果与现场监测数据进行对比分析,给出了最优的双向导洞施工方案。 (5)建立地铁PBA暗挖车站二维FLAC数值模拟分析模型,模拟地铁车站各阶段施工过程,预测各施工阶段地表沉降、地层变形以及支护结构变形规律、车站围岩应力、主要结构应力变化规律。地表沉降主要影响区域在距车站20m范围内;地层沉降量随着地层埋深的增加而增加;导洞开挖后拱顶下沉,拱底隆起,两帮向洞内收敛;边桩水平位移曲线呈现臌胀形式;车站施工完成后,车站中部扣拱受拉应力较大。 (6)完成了围岩及支护结构变形、受力监测方案设计并进行了现场监测,分析了竖井及导洞施工阶段围岩及支护结构变形及受力变化规律。现场监测结果表明:装配式支撑能有效抵消支撑的轴力;装配式支撑能有效降低围护桩桩体倾斜程度;导洞施工阶段要注意先行导洞拱顶和净空收敛变形随施工的变化情况,还要注意相邻两导洞之间的净空收敛变形的互相影响;开挖断面越大,上部荷载越大,扰动越大,围岩、支护结构受力就越复杂。 |
论文外文摘要: |
PBA method is one of the important methods of urban subway station construction under complex ground environment. It is of great significance to carry out the research on surrounding rock deformation, supporting structure deformation and stress characteristics of PBA method in the construction of shaft and guide hole of subway station. In this paper, a station in Xi 'an Metro Line 8 is taken as the background. Laboratory tests, numerical simulation and field monitoring are used. The main work and conclusions are as follows: (1)The mechanical properties of subway station loess under different confining pressure and moisture content were studied by indoor macroscopic test and nuclear magnetic resonance microscopic test, and the macroscopic and microscopic failure law of subway station loess was given. The increase of water content will weaken the formation strength to some extent, and the increase of confining pressure can enhance the strength of surrounding rock. The peak value of soil T2 spectrum curve increased with the increase of water content. (2)The research shows that the main influencing factors of ground settlement induced by PBA construction of subway station in loess area include seven factors : station buried depth, loess property, groundwater level, underground pipeline, ground conditions, excavation method and sequence, and support structure of pilot tunnel. Based on the idea of controlling the surface settlement induced by PBA construction in a reasonable range, the construction process of PBA method for underground excavation of subway station is given. (3)The three-dimensional FLAC model of underground excavation station shaft is established to simulate the influence of cast-in-place and prefabricated support shaft construction on the surrounding environment, internal support and retaining pile. The influence law of shaft and surrounding environment deformation caused by two different working conditions is analyzed. The conclusion is that the construction of bored pile combined with prefabricated concrete support can effectively overcome the shortcomings of cast-in-place reinforced concrete internal support such as slow construction and serious pollution. (4)The FLAC numerical calculation method is used to study the spatial effect caused by the construction of the two-way guide hole and the mechanical characteristics of the horsehead gate during the construction of the guide hole. The surface settlement deformation law and the stress variation law of the horsehead gate under three different excavation sequences of the two-way guide hole are analyzed. The evolution law of the maximum principal stress and the maximum shear stress of the horsehead gate with the excavation footage of the guide hole is studied. The simulation results are compared with the field monitoring data, and the optimal construction scheme of the two-way guide hole is given. (5)The two-dimensional FLAC numerical simulation analysis model of subway PBA underground excavation station is established to simulate the construction process of subway station in each stage, and to predict the surface settlement, stratum deformation, deformation law of supporting structure, surrounding rock stress of station, and variation law of main structural stress in each construction stage. the main influence area of surface subsidence is within 20m from the station; the stratum settlement increases with the increase of stratum depth; after the pilot tunnel excavation, the vault sinks, the arch bottom rises, and the two sides converge to the tunnel; the horizontal displacement curve of side pile shows bulging form; after the completion of the station construction, the tensile stress of the middle buckle arch of the station is large. (6)The deformation and stress monitoring scheme design of surrounding rock and supporting structure are completed, and the field monitoring is carried out. The deformation and stress variation of surrounding rock and supporting structure during shaft and guide hole construction are analyzed. The field monitoring results show that the assembled support can effectively offset the axial force of the support; fabricated support can effectively reduce the inclination of the retaining pile; attention should be paid to the change of vault and clearance convergence deformation with construction in the construction stage of pilot tunnel, and the mutual influence of clearance convergence deformation between adjacent two pilot tunnels should also be paid to. The greater the excavation section, the greater the upper load, the greater the disturbance, the more complex the surrounding rock and supporting structure. |
参考文献: |
[1] 钱七虎. 迎接我国城市地下空间开发高潮[J].岩土工程学报,1998,(01):112-113. [2] 王波. 城市地下空间开发利用问题的探索与实践[D].北京:中国地质大学(北京),2013. [3] 夏勇. PBA洞桩法在地铁车站施工中的应用探述[J]. 智能城市,2018,4(19):84-85. [5] 高成雷. 浅埋暗挖洞桩法应用理论研究[D].成都:西南交通大学,2002. [6] 李晓氽. 洞桩法(PBA)地铁车站施工关键技术[J].施工技术,2017,46(S1):789-791. [7] 康跃进. 复杂环境条件下浅埋富水大跨度地铁车站综合施工技术研究[D].兰州:兰州交通大学,2017. [8] 王军龙. 城市地铁施工中采用PBA法新思路[J].科技情报开发与经济,2006(05):292-294. [9] 朱泽民. 地铁暗挖车站洞桩法(PBA)施工技术[J].隧道建设,2006(05):63-65+100. [11] 王宝林. PBA工法在北京地铁19号线换乘车站施工中的应用[J].中国标准化,2017(06):192+194. [12] 黄俊. 沈阳地铁青年大街站施工技术浅谈[J].铁道标准设计,2010(10):113-118. [13] 王海彦, 宓荣三, 周法军. PBA工法在北京地铁10号线中的应用[J].路基工程,2009(04):195-196. [14] 陈武. 黄土地层洞桩法暗挖地铁车站设计施工关键技术研究[D].西安:长安大学,2018. [15] 申家国. 浅埋暗挖地铁车站洞桩支承法施工技术[J].铁道建筑技术,2001(02):10-12+0. [16] 董贤顺, 孙秀荣, 闵向红,等. “洞桩法”暗挖修建大跨浅埋地铁车站[J].建筑技术开发,1996(02):10-13+15. [17] 罗富荣, 国斌. 北京地铁天安门西站“暗挖逆筑法”施工技术[J].岩土工程学报,2001(01):75-78. [18] 张德华, 沈阿杏. 桩底后压浆技术在城市地铁车站洞桩法施工中的应用[J].现代隧道技术,2007(06):70-73. [19] 杨慧林, 宋月光. 洞桩法地下基坑设计施工关键技术[J].铁道标准设计,2006(11):60-65. [20] 雷俊. 浅埋暗挖洞桩法施工技术分析[J].江西建材,2017(24):98+102. [21] 王明胜. 复杂环境下洞桩法地铁车站设计关键技术研究[J].铁道工程学报,2017,34(03):87-91. [22] 林守业. 地铁暗挖车站洞桩法施工技术探讨与分析[J].价值工程,2019,38(28):200-202. [23] 杨玉娴, 周胜军, 常学峰等. 北京地铁10号线金台夕照站洞桩法围护桩的设计与施工[J]. 铁道标准设计, 2008(12): 221-223. [24] 杨秀仁. 浅埋暗挖洞桩(柱)逆作法设计关键技术分析[J]. 都市快轨交通, 2012, 25(2): 64. [25] 王明胜. 复杂环境下洞桩法地铁车站设计关键技术研究[J].铁道工程学报, 2017, 3: 87-91. [26] 瞿万波, 刘新荣, 傅晏等. 洞桩法大断面群洞交叉隧道初衬数值模拟[J].岩土力学, 2009, 30(9): 2799-2804. [27] 瞿万波, 刘新荣. 洞桩法隧道边桩参数对变形规律的影响研究[J].地下空间与工程学报, 2013, 9(2): 410-414. [28] 王雷霆, 罗富荣, 刘维宁等. 地铁车站洞桩法施工对地层和刚性接头管线的影响[J]. 岩土力学, 2011, 32(8): 2533-2538. [29] 王峥峥, 郭翔宇. 地铁车站洞桩法施工对地层沉降影响研究[J].大连理工大学学报, 2016, 56(3): 257-262. [30] 韩健勇, 赵文, 关永平等. 地铁车站洞桩法开挖变形规律分析[J].应用力学学报, 2015, 32(4): 623-629. [31] 付春青, 刘波. PBA法非对称不均匀变形引起地表沉降规律研究[J].地下空间与工程学报, 2021, 17(4): 927-942. [32] 李金奎, 陈朋. 地铁车站洞桩法施工时群洞效应对比分析[J].科学技术与工程, 2020, 20(14): 5737-5742. [33] 晏启祥, 徐亚军, 刘罡等. 洞桩法地铁车站施工力学行为及其修正荷载-结构模型研究[J].现代隧道技术, 2016, 53(6): 165-173. [34] 周稳弟, 梁庆国, 张晋东. 某地铁车站洞桩法施工变形和结构受力分析[J].现代隧道技术, 2021:1-7. [35] 李铁生. 管幕洞桩法地铁车站设计施工关键技术研究[J].铁道设计,2020,40(4):531-537. [39] 刘建航, 侯学渊. 盾构法隧道[M].北京:中国铁道出版社, 1991. [40] 刘砥时, 方建勤. 弹塑性解析法确定隧道二衬合理支护时机的应用研究[J].公路,2009(12):186-188. [48] 高小州. 黄土地区地铁车站PBA工法施工沉降特性及稳定性研究[D].西安:西安理工大学,2021. [49] 付春青. 地铁车站PBA法施工地层变形的时空演化机制及控制对策[D].徐州:中国矿业大学,2021. [50] 陈庆章. 砂卵石地层中PBA工法导洞开挖顺序对地表沉降的影响[J].铁道建筑,2017,57(09):81-84. [51] 张子龙, 姜谙男, 于海等. 大跨度暗挖地铁车站扣盖法施工力学响应分析[J].现代隧道技术,2021,58(03):139-146. [52] 史晓光. 北京地铁三号线东坝中街站PBA工法施工地表沉降控制研究[D].北京:中国地质大学(北京)2021. [53] 刘加柱, 孙礼超, 张壮, 徐红, 丁银平. 地铁车站PBA洞桩法施工力学效应研究[J].地下空间与工程学报,2018,14(S1):240-247+307. [54] 李储军. 适用黄土暗挖车站的改进PBA工法研究[J].铁道标准设计,2021. [55] 瞿万波. 城市地铁洞桩法施工力学效应研究[D].重庆:重庆大学,2009. [56] 瞿万波, 刘新荣. 洞桩法施工地铁车站的边桩内力计算[J].地下空间与工程学报,2013,9(01):102-105+160. [57] 朱宝磊. 大空间地铁车站洞桩法施工力学效应研究[D].徐州:中国矿业大学,2015. [58] 黄生文. 富水砂质地层洞桩法施工力学特性研究[D].长沙:中南大学,2012. [59] 刘军, 荀桂富, 章良兵, 陈昊祥. PBA工法中边桩参数对结构稳定性的影响研究[J].铁道标准设计,2016,60(09):118-122. [62] 陈强华, 陈国铨, 谢汝彬等. 进入持力层不同深度对单桩承载力的影响[J].岩土工程学报,1981,3(2):15-17. [63] 王卫东, 吴江斌, 王向军等. 上海地区桩基侧摩阻力与端阻力取值的研究[J].岩土工程学报,2011,33(Suppl 2): 24-31. [64] 冯晓波. 广济街地铁车站PBA法施工地表沉降规律与控制技术[D].西安:西安科技大学,2019. [67] 胡军. 深基坑开挖对邻近既有高铁桩基影响研究[J].铁道工程学报,2017,36(06):12-17+22. [68] 程康, 徐日庆, 应宏伟等. 杭州软黏土地区某 30.2 m 深大基坑开挖性状实测分析[J].岩石力学与工程学报,2021,40(04):851-863. [69] 刘波. 上海陆家嘴地区超深大基坑邻近地层变形的实测分析[J].岩土工程学报,2018,40(10):1950-1958. [70] 郭亮, 胡卸文, 钱德良等.基于位移控制的装配式预应力鱼腹梁深基坑应用研究[J].工程地质学报, 2016,24(05):1016-1021. [71] 庄诗潮, 张建霖, 张灿辉等. 装配式预应力鱼腹式钢支撑系统的刚度研究[J].土木工程学报,2021, 54(04):18-25. [72] 刘树亚, 潘晓明, 欧阳蓉, 余志江. 用钢筋混凝土支撑代替钢支撑的深基坑支护特性研究[J].岩土工程学报,2012,34(S1):309-314. [73] 钟思成. 时间效应对钢筋混凝土支撑轴力的影响分析[J].现代隧道技术,2020,57(S1):1293-1297. [74] 任建喜, 王东星, 王江, 刘康辉, 程远, 张杨洋, 刘东洋. 全盖挖法地铁车站基坑及周边变形规律研究[J].铁道工程学报,2016,33(05):82-88. [75] 周勇, 王惠君, 朱彦鹏. 某地铁深基坑桩撑支护结构施工力学行为分析[J].铁道工程学报,2019,36 (01):86-92. [76] 张戈,毛海.软土地区深基坑围护结构综合刚度研究[J].岩土力学,2016,37(05):1467-1474. [77] 汪鹏程, 文杰, 邵长征, 刘志. 基于数值分析的深基坑围护结构优化设计[J].合肥工业大学学报(自然科学版),2016,39(09):1248-1253. [78] 黄生根, 付卓, 吴军林. 洞桩法施工引起土体变形的规律研究[J].铁道工程学报,2018,35(01):11-16. |
中图分类号: | U456.3 |
开放日期: | 2023-06-28 |