- 无标题文档
查看论文信息

论文中文题名:

     

姓名:

 张敏    

学号:

 19304209013    

保密级别:

     

论文语种:

 chi    

学科代码:

 085213    

学科名称:

  - -     

学生类型:

     

学位级别:

     

学位年度:

 2022    

培养单位:

 西    

院系:

 建筑与土木工程学院    

专业:

 建筑与土木工程    

研究方向:

     

第一导师姓名:

 戴俊    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-20    

论文答辩日期:

 2022-05-31    

论文外文题名:

 Experimental study on damage characteristics of granite under microwave cyclic irradiation    

论文中文关键词:

 微波循环照射 ; 花岗岩 ; 损伤特性 ; 力学特性    

论文外文关键词:

 Microwave cycle irradiation ; Granite ; Damage characteristics ; Mechanical property    

论文中文摘要:
<p></p> <p>1</p> <p>2沿穿</p> <p>3-线</p> <p>4线线</p> <p></p>
论文外文摘要:
<p>In the process of tunnel excavation, microwave irradiation technology can effectively cause thermal damage inside the rock, induce the initiation and propagation of micro cracks, so as to reduce the difficulty of construction and improve the efficiency of rock breaking. The environmental temperature of the working face is too high after high power microwave irradiation, which is not conducive to the safety of machinery and workers. Low power cyclic irradiation can not only meet the requirements of cracking, but also reduce the construction temperature of the working face. Therefore, it is of great theoretical significance and application value to study the effect of low power cyclic irradiation on rock damage. Firstly, the fracture mechanism and damage characteristics of granite under microwave are analyzed; Secondly, the variation laws of temperature rise characteristics, longitudinal wave velocity and macroscopic mechanical properties of granite under different microwave power, cycle times and cooling methods were studied, and the damage mechanism and failure mechanism of microwave irradiation on granite were revealed from the macro and meso levels. Finally, based on the damage mechanics theory and rock constitutive theory, the damage constitutive model of granite considering multi-factor coupling is established. The main research results and contents are as follows:</p> <p>With the increase of microwave power, the final surface temperature of granite sample increases continuously, and the decrease rate of longitudinal wave velocity is faster. When the microwave power is the same, the longitudinal wave velocity of the sample decreases with the increase of heating times. Under the same microwave effect, the decrease of the longitudinal wave velocity of the specimen under the water cooling mode is higher than that under the natural cooling mode, which is the result of the combined effect of microwave irradiation and water cooling.</p> <p>The fracture morphology of granite was microscopically tested, and the effects of microwave power and irradiation times on the crack morphology and development characteristics of granite fracture were analyzed. It was found that the crack forms of the fracture morphology of the specimen were intergranular crack, transgranular crack and intragranular crack. The opening, number and density of cracks are related to microwave power and heating times, and the degree of crack development increases with the increase of microwave power and heating times.</p> <p>Quasi-static uniaxial compression tests were carried out on granite irradiated by microwave. With the increase of microwave power and irradiation times, the stress-strain curve gradually moves to the lower right; after microwave irradiation, the mechanical properties of granite decreased to varying degrees, in which the peak stress and elastic modulus decreased, the peak strain increased, the ejection ability of fragments decreased and the fragmentation degree increased. The way of water cooling has a certain effect on the damage degree of the sample, but the effect is far less than the number of irradiation.</p> <p>The damage characteristics of granite irradiated by microwave were analyzed by different methods. The damage factor was positively correlated with the increase of microwave parameters and heating times. Based on the strain equivalence principle, the granite damage variable considering the influence of multiple factors was deduced, and the pore closure characteristics of the specimen at the initial loading stage were characterized. The granite damage constitutive model considering the microwave effect was established, and the model parameters were determined. The reliability of the constitutive model was verified by comparing the theoretical curve with the experimental curve.</p> <p>In this paper, the mechanical properties and damage characteristics of rock caused by low power microwave cyclic irradiation are tentatively explored. The regular changes between rock damage and microwave power and cyclic irradiation are summarized, which promotes the development of microwave assisted rock breaking technology. At the same time, it also provides theoretical basis and reference for future engineering development.</p>
参考文献:

[1] 李夕兵, 周子龙, 王卫华. 岩石破碎工程发展现状与展望[R]. //岩石力学与岩石工程学科发展报告, 2010: 142-149.

[2] 吴立, 张时忠, 林峰. 现代破岩方法综述[J]. 探矿工程(岩土钻掘工程), 2000(2): 49-51.

[3] 鲍挺, 黄宁. 岩石破碎技术研究与发展前景[J]. 安徽建筑, 2010(06): 110-110.

[4] 田玉新, 刘星. 岩石爆破破岩机理[J]. 科技致富向导, 2010(2): 21-22.

[5] 黄志强. 岩石爆破破碎机理研究[J]. 大众科技, 2007(12): 86-87.

[6] 吕超, 刘爽, 王世明. 计算机辅助破碎设备先进设计发展现状与趋势[J]. 中南大学学报(自然科学版), 2013(S1): 323-326.

[7] 曹鹏, 朱烨, 李千顺. 矿山机械智能化的应用及发展趋势[J]. 世界有色金属, 2019, 22: 18.

[8] 刘柏禄, 潘建忠, 谢世勇. 岩石破碎方法的研究现状及展望[J]. 中国钨业, 2011, 26(1): 15-19.

[9] 李文成, 杜雪鹏. 微波辅助破岩新技术在非煤矿的应用[J]. 铜业工程, 2010(4): 1-4.

[10] Pickles C A. Microwaves in extractive metallurgy: Part 2 A review of applications[J]. Minerals Engineering, 2009, 22(13): 1112-1118.

[11] 牟群英, 李贤军. 微波加热技术的应用与研究进展[J]. 物理, 2004, 33(6): 438-442.

[12] Nekoov aght P, Gharib N, Hassani F. Microwave Assisted Rock Breakage for Space Mining[C]// Earth & Space, 2015, 0(6): 414-423..

[13] Hartlieb P, Bock S. Theoretical investigations on the influence of artificially altered rock mass properties on mechanical excavation[J]. Rock Mechanics and Rock Engineering, 2018, 51(3): 801-809.

[14] Kingman S W, Jackson K, Bradshaw S M, et al. An investigation into the influence of microwave treatment on mineral ore comminution[J]. Powder technology, 2004, 146(3): 176-184.

[15] Peinsitt T, Kuchar F, Hartlieb P, et al. Microwave heating of dry and water saturated basalt, granite and sandstone[J]. International Journal of Mining and Mineral Engineering, 2010, 2(1): 18-29..

[16] Itaya Y, Uchiyama S, Hatano S, et al. Drying enhancement of clay slab by microwave heating [J]. Drying Technology, 2005, 23(6): 1243-1255.

[17] 高峰, 邵焱, 熊信, 等. 不同微波照射方式下岩石试样的内外升温特征试验[J]. 岩土工程学报, 2020, 42(4): 650-657.

[18] 戴俊, 王思琦, 王辰晨. 不同冷却方式对微波照射后花岗岩强度影响的试验研究[J]. 科学技术与工程, 2018, 18(8): 170-174.

[19] 胡亮, 马兰荣, 谷磊, 等. 高温高压对微波破岩效果的影响模拟研究[J]. 石油钻探技术, 2019, 47(2): 50-55.

[20] Yang W, Pickles C A, Forster J. Microwave fragmentation of a synthetic alundum-pyrite ore[J]. Mineral Processing and Extractive Metallurgy, 2020, 129(3-4): 251-266.

[21] Ge Z, Sun Q. Acoustic emission characteristics of gabbro after microwave heating[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 138: 104616.

[22] Batchelor A R, Jones D A, Plint S, et al. Deriving the ideal ore texture for microwave treatment of metalliferous ores[J]. Minerals Engineering, 2015, 84: 116-129.

[23] Teimoori K, Cooper R. Multiphysics study of microwave irradiation effects on rock breakage system[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 140:104586.

[24] 朱要亮, 俞缙, 蔡燕燕, 等. 不同环境与加热路径下的微波加热岩石的数值研究[J]. 微波学报, 2018, 34(5): 84-89.

[25] Toifl M, Meisels R, Hartlieb P, et al. 3D numerical study on microwave induced stresses in inhomogeneous hard rocks[J]. Minerals Engineering, 2016, 90: 29-42.

[26] Meisels R, Toifl M, Hartlieb P, et al. Microwave propagation and absorption and its thermo-mechanical consequences in heterogeneous rocks[J]. International Journal of Mineral Processing, 2015, 135(3): 40-51.

[27] Jones D A, Kingman S W, Whittles D N. et al. The influence of microwave energy delivery method on strength reduction in ore samples[J]. Chemical Engineering and Processing: Process Intensification, 2007, 46(4): 291-299.

[28] Jones D A, Kingman S W, Whittles D N. Understanding microwave assisted breakage[J]. Minerals Engineering, 2005, 18(7): 659-669.

[29] Hartlieb P, Leindl M, Kuchar F, et al. Damage of basalt induced by microwave irradiation[J]. Minerals Engineering, 2012, 31: 82-89.

[30] Bradshaw S M, Ali A Y, Marchand R, et al. Performance quantification of applicators for microwave treatment of crushed mineral ore[J]. Journal of Microwave Power and Electromagnetic Energy, 2011, 45(1): 30-35.

[31] 秦立科, 陈国栋, 徐国强. 微波场中矿物颗粒裂纹分布及演化研究[J]. 有色金属(选矿部分), 2021(4): 39-46.

[32] 高玉柱. 基于隧道掘进破岩的微波弱化岩石的数值模拟研究[D]. 西安: 西安科技大学, 2015.

[33] 赵沁华, 赵晓豹, 赵建新, 等. 微波照射下火成岩升温特性和升温预测模型研究[J]. 高校地质学报, 2021, 27(1): 94-101.

[34] Hassani F, Nekoovaght P M, Gharib N. The influence of microwave irradiation on rocks for microwave-assisted underground excavation[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(1): 1-15.

[35] 王修昌, 赵连敏, 吴大俊, 等. 4.6 GHz高功率微波岩石钻探技术[J]. 科学技术与工程, 2021, 21(22): 9404-9410.

[36] Lu G M, Feng X T, Li Y H, et al. Experimental Investigation on the Effects of microwave treatment on basalt heating, mechanical Strength, and fragmentation[J]. Rock Mechanics and Rock Engineering, 2019, 52(8): 2535-2549.

[37] Kingman S W, Jackson K, Cunbane A, et al. Recent developments in microwave-assisted comminution[J]. International Journal of Mineral Processing, 2004, 74(1-4): 71-83.

[38] Kingman S W, Vorster W, Rowson N A. The influence of mineralogy on microwave assisted grinding[J]. Minerals Engineering, 2000, 13(3): 313-327.

[39] 潘艳宾. 微波照射下岩石中裂纹形成的研究[D]. 西安: 西安科技大学, 2016.

[40] 田军, 卢高明, 冯夏庭, 等. 主要造岩矿物微波敏感性试验研究[J]. 岩土力学, 2019, 40(6): 2066-2074.

[41] 陈方方, 祁培培, 张志强. 三角形矿物尖锐程度对微波照射岩石效果的影响[J]. 地下空间与工程学报, 2021, 17(2): 390-397+438.

[42] 刘志义, 甘德清, 甘泽. 微波照射后磁铁矿石动力学性能及破碎特征研究[J]. 岩石力学与工程学报, 2021, 40(1): 126-136.

[43] 宋四达. 微波照射后玄武岩动态力学性能及破碎特性研究[D]. 西安: 西安科技大学, 2018.

[44] 戴俊, 王羽亮. 微波辐射下硬岩损伤规律研究[J]. 煤炭工程, 2019, 51(1): 51-54.

[45] 戴俊, 贠菲菲, 王苑朴, 等. 微波照射后花岗岩损伤机理试验[J]. 河南科技大学学报(自然科学版), 2021, 42(3): 64-71.

[46] 卢高明, 周建军, 张兵, 等. 循环荷载下微波照射玄武岩的损伤变形与能量特征[J]. 隧道建设(中英文), 2020, 40(11): 1578-1585.

[47] 李涛. 微波照射条件下热湿作用岩石强度劣化试验研究[D]. 西安: 西安科技大学, 2019.

[48] 徐水林. 微波循环照射下玄武岩损伤特性的试验研究[D]. 西安: 西安科技大学, 2019.

[49] 贾海梁, 韩力, 孙强, 等. 微波照射冻结石英砂岩热融软化特性及损伤机制研究[J]. 岩石力学与工程学报, 2021, 40(9): 1884-1893.

[50] 王晓东, 郝家旺. 微波照射下层理矿石破碎的能耗与粒度研究[J]. 有色金属(选矿部分), 2019(3): 64-68.

[51] 胡毕伟, 尹土兵, 李夕兵. 微波辐射辅助机械冲击破碎岩石动力学试验研究[J]. 黄金科学技术, 2020, 28(4): 521-530.

[52] 戴俊, 师百垒, 杨凡, 等. 微波照射下岩石损伤CT试验研究[J]. 西安科技大学学报, 2016, 36(5): 616-620.

[53] Kachanov M L. A microcrack model of rock inelasticity part I: Frictional sliding on microcracks[J], Mechanics of Materials, 1982, 1(1): 19-27.

[54] Dragon A, Mroz Z. A continuum model for plastic-brittle behaviour of rock and concrete[J]. International. Journal of Engineering Science, 1979, 17(2): 121-137.

[55] 曹文贵, 方祖烈. 岩石损伤软化统计本构模型之研究[J]. 岩石力学与工程学报, 1998, 17(6): 628-633.

[56] Li X W, Jiang C L, Liu W P, et al. Rock damage constitutive equation based on Weibull distribution of intensity[C]. Applied Mechanics and Materials, 2011, 90: 565-569.

[57] 李博, 吴润江, 高为超. 岩石损伤软化的修正本构模型[J]. 地震工程学报, 2016, 38(5): 783-786.

[58] 曹瑞琅. 考虑残余强度和损伤的岩体应力场-渗流场耦合理论研究及工程应用[D]. 北京: 北京交通大学, 2013.

[59] 王泓华. 岩石应变软硬化特性转化的统计损伤理论研究[D]. 湖南: 湖南大学, 2007.

[60] Xie S J, Han Z Y, Chen Y F, et al. Constitutive modeling of rock materials considering the void compaction characteristics[J]. Archives of Civil and Mechanical Engineering, 2022, 22(2): 1-15.

[61] Li F, You S, Ji H G, et al. Study of damage constitutive model of brittle rocks considering stress dropping characteristics[J]. Advances in Civil Engineering, 2020.

[62] Wu G J, Chen W Z, Rong C, et al. Elastoplastic damage evolution constitutive model of saturated rock with respect to volumetric strain in rock and its engineering application[J]. Tunnelling and Underground Space Technology, 2020, 97: 103284.

[63] Gu Q S, Ning J G, Tan Y L, et al. Damage constitutive model of brittle rock considering the compaction of crack[J]. Geomechanics and Engineering, 2018, 15(5): 1081-1089.

[64] Shen P W, Tang H M, Wang D J, et al. A statistical damage constitutive model based on unified strength theory for embankment rocks[J]. Marine Georesources & Geotechnology, 2020, 38(7): 818-829.

[65] Niu H Y, Zhang X Y, Tao Z G, et al. Damage constitutive model of microcrack rock under tension[J]. Advances in Civil Engineering, 2020.

[66] Li X Z, Qi C Z, Shao Z S, et al. Evaluation of strength and failure of brittle rock containing initial cracks under lithospheric conditions[J]. Acta Geophysica, 2018, 66(2): 141-152.

[67] Ren C H, Yu J, Cai Y Y, et al. A novel constitutive model with plastic internal and damage variables for brittle rocks[J]. Engineering Fracture Mechanics, 2021, 248: 107731.

[68] Li Y W, Jia D, Rui Z H, et al. Evaluation method of rock brittleness based on statistical constitutive relations for rock damage[J]. Journal of Petroleum Science and Engineering, 2017, 153: 123-132.

[69] 卢高明. 硬岩微波辐射致裂试验研究[D]. 沈阳: 东北大学, 2018.

[70] Monti T, Tselev A, Udoudo O, et al. High-resolution dielectric characterization of minerals: A step towards understanding the basic interactions between microwaves and rocks[J]. International Journal of Mineral Processing, 2016, 151(10): 8-21.

[71] Somerton W H, Selim M A. Additional thermal data for porous rocks thermal expansion and heat of reaction[J]. Society of Petroleum Engineers Journal, 1961. 1(4): 249-253.

[72] 孙强. 岩石破坏临界现象与信息识别[M]. 徐州: 中国矿业大学出版社, 2014.

[73] Zhang R R, Jing L W, Ma Q Y. Experimental Study on thermal damage and energy evolution of sandstone after high temperature treatment[J]. Shock and vibration, 2018, 3845353: 1-9.

中图分类号:

 TU458    

开放日期:

 2022-06-20    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式