论文中文题名: | 微波循环照射下花岗岩损伤特性试验研究 |
姓名: | |
学号: | 19304209013 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085213 |
学科名称: | 工学 - 工程 - 建筑与土木工程 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 岩土工程 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2022-06-20 |
论文答辩日期: | 2022-05-31 |
论文外文题名: | Experimental study on damage characteristics of granite under microwave cyclic irradiation |
论文中文关键词: | |
论文外文关键词: | Microwave cycle irradiation ; Granite ; Damage characteristics ; Mechanical property |
论文中文摘要: |
<p>隧道掘进过程中,微波照射技术能够有效引起岩石内部热损伤,诱发微裂纹的萌生和扩展,从而降低施工难度并提高破岩效率。高功率微波照射后工作面环境温度过高,不利于机械和工作人员的安全,而低功率循环照射不仅可以满足致裂要求,还能降低工作面施工温度,因此开展低功率循环照射对岩石损伤效应的研究具有重要理论意义和应用价值。首先,对微波作用下的花岗岩致裂机理以及损伤特性进行分析;其次,研究了不同微波功率、循环次数、冷却方式下花岗岩的升温特性、纵波波速以及宏观力学性能的变化规律,从宏细观层面揭示了微波循环照射花岗岩的损伤机制和破坏机理;最后,基于损伤力学理论与岩石本构理论,建立了考虑多因素耦合作用的花岗岩损伤本构模型。主要研究成果和内容如下:</p>
<p>(1)随着微波功率的增大,花岗岩试样最终表面温度不断升高,纵波波速下降速率越快;相同微波功率照射时,试样纵波波速随着加热次数的增多而不断减小;相同微波作用下,冲水冷却方式下试样的纵波波速下降程度高于自然冷却方式,这是微波照射和水冷却共同作用的结果。</p>
<p>(2)对花岗岩断口形貌进行微观试验,分析了微波功率和照射次数对花岗岩断口处裂纹形态及发育特征的影响。发现试样断口形貌的裂纹形式有沿晶裂纹、穿晶裂纹和晶内裂纹;裂纹的开度、数量、密度均与微波功率和加热次数有关,且随着微波功率和加热次数的增加,裂纹发育程度越高。</p>
<p>(3)对微波照射后的花岗岩进行准静态单轴压缩试验。随着微波功率和照射次数的增加,应力-应变曲线逐渐向右下方移动;微波照射后花岗岩的力学性能均出现不同程度的降低,其中峰值应力和弹性模量降低,峰值应变增大,破坏时碎块弹射能力降低,破碎程度加剧;冲水冷却方式对试样破坏程度产生一定影响,但影响程度远低于照射次数。</p>
<p>(4)采用不同方法对微波照射花岗岩损伤特性进行分析,损伤因子随着微波参数和加热次数的增加呈正相关规律变化;基于应变等效原理,推导了考虑多因素影响的花岗岩损伤变量,并对试样加载初期的孔隙闭合特征进行表征,建立了考虑微波效应的花岗岩损伤本构模型,对模型参数进行确定,并将理论曲线与试验曲线对比,验证了本构模型的可靠性。</p>
<p>本文主要对低功率微波循环照射引起的岩石力学性能和损伤特性进行了尝试性探索,总结了岩石损伤与微波功率、循环照射之间的规律变化,对微波辅助破岩技术的发展起到了促进作用,与此同时,为今后的工程开展提供理论依据和参考。</p>
﹀
|
论文外文摘要: |
<p>In the process of tunnel excavation, microwave irradiation technology can effectively cause thermal damage inside the rock, induce the initiation and propagation of micro cracks, so as to reduce the difficulty of construction and improve the efficiency of rock breaking. The environmental temperature of the working face is too high after high power microwave irradiation, which is not conducive to the safety of machinery and workers. Low power cyclic irradiation can not only meet the requirements of cracking, but also reduce the construction temperature of the working face. Therefore, it is of great theoretical significance and application value to study the effect of low power cyclic irradiation on rock damage. Firstly, the fracture mechanism and damage characteristics of granite under microwave are analyzed; Secondly, the variation laws of temperature rise characteristics, longitudinal wave velocity and macroscopic mechanical properties of granite under different microwave power, cycle times and cooling methods were studied, and the damage mechanism and failure mechanism of microwave irradiation on granite were revealed from the macro and meso levels. Finally, based on the damage mechanics theory and rock constitutive theory, the damage constitutive model of granite considering multi-factor coupling is established. The main research results and contents are as follows:</p>
<p>With the increase of microwave power, the final surface temperature of granite sample increases continuously, and the decrease rate of longitudinal wave velocity is faster. When the microwave power is the same, the longitudinal wave velocity of the sample decreases with the increase of heating times. Under the same microwave effect, the decrease of the longitudinal wave velocity of the specimen under the water cooling mode is higher than that under the natural cooling mode, which is the result of the combined effect of microwave irradiation and water cooling.</p>
<p>The fracture morphology of granite was microscopically tested, and the effects of microwave power and irradiation times on the crack morphology and development characteristics of granite fracture were analyzed. It was found that the crack forms of the fracture morphology of the specimen were intergranular crack, transgranular crack and intragranular crack. The opening, number and density of cracks are related to microwave power and heating times, and the degree of crack development increases with the increase of microwave power and heating times.</p>
<p>Quasi-static uniaxial compression tests were carried out on granite irradiated by microwave. With the increase of microwave power and irradiation times, the stress-strain curve gradually moves to the lower right; after microwave irradiation, the mechanical properties of granite decreased to varying degrees, in which the peak stress and elastic modulus decreased, the peak strain increased, the ejection ability of fragments decreased and the fragmentation degree increased. The way of water cooling has a certain effect on the damage degree of the sample, but the effect is far less than the number of irradiation.</p>
<p>The damage characteristics of granite irradiated by microwave were analyzed by different methods. The damage factor was positively correlated with the increase of microwave parameters and heating times. Based on the strain equivalence principle, the granite damage variable considering the influence of multiple factors was deduced, and the pore closure characteristics of the specimen at the initial loading stage were characterized. The granite damage constitutive model considering the microwave effect was established, and the model parameters were determined. The reliability of the constitutive model was verified by comparing the theoretical curve with the experimental curve.</p>
<p>In this paper, the mechanical properties and damage characteristics of rock caused by low power microwave cyclic irradiation are tentatively explored. The regular changes between rock damage and microwave power and cyclic irradiation are summarized, which promotes the development of microwave assisted rock breaking technology. At the same time, it also provides theoretical basis and reference for future engineering development.</p>
﹀
|
参考文献: |
[1] 李夕兵, 周子龙, 王卫华. 岩石破碎工程发展现状与展望[R]. //岩石力学与岩石工程学科发展报告, 2010: 142-149. [2] 吴立, 张时忠, 林峰. 现代破岩方法综述[J]. 探矿工程(岩土钻掘工程), 2000(2): 49-51. [3] 鲍挺, 黄宁. 岩石破碎技术研究与发展前景[J]. 安徽建筑, 2010(06): 110-110. [4] 田玉新, 刘星. 岩石爆破破岩机理[J]. 科技致富向导, 2010(2): 21-22. [5] 黄志强. 岩石爆破破碎机理研究[J]. 大众科技, 2007(12): 86-87. [6] 吕超, 刘爽, 王世明. 计算机辅助破碎设备先进设计发展现状与趋势[J]. 中南大学学报(自然科学版), 2013(S1): 323-326. [7] 曹鹏, 朱烨, 李千顺. 矿山机械智能化的应用及发展趋势[J]. 世界有色金属, 2019, 22: 18. [8] 刘柏禄, 潘建忠, 谢世勇. 岩石破碎方法的研究现状及展望[J]. 中国钨业, 2011, 26(1): 15-19. [9] 李文成, 杜雪鹏. 微波辅助破岩新技术在非煤矿的应用[J]. 铜业工程, 2010(4): 1-4. [11] 牟群英, 李贤军. 微波加热技术的应用与研究进展[J]. 物理, 2004, 33(6): 438-442. [17] 高峰, 邵焱, 熊信, 等. 不同微波照射方式下岩石试样的内外升温特征试验[J]. 岩土工程学报, 2020, 42(4): 650-657. [18] 戴俊, 王思琦, 王辰晨. 不同冷却方式对微波照射后花岗岩强度影响的试验研究[J]. 科学技术与工程, 2018, 18(8): 170-174. [19] 胡亮, 马兰荣, 谷磊, 等. 高温高压对微波破岩效果的影响模拟研究[J]. 石油钻探技术, 2019, 47(2): 50-55. [24] 朱要亮, 俞缙, 蔡燕燕, 等. 不同环境与加热路径下的微波加热岩石的数值研究[J]. 微波学报, 2018, 34(5): 84-89. [31] 秦立科, 陈国栋, 徐国强. 微波场中矿物颗粒裂纹分布及演化研究[J]. 有色金属(选矿部分), 2021(4): 39-46. [32] 高玉柱. 基于隧道掘进破岩的微波弱化岩石的数值模拟研究[D]. 西安: 西安科技大学, 2015. [33] 赵沁华, 赵晓豹, 赵建新, 等. 微波照射下火成岩升温特性和升温预测模型研究[J]. 高校地质学报, 2021, 27(1): 94-101. [35] 王修昌, 赵连敏, 吴大俊, 等. 4.6 GHz高功率微波岩石钻探技术[J]. 科学技术与工程, 2021, 21(22): 9404-9410. [39] 潘艳宾. 微波照射下岩石中裂纹形成的研究[D]. 西安: 西安科技大学, 2016. [40] 田军, 卢高明, 冯夏庭, 等. 主要造岩矿物微波敏感性试验研究[J]. 岩土力学, 2019, 40(6): 2066-2074. [41] 陈方方, 祁培培, 张志强. 三角形矿物尖锐程度对微波照射岩石效果的影响[J]. 地下空间与工程学报, 2021, 17(2): 390-397+438. [42] 刘志义, 甘德清, 甘泽. 微波照射后磁铁矿石动力学性能及破碎特征研究[J]. 岩石力学与工程学报, 2021, 40(1): 126-136. [43] 宋四达. 微波照射后玄武岩动态力学性能及破碎特性研究[D]. 西安: 西安科技大学, 2018. [44] 戴俊, 王羽亮. 微波辐射下硬岩损伤规律研究[J]. 煤炭工程, 2019, 51(1): 51-54. [45] 戴俊, 贠菲菲, 王苑朴, 等. 微波照射后花岗岩损伤机理试验[J]. 河南科技大学学报(自然科学版), 2021, 42(3): 64-71. [46] 卢高明, 周建军, 张兵, 等. 循环荷载下微波照射玄武岩的损伤变形与能量特征[J]. 隧道建设(中英文), 2020, 40(11): 1578-1585. [47] 李涛. 微波照射条件下热湿作用岩石强度劣化试验研究[D]. 西安: 西安科技大学, 2019. [48] 徐水林. 微波循环照射下玄武岩损伤特性的试验研究[D]. 西安: 西安科技大学, 2019. [49] 贾海梁, 韩力, 孙强, 等. 微波照射冻结石英砂岩热融软化特性及损伤机制研究[J]. 岩石力学与工程学报, 2021, 40(9): 1884-1893. [50] 王晓东, 郝家旺. 微波照射下层理矿石破碎的能耗与粒度研究[J]. 有色金属(选矿部分), 2019(3): 64-68. [51] 胡毕伟, 尹土兵, 李夕兵. 微波辐射辅助机械冲击破碎岩石动力学试验研究[J]. 黄金科学技术, 2020, 28(4): 521-530. [52] 戴俊, 师百垒, 杨凡, 等. 微波照射下岩石损伤CT试验研究[J]. 西安科技大学学报, 2016, 36(5): 616-620. [55] 曹文贵, 方祖烈. 岩石损伤软化统计本构模型之研究[J]. 岩石力学与工程学报, 1998, 17(6): 628-633. [57] 李博, 吴润江, 高为超. 岩石损伤软化的修正本构模型[J]. 地震工程学报, 2016, 38(5): 783-786. [58] 曹瑞琅. 考虑残余强度和损伤的岩体应力场-渗流场耦合理论研究及工程应用[D]. 北京: 北京交通大学, 2013. [59] 王泓华. 岩石应变软硬化特性转化的统计损伤理论研究[D]. 湖南: 湖南大学, 2007. [69] 卢高明. 硬岩微波辐射致裂试验研究[D]. 沈阳: 东北大学, 2018. |
中图分类号: | TU458 |
开放日期: | 2022-06-20 |