- 无标题文档
查看论文信息

论文中文题名:

 β-Ga2O3 MOSFET 器件的终端结构设计及优化方法研究    

姓名:

 张云飞    

学号:

 21207040022    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081001    

学科名称:

 工学 - 信息与通信工程 - 通信与信息系统    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 通信与信息工程学院    

专业:

 信息与通信工程    

研究方向:

 宽禁带半导体器件    

第一导师姓名:

 栾苏珍    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-14    

论文答辩日期:

 2024-05-28    

论文外文题名:

 Terminal Structure Design and Optimization Method Study of β-Ga2O3 MOSFET Devices    

论文中文关键词:

 TCAD ; 栅台面 ; 增强型β-Ga2O3 MOSFET ; 栅沟槽 ; 功率品质因数    

论文外文关键词:

 TCAD ; Gate Mesa ; Enhanced β-Ga2O3 MOSFET ; Gate Trench ; Power Figure of Merit    

论文中文摘要:

氧化镓(β-Ga2O3)以其4.9 eV的大能带隙、8MV/cm的高击穿电场以及优异的光电特性而著称。这些特性使其在高频技术、通信和光电子等领域展现出极大的应用潜力。基于氧化镓制作的金属氧化物场效应晶体管(MOSFET)能够实现优异的器件性能。目前β-Ga2O3 MOSFET还存在终端结构设计单一、设计性能较差、增强型难以实现等问题。针对上述问题,设计了源、栅、漏和源-栅复合场板,栅台面以及栅台面/栅场板凹槽等多种终端结构,并对其进行参数优化。研究重点在于探讨器件的终端结构设计及参数优化对器件特性的影响,主要分析了击穿电压、导通电阻、阈值电压和功率品质因数等关键参数。具体工作如下:

1、研究了β-Ga2O3 MOSFET器件常规和场板终端结构的性能。首先设计了一款栅长2 μm的β-Ga2O3 MOSFET作为常规结构,接着对其参数进行优化,发现当栅长为3 μm时,击穿电压达到3099 V,此时功率品质因数为769.42 MW/cm2,在此基础上设计了源场板、栅场板、漏场板、源-栅复合场板四种不同终端结构结构。实验表明,引入场板终端对β-Ga2O3 MOSFET器件的饱和漏电流、导通电阻和峰值跨导影响不大。但在外加2500V的源漏电压下,峰值电场由常规结构的6.76 MV/cm降至场板终端的5.86 MV/cm、6.19 MV/cm、5.90 MV/cm和5.16 MV/cm。同时引入场板终端结构使器件的阈值电压显著提高。

2、设计了新型的带有漏场板的栅台面终端结构的β-Ga2O3 MOSFET。在常规结构的基础上,探究了不同的栅台面倾角对器件性能的影响。实验结果显示,当倾角为4°时,相较于常规结构,导通电阻降低了12.50%为90.66 Ω·mm,击穿电压提升了68.39%达到了3095 V。通过优化新型栅台面终端器件结构的参数,发现当台面厚度为1.2 μm时,器件的击穿电压可达到4827 V,功率品质因数高达1914 MW/cm2

3、设计了一款高功率品质因数的增强型栅台面凹槽结构的β-Ga2O3金属氧化物场效应晶体管(MOSFET)。为了实现更加优异的增强型β-Ga2O3 MOSFET,提出了栅台面凹槽终端结构的β-Ga2O3 MOSFET,并设计了一组栅场板凹槽作器件作为对照组。研究在不同的栅凹槽深度、不同的外延层掺杂浓度及不同栅氧介质下器件的性能,发现当凹槽刻蚀深度为110 nm时,两个器件均实现增强型。当外延层的刻蚀深度为200 nm时,栅台面凹槽的比通电阻下降到9.76 mΩ·cm2。当外延层掺杂浓度为3×1017 cm-3时,栅台面凹槽的峰值跨导达到了50.58 mS/mm。同时发现栅氧介质HfO2可以明显提升β-Ga2O3 MOSFET的饱和漏电流和功率品质因数,而栅氧介质Al2O3可以提升器件的阈值电压。

论文外文摘要:

Gallium oxide (β-Ga2O3) is recognized for its substantial bandgap of 4.9 eV, exceptional breakdown strength of 8 MV/cm, and superior optoelectronic characteristics, which endow it with significant potential applications in high-frequency technologies, Communication and Optoelectronics. Gallium oxide-based metal oxide semiconductor field-effect transistors (MOSFETs) exhibit superior device performance. Currently, there are challenges in the design of terminal structures for β-Ga2O3 MOSFETs, leading to subpar design performance and a predominant focus on depletion-mode devices, making enhancement-mode devices difficult to realize. Addressing these issues, this study focuses on the design and optimization of terminal structures for β-Ga2O3 MOSFETs, including source field plates, gate field plates, drain field plates, composite field plates, gate mesa, and gate trench structures. The objective of this study is to examine how the design of terminal structures and the optimization of parameters influence device properties. It focuses on a detailed examination of critical parameters including breakdown voltage, on-state resistance, and the power figure of merit. The following specific tasks were performed:

1. The performance of β-Ga2O3 MOSFET devices with conventional and field-plate terminals was investigated. Initially, a β-Ga2O3 MOSFET with a gate length of 2 μm was designed as a conventional structure. Subsequently, the parameters were refined, revealing that the breakdown voltage escalated to 3099 V, a doubling when the gate length was expanded to 3 μm, with a commendable power figure of merit at 769.42 MW/cm². Based on this, four different terminal structures, including source field plate, gate field plate, drain field plate, and source-gate composite field plate, were designed. The findings indicated that incorporating these field-plate terminals marginally affected the saturation drain current, on-state resistance, and peak conductance of the β-Ga2O3 MOSFET. When a voltage of 2500 V was applied across the source and drain, the peak channel electric field of the β-Ga2O3 MOSFET witnessed a reduction from 6.76 MV/cm in the standard structure to 5.86 MV/cm, 6.19 MV/cm, 5.90 MV/cm, and 5.16 MV/cm in the respective field-plate terminal structures. The incorporation of field plate terminal structures noticeably elevated the threshold voltage of the devices.

2. This paper introduces a novel β-Ga2O3 MOSFET with a terminal structure featuring a leakage field plate. Through the alteration of the gate step profile incorporating diverse angles, it was discovered that the step angle of 4° yielded a 12.50% decrease in on-state resistance down to 90.66 Ω·mm and a 68.39% enhancement in breakdown voltage reaching up to 3095V, in comparison to the control structure. By fine-tuning the parameters of the innovative terminal device architecture, the breakdown voltage achieved a high of 4827V when the step thickness was 1.2 μm, and the power quality factor was remarkable at 1914 MW/cm2.

3. An optimized β-Ga2O3 MOSFET featuring an advanced gate-mesa trench architecture and superior power figure of merit has been engineered.In order to achieve an even superior enhanced β-Ga2O3 MOSFET, a β-Ga2O3 MOSFET with a gate-mesa trench terminal structure was proposed, and a set of β-Ga2O3 MOSFETs with a gate field-plate trench terminal structure was designed as a control group. The functionality of devices was evaluated across a range of gate mesa depths, epitaxial layer doping levels, and gate oxide materials. Results indicate that both devices transitioned to enhancement mode operation when the trench depth reached 110 nm. Moreover, a reduction in the epitaxial layer etching depth to 200 nm was found to enhance the gate-mesa trench's specific on-resistance to 9.76 mΩ·cm2. At a doping concentration of 3×1017 cm-3 for the epitaxial layer, the gate-mesa trench exhibited a peak transitance of 50.58 mS/mm. Concurrently, the use of HfO2 as the gate oxide material was found to markedly augment the saturation drain current and power figure of merit of β-Ga2O3 MOSFETs, whereas Al2O3 as the gate oxide material resulted in an elevated threshold voltage for the device.

参考文献:

[1] Guo D, Guo Q, Chen Z, et al. Review of Ga2O3-based optoelectronic devices[J]. Materials Today Physics, 2019, 11: 100157.

[2] Liu A C, Hsieh C H, Langpoklakpam C, et al. State-of-the-Art β-Ga2O3 Field-Effect Transistors for Power Electronics[J]. ACS omega, 2022, 7(41): 36070-36091.

[3] Yoshioka S, Hayashi H, Kuwabara A, et al. Structures and energetics of Ga2O3 polymorphs[J]. Journal of Physics: Condensed Matter, 2020, 19(34): 346211.

[4] Zhang J, Dong P, Dang K, et al. Ultra-wide bandgap semiconductor Ga2O3 power diodes[J]. Nature communications, 2023, 13(1): 3900.

[5] Dong H, Xue H, He Q, et al. Progress of power field effect transistor based on ultra-wide bandgap Ga2O3 semiconductor material[J]. Journal of Semiconductors, 2020,40(1): 011802.

[6] Pearton S J, Yang J, Cary P H, et al. A review of Ga2O3 materials, processing, and devices[J]. Applied Physics Reviews, 2018, 5(1): 011301..

[7] 蔺浩博, 刘宁涛, 吴思淼, 等. 氧化镓的n型掺杂研究进展[J].中国材料进展,2023,第42卷(4): 277-288,303

[8] Li P, Shan X, Lin Y, et al. Tin Doping Induced High‐Performance Solution‐Processed Ga2O3 Photosensor toward Neuromorphic Visual System[J]. Advanced Functional Materials, 2023, 33(46): 2303584.

[9] Deng Y, Yang Z, Xu T, et al. Band alignment and electrical properties of NiO/β-Ga2O3 heterojunctions with different β-Ga2O3 orientations[J]. Applied Surface Science, 2023, 622: 156917.

[10] He Y, Zhao F, Huang B, et al. Review of β-Ga2O3 Power Diodes[J]. Materials 2024, 17(8): 1870.

[11] He R, Zhou N, Zhang K, et al. Progress and challenges towards additive manufacturing of SiC ceramic[J]. Journal of Advanced Ceramics, 2021,10: 637-674.

[12] Tuci G, Liu Y, Rossin A, et al. Porous silicon carbide (SiC): a chance for improving catalysts or just another active-phase carrier [J]. Chemical Reviews, 2021, 121(17): 10559-10665.

[13] Roccaforte F, Fiorenza P, Greco G, et al. Emerging trends in wide band gap semiconductors (SiC and GaN) technology for power devices[J]. Microelectronic Engineering, 2018, 187: 66-77.

[14] Huang Y, Xie X, Zhang Z, et al. Enhancement-mode heterojunction vertical β-Ga2O3 MOSFET with a P-type oxide current-blocking layer[J]. Applied Sciences, 2022, 12(3): 1757.

[15] Jang C H, Atmaca G, Cha H Y. Normally-off β-Ga2O3 MOSFET with an epitaxial drift layer[J]. Micromachines, 2022, 13(8): 1185.

[16] Song Y, Bhattacharyya A, Karim A, et al. Ultra-Wide Band Gap Ga2O3-on-SiC MOSFETs[J]. ACS Applied Materials & Interfaces, 2023, 15(5): 7137-7147.

[17] Xu G, Wu F, Liu Q, et al. Vertical β-Ga2O3 power electronics[J]. J.Semicond, 2023, 44(7): 070301.

[18] Liu A C, Hsieh C H, Langpoklakpam C, et al. State-of-the-Art β-Ga2O3 Field-Effect Transistors for Power Electronics[J]. ACS omega, 2022, 7(41): 36070-36091.

[19] Higashiwaki M. β-Ga2O3 material properties, growth technologies, and devices:a review[J]. AAPPS Bulletin, 2022, 32(1): 3.

[20] Zhang M, Liu Z, Yang L, et al. β-Ga2O3-based power devices: A concise review[J]. Crystals, 2022, 12(3): 406.

[21] Higashiwaki M, Sasaki K, Kamimura T, et al. Depletion-mode Ga2O3 metal-oxide semiconductor field-effect transistors on β-Ga2O3 (010) substrates and temperature dependence of their device characteristics[J]. Applied Physics Letters, 2013, 103(12): 123511.

[22] Wong M H, Sasaki K, Kuramata A, et al. Field-plated Ga2O3 MOSFETs with a breakdown voltage of over 750 V[J]. IEEE Electron Device Letters, 2015, 37(2): 212-215.

[23] GREEN A, CHABAK K D, HELLER E, et al. 3.8 MV/cm Breakdown Strength of MOVPE Grown Sn-Doped β-Ga2O3 MOSFETs [J]. IEEE Electron Device Letters, 2016, 37: 902-905.

[24] Zeng K, Vaidya A, Singisetti U. 1.85 kV breakdown voltage in lateral field-plated Ga2O3 MOSFETs[J]. IEEE Electron Device Letters, 2018, 39(9): 1385-1388.

[25] Mun J K, Cho K, Chang W, et al. 2.32 kV breakdown voltage lateral β-Ga2O3 MOSFETs with source-connected field plate[J]. ECS Journal of Solid State Science and Technology, 2019, 8(7): Q3079.

[26] Lv Y, Zhou X, Long S,et al. Source-Field-Plated β-Ga2O3 MOSFET with Record Power Figure of Merit of 50.4 MW/cm2[J]. IEEE Electron Device Letters, 2019, 40, 83−86.

[27] LV Y, LIU H, ZHOU X, et al. Lateral β-Ga2O3 MOSFETs With High Power Figure of Merit of 277 MW/cm2 [J]. IEEE Electron Device Letters, 2020, 41(4): 537-540.

[28] Lv Y, Zhou X, Long S, et al. Enhancement‐Mode β‐Ga2O3 Metal‐Oxide‐Semiconductor Field‐Effect Transistor with High Breakdown Voltage over 3000 V Realized by Oxygen Annealing[J]. physica status solidi (RRL)–Rapid Research Letters, 2020, 14(3): 1900586.

[29] Feng Z, Cai Y, Li Z, et al. Design and fabrication of field-plated normally off β-Ga2O3 MOSFET with laminated-ferroelectric charge storage gate for high power application[J]. Applied Physics Letters, 2020, 116(24): 243503.

[30] Sharma S, Zeng K, Saha S, et al. Field-plated lateral Ga2O3 MOSFETs with polymer passivation and 8.03 kV breakdown voltage[J]. IEEE Electron Device Letters, 2021, 41(6): 836-839.

[31] Chabak K D, McCandless J P, Moser N A, et al. Recessed-Gate Enhancement-Mode β-Ga2O3 MOSFETs[J]. IEEE Electron Device Letters, 2021, 39(1): 67-70.

[32] Zhou X, Liu Q, Xu G, et al. Realizing High-Performance β-Ga2O3 MOSFET by Using Variation of Lateral Doping: A TCAD Study[J]. IEEE Transactions on Electron Devices, 2022, 68(4): 1501-1506.

[33] Wang C, Zhou H, Zhang J, et al. Hysteresis-free and μs-switching of D/E-modes Ga2O3 hetero-junction FETs with the BV2/Ron,sp of 0.74/0.28 GW/cm2[J]. Applied Physics Letters, 2023, 120(11): 112101.

[34] Ji X, Lu C, Yan Z, et al. A Review of gallium oxide-based Power Schottky barrier diodes[J]. Journal of Physics D: Applied Physics, 2023, 55(44): 443002.

[35] Li W, Nomoto K, Hu Z, et al. Single and multi-fin normally-off Ga2O3 vertical transistors with a breakdown voltage over 2.6 kV[C]//2019 IEEE International Electron Devices Meeting (IEDM). IEEE, 2019: 12.4. 1-12.4.4.

[36] Yoon Y, Kim M, Cho B, Shin, et al. An 8-nm-Thick Sn-Doped Polycrystalline β-Ga2O3 MOSFET with a “Normally Off” Operation[J]. Applied Physics Letters, 2021, 119(12): 122103.

[37] Do H B, Phan-Gia A V, Nguyen V Q, et al. Optimization of normally-off β-Ga2O3 MOSFET with high Ion and BFOM: A TCAD study[J]. AIP Advances, 2023, 12(6).

[38] Williams RK, Darwish MN, Blanchard RA, et al. The trench power MOSFET: Part I-History, technology, and prospects[J]. IEEE Transactions on Electron Devices, 2018 ,64(3): 674-91.

[39] Rui Q I U, Wenjun Z, Zheng Y, et al. Prediction models of the ionization coefficient and ionization cross-section based on multi-layer molecular parameters[J]. Plasma Science and Technology, 2023, 25(5): 055405.

[40] 施敏, 伍国珏, 耿莉, 等. 半导体器件物理[M]. 西安交通大学出版社, 2008.

[41] Matocha K, Dunne G, Soloviev S, et al. Time-dependent dielectric breakdown of 4H-SiC MOS capacitors and DMOSFETs[J]. IEEE transactions on electron devices, 2008, 55(8): 1830-1834.

[42] Wang H, Blaabjerg F. Power electronics reliability: State of the art and outlook[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 9(6): 6476-6493.

[43] 封兆青. 基于β-Ga2O3大功率金属氧化物半导体场效应晶体管的研究[D]. 西安: 西安电子科技大学, 2021.

[44] Soni A, Shrivastava M. Novel drain-connected field plate GaN HEMT designs for improved VBD–RON trade off and RF PA performance[J]. IEEE Transactions on Electron Devices, 2020, 67(4): 1718-1725.

[45] He Q, Hao W, Li Q, et al. β-Ga2O3 junction barrier Schottky diode with NiO p-well floating field rings[J]. Chinese Physics B, 2023, 32(12): 128507.

[46] Yao S, Yang K, Yang L, et al. Investigation on β-Ga2O3-Based Schottky Barrier Diode with Floating Metal Rings[J]. Crystals, 2023, 13(4): 666.

[47] Li G, Mu C, Lin W, et al. Simulation study of vertical diamond Schottky barrier diode with field plate assisted junction termination extension[J]. Materials Today Communications, 2023, 35: 105968.

[48] Fayaz S, Hakim N, Rather G M. Applicability of Channel Dopping Gradient in the Design of a Short Channel (0.1 µm) LDMOS Transistor for Integrated Power and RF Applications[J]. Transactions on Electrical and Electronic Materials, 2024: 1-15.

[49] Wu Y C, Jhan Y R, Wu Y C, et al. Introduction of synopsys sentaurus TCAD simulation[J]. 3D TCAD Simulation for CMOS Nanoeletronic Devices, 2018: 1-17.

[50] Higashiwaki M, Wong M H. Beta-Gallium Oxide Material and Device Technologies[J]. Annual Review of Materials Research, 2024, 54.

[51] Park J, Hong S M. Simulation study of enhancement mode multi-gate vertical gallium oxide MOSFETs[J]. ECS Journal of Solid State Science and Technology, 2019, 8(7): Q3116.

[52] Wong M H, Goto K, Morikawa Y, et al. All-ion-implanted planar-gate current aperture vertical Ga2O3 MOSFETs with Mg-doped blocking layer[J]. Applied Physics Express, 2018, 11(6): 064102.

[53] Selberherr S. Analysis and simulation of semiconductor devices[M]. Springer Science & Business Media, 2012.

[54] Wang C, Zhang J, Xu S, et al. Progress in state-of-the-art technologies of Ga2O3 devices[J]. Journal of Physics D: Applied Physics, 2021, 54(24): 243001.

[55] Fukushima H, Usami S. Deeply and vertically etched butte structure of vertical GaN p-n diode with avalanche capability. Japanese Journal of Applied Physics, 2019, 58(SC): SCCD25.

[56] Prasad CV, Rim YS. Review on interface engineering of low leakage current and on-resistance for high-efficiency Ga2O3-based power devices[J]. Materials Today Physics, 2022, 27:100777.

[57] Maeda T, Narita T. Design and fabrication of GaN pn junction diodes with negative beveled-mesa termination[J]. IEEE Electron Device Letters. 2019, 40(6): 941-4.

[58] Zeng K, Chowdhury S. Designing beveled edge termination in GaN vertical pin diode-bevel angle,doing, and passivation[J]. IEEE Transactions on Electron Devices, 2020, 67(6): 2457-62.

[59] Wu F, Wang Y, Jian G, et al. Superior performance β-Ga2O3 junction barrier Schottky diodes implementing p-NiO heterojunction and beveled field plate for hybrid Cockcroft–Walton voltage multiplier[J]. IEEE Transactions on Electron Devices, 2023, 70(3): 1199-205.

[60] Allen N, Xiao M, et al. Vertical Ga2O3 Schottky barrier diodes with small-angle beveled field plates: A Baliga’s figure-of-merit of 0.6 GW/cm2[J]. IEEE Electron Device Letters, 2019, 40(9): 1399-402.

[61] Zhang Y, Luan S. Gate-mesa trench enables enhanced β-Ga2O3 MOSFET with higher power figure of merit[J]. Engineering Research Express, 2023, 5(3): 035070.

中图分类号:

 TN386    

开放日期:

 2024-06-14    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式