- 无标题文档
查看论文信息

论文中文题名:

 PESERA模型在黄土丘陵沟壑区的改进与应用    

姓名:

 陈剑南    

学号:

 19210010007    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 0705    

学科名称:

 理学 - 地理学    

学生类型:

 硕士    

学位级别:

 理学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 测绘科学与技术学院    

专业:

 地理学    

研究方向:

 土壤侵蚀过程模拟    

第一导师姓名:

 李朋飞    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-26    

论文答辩日期:

 2022-06-06    

论文外文题名:

 An improvement and application of PESERA in the hilly and gully Loess Plateau    

论文中文关键词:

 土壤侵蚀模型 ; PESERA ; 改进与应用 ; 土地利用变化 ; 黄土高原    

论文外文关键词:

 Soil erosion model ; PESERA ; Improvements and applications ; Sensitivity analysis ; Land use changes ; Loess Plateau    

论文中文摘要:

        黄土高原土壤侵蚀严重,土壤侵蚀模型是研究该区域侵蚀变化特征的有力工具。近几十年来,已有逾30个土壤侵蚀模型应用于黄土高原,其中大部分为次降水、小尺度模型,而大尺度、长时段模拟则主要基于通用土壤流失方程(Universal Soil Loss EquationUSLE)及其修订版本完成。USLE系列模型经验性强,过程模拟能力有限,限制了对大尺度侵蚀变化的理解,因而亟需开发适用于黄土高原的大尺度土壤侵蚀过程模型。Pan-European Soil Erosion Risk AssessmentPESERA)是长时段、大尺度的土壤侵蚀过程模型,具备可靠理论基础,为黄土高原大尺度土壤侵蚀模拟提供了潜在工具。然而,该模型在欧洲开发,未考虑黄土高原的侵蚀特征,亟需改进。本文以黄土丘陵沟壑区典型流域为研究区,首先基于历史实测数据,评估PESERA径流和侵蚀模块的适用性,明确模型改进方向。其次,系统改进PESERA模型的侵蚀模块,形成PESERA模型的黄土高原版本PESERA-LP,分别利用皇甫川流域内黄家沟和杨家沟多年平均产沙量的降尺度结果,校准和验证PESERA-LP模型,并评估其敏感性。最后,将PESERA-LP应用于皇甫川流域,分析1990年、2000年、2011年土地利用下该流域的侵蚀特征,并与已有的RUSLEPESERA模拟结果进行对比,讨论不同模型的模拟效率和敏感性。主要研究结果如下:

      (1)PESERA模型适用性评价方面。基于PESERA模型的侵蚀和径流模拟结果与天水、绥德水土保持科学试验站观测结果对比分析可知,径流模块的R2最低为0.68,最高为0.97,冲刷模块的R2 波动较大,相对误差超过98%,说明PESERA模型的径流模块可以用于黄土高原地区的产流模拟,侵蚀模块并不适用于该区域的侵蚀产沙模拟。

      (2)PESERA模型的改进与验证方面。基于桥沟全坡面径流场1986-2008年径流和产沙观测数据,构建径流与产沙之间的统计关系,通过引入地形以及土壤可侵蚀性等因子,改进PESERA冲刷模块。以桥沟全坡面径流场的土壤可侵蚀性因子、坡度因子为基准,引入比例系数实现模型的推广使用,形成PESERA模型的黄土高原版本PESERA-LP;其模拟结果与黄家沟和杨家沟侵蚀速率降尺度结果相对误差分别为7.89%33.61%,表明PESERA-LP模型的模拟效率较好。基于OATone-at-a-time)单因素敏感性分析发现,PESERA-LP模型对降雨量和植被覆盖变化的敏感性较PESERA模型差异不大,但其对地形的敏感性较PESERA大幅提升,表明其对黄土高原陡峭地形侵蚀过程模拟能力增强。

    (3)PESERA-LP模型应用方面。PESERA-LP模型在皇甫川流域的应用表明,PESERA-LP模型的模拟侵蚀速率结果较原始PESERA模型的侵蚀速率模拟结果提高约70%,且略高于RUSLE模型的模拟结果。在1990年、2000年、2011年土地利用下,皇甫川侵蚀速率模拟结果呈现下降趋势,尤其在2000-2011年,平均侵蚀速率下降14.73%,说明退耕还林还草政策取得成效。不同时期土壤侵蚀速率的空间分布差异不大,然而高植被覆盖的土地利用类型(林地、草地、耕地)与低植被覆盖的土地利用类型(沙地、未利用地)的土壤侵蚀速率存在明显差异,其中,未利用地的剧烈侵蚀(>150 t ha-1 yr-1)面积占比最大,沙地和耕地的侵蚀强度最不稳定。各土地利用类型以极强烈侵蚀(80-150 t ha-1 yr-1)和剧烈侵蚀为主,说明皇甫川流域侵蚀较为严重。不同土地利用下,RUSLE模型与PESERA-LP模型的侵蚀强度分布基本相似。相较RULSE和PESERA模型,PESERA-LP模型对坡度更加敏感,同时对植被覆盖度变化的响应也更好。

论文外文摘要:

The Chinese Loess Plateau has been characterized by severe soil erosion, while erosion models provide an effective mean to study soil erosion. In recent decades, over 30 soil erosion models have been applied to the Loess Plateau. Most of the models focus on event and small catchment scale, while large-scale, long-term erosion modelling was undertaken mainly based on the Universal Soil Loss Equation (USLE) and its variants. However, USLE related model are of empirical nature and limited ability to simulate erosion processes, Therefore, a process-based erosion model is urgently needed for a large-scale erosion assessment and scenario modelling on the Loess Plateau. The Pan-European Soil Erosion Risk Assessment (PESERA), a long-term, large-scale process-based soil erosion model, has a sound theoretical basis, thus providing a potential tool for the large-scale erosion modelling over the Loess Plateau. However, the model was initially developed in Europe and did not take into account the erosion characteristics of the Loess Plateau. That is to say, an adaptation to PESERA is likely to be needed for the Loess Plateau erosion modelling. In this study, typical watersheds in the hilly and gully Loess Plateau were selected as the study area to develop a revised version of the PESERA model that is suitable for Loess Plateau erosion modelling. Firstly, based on the historical measurements, the applicability of runoff production module and erosion module in PESERA was evaluated to identify the specific adaptations needed for the PESERA model. Secondly, a revised version the PESERA model (PESERA-LP) that is suitable for the loess plateau condition was developed through heavily modifying the erosion module of the PESERA model. The PESERA-LP model was then calibrated and validated using the downscaled measurements of multi-year average sediment yield in the Huangjiagou and Yangjiagou catchment within the Huangfuchuan catchment, and the sensitivity of PESERA-LP to key parameters was also assessed. Finally, PESERA-LP was applied to model erosion rates of the Huangfuchuan catchment under the land use patterns in 1990, 2000 and 2011 and analyze the impacts of land use changes on erosion rates. PESERA-LP results were also compared with previously published Revised Universal Soil Loss Equation (RUSLE) and PESERA results, and the efficiency and sensitivity of different models were also discussed. The main findings are as follows:

(1) In terms of the evaluation of the applicability of the PESERA model, the runoff production module of the PESERA model was able to produce satisfactory runoff simulation results (R2 = 0.68-0.97), while the fitness between modelled and measured erosion rated considerably fluctuated and relative errors of the modelled erosion rates was over 98%, based on an assessment of the PESERA model with measurements from Tianshui and Suide soil and water conservation scientific experimental stations. The evaluation results suggested that the runoff module of the PESERA model can be used for runoff production simulation on the Loess Plateau, while the erosion module is not applicable in the region.

(2) With regard to the improvement of the PESERA model, a linear regression model was developed between measured runoff and sediment yield of the erosion plots within the Qiaogou catchment (a typical small catchment in the hilly and gully Loess Plateau) during 1987-2008. The model was improved by introducing topography and soil erodibility factors, and the soil erodibility factor and slope factor of the erosion plot in the Qiaogou catchment were used as the benchmark, and the scale factor was introduced to extend the usage of the model. The newly proposed erosion module was incorporated into the PESERA model to form the Loess Plateau version of the PESERA model (PESERA-LP). The simulation efficiency of the PESERA-LP model was verified based on the actual results of multi-year average sediment yield in the Huangjiagou and Yangjiagou catchment, the relative errors were 7.89% and 33.61%, which indicated that the simulation results were satisfactory. Based on the one-at-a-time single-factor sensitivity analysis, it was found that the sensitivity of the PESERA-LP model to changes in rainfall and vegetation cover slightly differed from that of the PESERA model, but its sensitivity to topography was considerably higher than that of PESERA, meaning that the PESERA-LP is more suitable for the steep-slope erosion on the Loess Plateau.

(3) In terms of the application of the PESERA-LP model in the Huangfuchuan catchment, PESERA-LP erosion modelling results were about 70% higher than those of the original PESERA model, and slightly higher than those of RUSLE model. Under the land use pattern of 1990, 2000 and 2011, the simulated erosion rates in the Huangfuchuan catchment showed a decreasing trend, especially during 2000-2011, the average erosion rate decreased by 14.73%, indicating that the soil erosion control under the ‘Grain-for-Green’ project has achieved remarkable achievements. There is no significant difference in the spatial distribution of soil erosion rates in different periods. However, there is a significant difference in soil erosion rates for land use types with high vegetation cover (forest, grassland, cropland) and the less vegetation cover (sandy land, unused land). The proportion of the area with severe erosion (>150 t ha-1 yr-1) was the largest in the unused land area, while the erosion intensity of sandy and cultivated land was most unstable. The area with very intensive (80-150 t ha-1 yr-1) and severe erosion dominated the Huangfuchuan catchment, indicating that the catchment was subject to a severe erosion. The spatial pattern of erosion modelling results of the RUSLE model and PESERA-LP model were similar under different land use conditions. Compared with RULSE and PESERA, PESERA-LP was more sensitive to slope while it also had a stronger relation with vegetation cover changes.

参考文献:

[1] 孙甜甜. 黄土高原泾河流域典型区植被变化对水土流失影响的研究 [D]. 北京: 北京师范大学, 2007.

[2] 穆兴民, 李靖, 王飞, 等. 基于水土保持的流域降水-径流统计模型及其应用 [J]. 水利学报, 2004, 6 (05): 122-128.

[3] 符素华, 刘宝元.土壤侵蚀量预报模型研究进展[J]. 地球科学进展, 2002, 17(01): 78-84.

[4] 张宇婷, 肖海兵, 聂小东, 等. 基于文献计量分析的近30年国内外土壤侵蚀研究进展 [J]. 土壤学报, 2020, 57(4): 797-810.

[5] 王占礼, 王亚云, 黄新会, 等.黄土裸坡土壤侵蚀过程研究 [J].水土保持研究, 2004, (4): 84-87.

[6] REN M, ZHU X. Anthropogenic influences on changes in the sediment load of the Yellow River, China, during the Holocene [J]. Research of Soil & Water Conservation, 1995, 2(3): 102-112.

[7] HE X, JIE Z, ZHANG X, et al. Soil erosion response to climatic change and human activity during the Quaternary on the Loess Plateau, China [J]. Regional Environmental Change, 2006, 6(1/2): 62-70.

[8] LIU G, HU F, ABD ELBASIT M A M, et al. Holocene erosion triggered by climate change in the central Loess Plateau of China [J]. Catena, 2018, 160: 103-111.

[9] WU X, WEI Y, FU B, et al. Evolution and effects of the social-ecological system over a millennium in China’s Loess Plateau [J]. Science advances, 2020, 6(41): eabc0276.

[10] 南秋菊, 华珞. 国内外土壤侵蚀研究进展 [J]. 首都师范大学学报(自然科学版), 2003, 24(02): 86-95.

[11] WANG B, ZHENG F, RöMKENS M J M, et al. Soil erodibility for water erosion: A perspective and Chinese experiences [J]. Geomorphology, 2013, 187(1): 1-10.

[12] 赵广举, 穆兴民, 田鹏, 等. 近60年黄河中游水沙变化趋势及其影响因素分析 [J]. 资源科学, 2012, 34(6): 1070-1078.

[13] 汤立群. 坡面降雨溅蚀及其模拟 [J]. 水科学进展, 1995, 1(4):304-310.

[14] 刘国彬, 张光辉. 原状土冲刷法与人工模拟降雨法研究土壤抗冲性对比分析 [J]. 水土保持通报, 1996, 16(2): 32-37.

[15] 甘卓亭, 叶佳, 周旗,等. 模拟降雨下草地植被调控坡面土壤侵蚀过程 [J]. 生态学报, 2010, 13(9): 2387-2396.

[16] 项甜甜. 土壤侵蚀模型发展研究概述 [J]. 城市地理, 2017, 4(24): 69-70.

[17] 唐小明, 李长安. 土壤侵蚀速率研究方法综述 [J]. 地球科学进展, 1999, 8(03): 63-67.

[18] 张志刚, 华珞, 冯琰, 赵红,等. 土壤侵蚀 (137)Cs法研究进展 [J]. 首都师范大学学报(自然科学版), 2003, (04): 82-87.

[19] 唐强, 鲍玉海, 贺秀斌, 等. 土壤侵蚀监测新方法和新技术 [J]. 中国水土保持科学, 2011, 9(02): 11-18+23.

[20] 唐政洪, 蔡强国. 我国主要土壤侵蚀产沙模型研究评述 [J]. 山地学报, 2002, 2 (04): 466-475.

[21] 王飞, 李锐, 杨勤科,张晓萍.水土流失研究中尺度效应及其机理分析 [J]. 水土保持学报, 2003, 9(02): 167-169+180.

[22] CERDÃ A, KEESSTRA S D, RODRIGE-COMINO J, et al. Runoff initiation, soil detachment and connectivity are enhanced as a consequence of vineyards plantations [J]. Journal of Environmental Management, 2017, 202: 268-275.

[23] 郑粉莉, 杨勤科, 王占礼. 水蚀预报模型研究 [J]. 水土保持研究, 2004,11 (4) :13-24.

[24] 李智广. 区域土壤侵蚀遥感定量监测技术研究 [D]. 杨凌:西北农林科技大学,2001.

[25] 王飞, 李锐, 杨勤科,等. 区域尺度土壤侵蚀研究方法 [J]. 西北林学院学报, 2003,5 (04): 74-78+83.

[26] LI P, MU X, HOLDEN J, et al. Comparison of soil erosion models used to study the Chinese Loess Plateau [J]. Earth-Science Reviews, 2017, 170: 17-30.

[27] 李宏伟, 郑钧潆, 彭庆卫,等. 国外土壤侵蚀预报模型研究进展 [J]. 中国人口资源与环境, 2016, 26(S1): 183-185.

[28] 汪东川, 卢玉东. 国外土壤侵蚀模型发展概述 [J]. 中国水土保持科学, 2004, 2(02): 35-40.

[29] LI P, HOLDEN J, IRVINE B. Prediction of blanket peat erosion across Great Britain under environmental change [J]. Climatic Change, 2016, 134(01): 177-191.

[30] 张光辉. 土壤侵蚀模型研究现状与展望 [J]. 水科学进展,2002, 13(03): 389-396.

[31] BORRELLI P, ROBINSON D A, FLEISCHER L R, et al. An assessment of the global impact of 21st century land use change on soil erosion [J]. Nature communications, 2017, 8(01): 1-13.

[32] 蔡强国, 刘纪根. 关于我国土壤侵蚀模型研究进展 [J]. 地理科学进展,2003, 6(03): 142-150.

[33] 李朋飞, 穆兴民, HOLDEN J,等. 区域土壤侵蚀模型PESERA介绍及其应用现状 [J]. 泥沙研究, 2016, 3(6): 74-80.

[34] LI P, CHEN J, ZHAO G, et al. Determining the drivers and rates of soil erosion on the Loess Plateau since 1901 [J]. Science of the Total Environment, 2022, 823: 153674.

[35] 高光耀, 傅伯杰, 刘宇,等. 基于改进SCS-CN和RUSLE模型的黄土丘陵坡面径流-侵蚀模拟 [C]// 地理学核心问题与主线—中国地理学会2011年学术年会暨中国科学院新疆生态与地理研究所建所五十年庆典论文摘要集. 乌鲁木齐, 2011.

[36] 李斌兵, 肖培青, 余叔同. 黄土丘陵沟壑区坡沟系统切沟侵蚀数值模拟 [J]. 中国水土保持科学, 2012, 10(1): 19-24.

[37] 马修军, 谢昆青. GIS环境下流域降雨侵蚀动态模拟研究——以PCRaster系统和LISEM模型为例 [J]. 环境科学进展, 1999, 7(5): 137-144.

[38] 姚文艺, 李勉, 刘杰,等. 关于建立黄土高原小流域侵蚀实体比尺模型的理论思考[C]// 第六届全国泥沙基本理论研究学术讨论会. 2005.

[39] LI P, HOLDEN J, IRVINE B. Prediction of blanket peat erosion across Great Britain under environmental change [J]. Climatic Change, 2016, 134(1): 177-191.

[40] LI P, MU X, HOLDEN J, et al. Comparison of soil erosion models used to study the Chinese Loess Plateau [J]. Earth-Science Reviews, 2017, 170: 17-30.

[41] 王光谦, 刘家宏. 黄河数字流域模型 [J]. 水利水电技术, 2006, 9(02): 15-21.

[42] 王正文, 苗风清, 赵昕. 皇甫川流域小流域地块土壤侵蚀预报模型 [J]. 内蒙古科技与经济, 2002, 36(04): 89-90.

[43] 穆兴民. 黄土高原水土保持对河川径流及土壤水文的影响 [D].杨凌:西北农林科技大学, 2002.

[44] SADEGHI S H R, GHOLAMI L, KHALEDI DARVISHAN A, et al. A review of the application of the MUSLE model worldwide [J]. Hydrological Sciences Journal, 2014, 59(2): 365-375.

[45] WAINWRIGHT J, MULLIGAN M. Environmental modelling: finding simplicity in complexity [M]. John Wiley & Sons, 2013.

[46] MEUSBURGER K, KONZ N, SCHAUB M, et al. Soil erosion modelled with USLE and PESERA using QuickBird derived vegetation parameters in an alpine catchment [J]. International Journal of Applied Earth Observation and Geoinformation, 2010, 12(3): 208-215.

[47] LI P, ZANG Y, MA D, et al. Soil erosion rates assessed by RUSLE and PESERA for a Chinese Loess Plateau catchment under land‐cover changes [J]. Earth Surface Processes and Landforms, 2020, 45(3): 707-722.

[48] PANDEY S, KUMAR P, ZLATIC M, et al. Recent advances in assessment of soil erosion vulnerability in a watershed [J]. International Soil and Water Conservation Research, 2021, 9(3): 305-318.

[49] MEYER L D. Evolution of the universal soil loss equation [J].Journal of soil and water conservation, 1984, 39(2): 99-104.

[50] MILLERM F, DAVISRO E. Economic waste from soil erosion [M]. US Government Printing Office, 1914.

[51] COOK H L. The Nature and Controlling Variables of the Water Erosion Process [J]. Soil Conservation Service ,1937, 1(C): 487-494.

[52] ZINGG A W. Degree and length of land slope as it affects soil loss in runoff [J]. Agric Engng, 1940, 21(2): 59-64.

[53] MUSGRAVE G W. The Quantitatitve Evaluation of Factors in Water Erosion: A First Approximation [J]. Journal of Soil and Water Conservation, 1947, 2(3): 133-138.

[54] WISCHMEIER W H, SMITH D. Predicting rainfall erosion losses: a guide to conservation planning[M]. Department of Agriculture, Science and Education Administration, 1978.

[55] RENARD K G. Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE) [M]. United States Government Printing, 1997.

[56] MEYER L D, HARMON W C. Multiple-Intensity Rainfall Simulator for Erosion Research on Row Sideslopes [J]. Trans Asae, 1979, 22(1): 0100-0103.

[57] FOSTER G R, MEYER L D. Mathematical simulation of upland erosion by fundamental erosion mechanics [C]//Present and Perspective Technology for Predicting Sediment Yields and Sources—Proceedings of Sediment-Yield Workshop, Agric. Res. Serv. Rep. ARSS. 1975, 40: 190-206.

[58] 潘建平, 龚健雅, 李长风. 土壤侵蚀模型研究现状和GIS、RS应用 [J]. 地质灾害与环境保护, 2005, 16(1): 89-93.

[59] ROSE C W, COUGHLAN K J, CA A CIESIOLKA, et al. Pro-gram GUEST (Griffith University Erosion System Template) [M]. 1998.

[60] MORGAB R P C, GOVERSR E, AUERSWALD J W A, et al. The European Soil Erosion Model (EUROSEM):documentation and user guide [J]. CLEAN Soil Air Water, 2015, 43(9): 1355-1355.

[61] MORGAN R P C, QUINTON J N, SMITH R E, et al. The European Soil Erosion Model (EUROSEM): a dynamic approach for predicting sediment transport from fields and small catchments[J]. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Group, 1998, 23(6): 527-544.

[62] 王德, 傅伯杰, 赵文武, 等. 土壤侵蚀模型研究中的几个问题 [J]. 干旱区地理, 2007, 30(3): 406-413.

[63] 郑粉莉, 贾媛媛, 杨勤科. 黄土高原小流域分散式水蚀预报模型研究 [C]. //海峡两岸山地灾害与环境保育研究.昆明, 2004: 251-258.

[64] 熊贵枢, 支俊峰, 徐建华,等. 1919-1989年黄河的水沙变化分析 [J]. 水土保持学报, 1992,1 (2): 1-6.

[65] 周洪华, 李卫红, 杨余辉,等. 基于DEM的分布式水文模型构建方法 [J]. 地理科学进展, 2002, 21(5): 430-439.

[66] 黄晓虎, 王常明, 宋朋燃, 等. 黄土边坡降雨侵蚀特征的物理模拟试验研究[J]. 工程地质学报, 2015, 23(4):725-730.

[67] 刘海涛. 基于WebGIS的土壤侵蚀模型的研究及应用 [J]. 水土保持学报, 2001, 4(3): 52-55.

[68] 史培军, 袁艺, 陈晋. 深圳市土地利用变化对流域径流的影响 [J]. 生态学报, 2001, 21(7): 1041-1049.

[69] 李振炜, 张光辉, 耿韧,等. 黄土丘陵区浅沟表层土壤粘结力状态空间模拟 [J]. 农业机械学报, 2015, 46(6): 175-182.

[70] 张光辉. 全球气候变化对黄河流域天然径流量影响的情景分析 [J]. 地理研究, 2006, 25(2): 268-275.

[71] 刘昌明, 李道峰, 田英,等. 基于DEM的分布式水文模型在大尺度流域应用研究 [J]. 地理科学进展, 2003, 22(5): 437-445.

[72] 刘前进, 蔡强国, 刘纪根,等. 黄土丘陵沟壑区土壤侵蚀模型的尺度转换 [J]. 资源科学, 2004, 26(z1): 81-90.

[73] 傅伯杰, 邱扬, 王军, 等. 黄土丘陵小流域土地利用变化对水土流失的影响 [J]. 地理学报, 2002, 57(6): 717-722.

[74] 李东, 魏霞, 李耀军. 黄土高原地区土壤侵蚀研究方法综述 [J]. open journal of soil & water conservation, 2013, 1(1):24-27.

[75] 姚文艺, 李勉. 黄土高原土壤侵蚀及综合治理研究评述 [J].中国水土保持,2005, (4): 15-17.

[76] 罗志军, 张俊. 土壤侵蚀模型的研究现状与展望 [J]. 安徽农业科学,2007, 35(27): 8574-8576.

[77] 李红艳, 薛安, 韩鹏. 基于尺度分析的流域土壤侵蚀评估进展与探讨 [J]. 人民黄河, 2007, 29(5):50-51+63.

[78] 陈发中, 孙晓冰. 基于GIS技术的土壤侵蚀模型发展现状综述 [J]. 中国水土保持, 2003, 3(10): 9-11.

[79] 李国英, 深入研究黄土高原土壤侵蚀规律 [J]. 中国水土保持, 2006, 7(10): 1-4.

[80] 刘和平, 符素华, 王秀颖, 等. 坡度对降雨溅蚀影响的研究 [J]. 土壤学报, 2011, 48(3): 479-486.

[81] 刘宝元, 张科利. 土壤可蚀性及其在侵蚀预报中的应用 [J]. 自然资源学报, 1999, 14(4): 345-346.

[82] 田鹏, 赵广举, 穆兴民,等. 基于改进RUSLE模型的皇甫川流域土壤侵蚀产沙模拟研究 [J]. 资源科学, 2015, 37(4): 832-840.

[83] 蔡强国. 黄土高原小流域侵蚀产沙过程与模拟 [M]. 科学出版社, 1998.

[84] 江忠善, 王志强. 黄土丘陵区小流域土壤侵蚀空间变化定量研究 [J]. 水土保持学报, 1996, 2(1): 1-9.

[85] 张志刚. 利用(137)Cs示踪技术研究密云水库周边地区土壤侵蚀与土壤肥力变化 [D]. 北京:首都师范大学, 2004.

[86] MONTANARELLA L, JONES R J A. The European soil bureau [J]. Soil Resources of Europe. European Soil Bureau Research Report, 1999 (6): 3-14.

[87] GOVERS G, GOBIN A, CERDAN O, et al. Pan-European soil erosion risk assessment for Europe: the PESERA Map[J]. Joint Research Centre: Ispra, 2003, 10: S0076-6879.

[88] KIRKBY M. Modelling erosion–the PESERA project [J]. Briefing Papers, 2003,6(2): 15-16.

[89] CERDAN O, GOVERS G, LE BISSONNAIS Y, et al. Rates and spatial variations of soil erosion in Europe: a study based on erosion plot data [J]. Geomorphology, 2010, 122(1-2): 167-177.

[90] LICCIARDELLO F, GOVERS G, CERDAN O, et al. Evaluation of the PESERA model in two contrasting environments [J]. Earth surface processes and landforms, 2009, 34(5): 629-640.

[91] TSARA M, KOSMAS C, KIRKBY M J, et al. An evaluation of the PESERA soil erosion model and its application to a case study in Zakynthos, Greece [J]. Soil Use and Management, 2005, 21(4): 377-385.

[92] BAGGALEY N, LILLY A, WALKER R, et al. An assessment of the data resolution required to run the PESERA soil erosion model at a catchment scale in a high latitude agricultural catchment [C]//19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia. 2010.

[93] LI P, IRVINEB, HOLDENJ, et al. Spatial variability of fluvial blanket peat erosion rates for the 21st Century modelled using PESERA-PEAT [J]. Catena, 2017, 150(3): 302-316.

[94] LI P, HOLDEN J, IRVINE B, et al. PESERA‐PEAT: a fluvial erosion model for blanket peatlands [J]. Earth Surface Processes and Landforms, 2016, 41(14): 2058-2077.

[95] 宋艳华, 马金辉. SWAT模型在陇西黄土高原地区的适用性研究[J]. 干旱区地理, 2007, 30(6):933-938.

[96] ZHANG Q J, FU B J, CHEN L D, et al. Dynamics and driving factors of agricultural landscape in the semiarid hilly area of the Loess Plateau, China [J]. Agriculture, ecosystems & environment, 2004, 103(3): 535-543.

[97] 陈永宗, 景可, 蔡国强. 黄土高原现代侵蚀与治理 [M]. 北京:科学出版社, 1988.

[98] 付会芳. 黄土高原水土流失及其防治措施 [J]. 水土保持研究, 1997, 4(1): 161-165.

[99] 姚文艺, 李勉. 黄土高原土壤侵蚀及综合治理研究评述 [J].中国水土保持, 2005, 6(4): 15-17.

[100] 杨艳芬, 王兵, 王国梁,等. 黄土高原生态分区及概况 [J]. 生态学报, 2019, 39(20): 7389-7397.

[101] 王娟, 卓静. 基于RS和GIS的陕北黄土高原退耕还林区土壤侵蚀定量评价 [J]. 水土保持通报, 2015, 35(1) :220-223

[102] 周书贵, 邵全琴, 曹巍. 近20年黄土高原土地利用/覆被变化特征分析 [J]. 地球信息科学学报, 2016, 18(2): 190-199.

[103] 王蕾钦, 王飞, 李朋飞. 相似降水年组下黄土高原植被恢复与土壤水分变化过程与空间特征分析 [J]. 水土保持研究, 2017, 24(6): 179-185,

[104] 鲍文. 浅析水土流失与土壤侵蚀[J]. 湖南水利水电, 2010, 10(1): 42-43.

[105] 张丽. 河流的自相似与泥沙运动的理论分析 [D]. 长沙: 中南大学,2010.

[106] 郝振纯, 侯艳茹, 张余庆, 等. 基于SWAT模型的皇甫川流域径流模拟研究 [J]. 中国农村水利水电, 2013, 8(5): 6-10.

[107] 冉大川. 皇甫川流域水土保持综合治理的水沙响应及治理方略研究 [D]. 西安: 西安理工大学, 2006.

[108] 张艳丽. 皇甫川流域坡面植被数量特征初步分析 [D]. 呼和浩特:内蒙古大学, 2008.

[109] 金露. 基于GIS和RS的皇甫川流域植被恢复潜力研究 [D]. 郑州:河南大学, 2015.

[110] ZHAO G, KLIKA, MU X, et al. Sediment yield estimation in a small watershed on the northern Loess Plateau, China [J]. Geomorphology, 2015, 241: 343-352.

[111] ZHAO G, MU X, HAN M, et al. Sediment yield and sources in dam-controlled watersheds on the northern Loess Plateau [J]. Catena, 2017, 149: 110-119.

[112] 高清竹, 江源, 李立业. 黄河中游砒砂岩地区皇甫川流域气候变化特征分析 [J]. 干旱区资源与环境, 2005, 19(1): 116-121.

[113] 杨劼, 高清竹, 李国强,等. 皇甫川流域几种主要植物水分生态特征 [J]. 生态学报, 2004, 24(11): 2387-2394.

[114] 于红博, 杨劼, 宋炳煜. 黄土丘陵沟壑区植物蒸腾和植被蒸散估算尺度转换模型研究 [J]. 水土保持研究, 2010, 17(6): 90-94.

[115] 党维勤. 辛店沟试验场 [J]. 中国水土保持, 2016, 5(9): 95-96.

[116] 王长燕, 郁耀闯. 黄土丘陵区不同草被类型土壤细沟可蚀性季节变化研究 [J]. 农业机械学报, 2016, 47(8): 101-108.

[117] 李勉, 杨吉山, 杨二, 等. 黄土丘陵区小流域淤地坝建设对生态环境的影响[C]. //中国地理学会2011年学术年会论文集. 2011:11.

[118] 邱子恒, 闵惠娟, 李红星,等. 1954–2018年黄土高塬沟壑区南小河沟流域径流场数据集 [J]. 中国科学数据:中英文网络版, 2021, 6(3): 58-68.

[119] 王玲玲, 安润连, 姚文艺, 等. 影响黄土丘陵区次降水泥沙输移比的水文要素 [J]. 人民黄河, 2011, 33(12): 19-21.

[120] 崔乐乐, 周子渊, 杜雪,等. 1954–1960年黄土丘陵沟壑区第一副区辛店沟流域径流场观测数据集 [J]. 中国科学数据:中英文网络版, 2021, 6(3): 94-107.

[121] 王玲玲, 姚文艺, 王文龙,等. 黄土丘陵沟壑区多尺度地貌单元输沙能力及水沙关系 [J]. 农业工程学报, 2015, 11(24): 120-126.

[122] 穆兴民, 李朋飞, 高鹏,等. 土壤侵蚀模型在黄土高原的应用述评 [J]. 人民黄河, 2016, 38(10): 100-110.

[123] KARAMESOUTI M, PETROPOULOS G P, PAPANIKOLAOU I D, et al. Erosion rate predictions from PESERA and RUSLE at a Mediterranean site before and after a wildfire: Comparison & implications [J]. Geoderma, 2016, 261: 44-58.

[124] MOORE I D, WILSON J P. Length-slope factors for the Revised Universal Soil Loss Equation: Simplified method of estimation [J]. Journal of soil and water conservation, 1992, 47(5): 423-428.

[125] MCCOOL D K, FOSTER G R, MUTCHLER C K, et al. Revised slope length factor for the Universal Soil Loss Equation[J]. Transactions of the ASAE, 1989, 32(5): 1571-1576.

[126] LIU B Y, NEARING M A, RISSE L M. Slope gradient effects on soil loss for steep slopes [J]. Transactions of the ASAE, 1994, 37(6): 1835-1840.

[127] 胡晋飞. 黄土丘陵沟壑区流域水沙动态及其对变化环境的响应 [D]. 西安:中国科学院教育部水土保持与生态环境研究中心.2020.

[128] 章文波, 付金生. 不同类型雨量资料估算降雨侵蚀力 [J]. 资源科学,2003, 25(1): 35-41.

[129] 章文波, 谢云, 刘宝元. 利用日雨量计算降雨侵蚀力的方法研究 [J]. 地理科学,2002, 22(06): 705-711.

[130] 马斗斗. 基于RUSLE和PESERA的皇甫川流域LUCC的土壤侵蚀效应模拟 [D].西安:西安科技大学,2019.

[131] ZHAO G, KLIK A, MU X, et al. Sediment yield estimation in a small watershed on the northern Loess Plateau, China [J]. Geomorphology, 2015, 241(15): 343-352.

[132] C FERNÃ NDEZ, VEGA J A. Evaluation of RUSLE and PESERA models for predicting soil erosion losses in the first year after wildfire in NW Spain [J]. Geoderma, 2016, 273(3): 64-72.

中图分类号:

 P934    

开放日期:

 2023-06-27    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式