- 无标题文档
查看论文信息

题名:

 基于FPGA的三相BLDCM无传感器正弦波控制器设计    

作者:

 李林    

学号:

 20207223082    

保密级别:

 保密(3年后开放)    

语种:

 chi    

学科代码:

 085400    

学科:

 工学 - 电子信息    

学生类型:

 硕士    

学位:

 工程硕士    

学位年度:

 2023    

学校:

 西安科技大学    

院系:

 通信与信息工程学院    

专业:

 电子与通信工程    

研究方向:

 集成电路设计    

导师姓名:

 刘树林    

导师单位:

 西安科技大学    

提交日期:

 2023-06-25    

答辩日期:

 2023-06-01    

外文题名:

 Design of Sensorless Sinusoidal Controller for Three Phase BLDCM Based on FPGA    

关键词:

 直流无刷电机 ; 无传感器控制 ; 正弦驱动 ; FPGA    

外文关键词:

 Brushless DC Motor ; Sensorless Control ; Sinusoidal Drive ; FPGA    

摘要:

三相直流无刷电机结构简单、体积小、可靠性高、调速性能好,在工业生产和家用电器领域应用广泛。但位置传感器性能受环境影响较大,导致控制可靠性降低,还会增加电机成本和体积,并且方波驱动比正弦驱动转矩脉动大。因此,设计基于FPGA的三相直流无刷电机无传感器正弦波控制器具有理论意义和工程应用价值。

通过分析三相直流无刷电机的结构、数学模型及控制原理,得到电机转矩脉动分析、换相和调速的理论依据。对比分析了方波驱动和正弦驱动的转矩脉动,指出采用正弦驱动直流无刷电机可较好地抑制转矩脉动。针对正弦驱动开关损耗过大的问题,采用了最小开关损耗SPWM技术,减小了逆变器开关管1/3的开关损耗,同时保证了正弦驱动。为实现无传感器控制,在反电动势过零检测技术的基础上进一步分析,提出适用于正弦驱动的无传感器转子位置检测方法。但该方法得到的转子位置不满足正弦驱动的要求,针对此问题,在原有位置检测的基础上,设计提高位置检测连续性的算法,使测得的转子位置满足正弦驱动的要求。为实现正弦驱动,设计了基于CORDIC算法的正弦值计算模块,采用流水线电路结构及复用思想,满足计算精度和速度的同时,降低了该模块2/3的硬件资源消耗。在实现无传感器控制和正弦驱动后,添加IIC通信、速度检测和超前角调节等必要的辅助模块,最终完成了三相直流无刷电机无传感器正弦波控制器的整体方案,并在Simulink中对方案进行验证。

验证方案可行后,完成控制器Verilog代码的设计,并采用QuestaSim软件对控制器主要模块进行仿真,基于FPGA搭建了电机控制器的验证平台,对实际控制效果进行测试。仿真结果和实验结果验证了方案的可行性及各模块功能的正确性。

外文摘要:

The three-phase brushless DC motor has a simple structure, small volume, high reliability, and good speed regulation performance, making it widely used in industrial production and household appliances. However, the performance of the position sensor is greatly affected by the environment, which reduces its reliability of control. Besides, using position sensors can increase the cost and volume of the motor, and using square-wave to drive will have greater torque ripple than using sine-wave. Therefore, designing a sensorless sinusoidal controller based on FPGA for three-phase brushless DC motor has theoretical significance and engineering application value.

By analyzing the structure, mathematical model, and control principle of the three-phase brushless DC motor, the theoretical basis of motor torque ripple analysis, commutation, and speed regulation are obtained. By comparing and analyzing the torque ripple of using square-wave and sine-wave to drive, it shows that using sine-wave to drive brushless DC motor can better suppress the torque ripple. In view of the problem that using sine-wave to drive has excessive switching loss, minimum switching loss SPWM is adopted to reduce the switching loss of the switch tube of the inverter by 1/3 while ensuring sinusoidal driving. To achieve sensorless control, a sensorless rotor position detection method suitable for sinusoidal driving is proposed based on further analysis of the back-EMF zero crossing detection technology. However, the rotor position obtained by this method is not sufficient to meet the requirement of sinusoidal driving. In response to this problem, an algorithm is designed to improve the continuity of position detection based on the original position detection, so that the rotor position meets the requirement of sinusoidal driving. To achieve sinusoidal drive, a sine value calculation module based on the CORDIC algorithm was also designed, adopting pipeline circuit structure and multiplexing idea to meet the calculation accuracy and speed, while reducing the hardware resource consumption of the module by 2/3. After achieving sensorless control and sinusoidal driving, necessary auxiliary modules such as IIC communication module, speed detection module, and lead angle adjustment module are added to complete the overall scheme of the sensorless sinusoidal controller for three-phase brushless DC motor, and the scheme is verified in Simulink.

After verifying the feasibility of the scheme, complete the design of the Verilog code of the controller. QuestaSim software is used to simulate the main modules of the controller, and a verification platform for the motor controller is built based on FPGA to test the actual control performance. The simulation and experimental results demonstrate the feasibility of the scheme and the correctness of the function of each module.

参考文献:

[1]傅贵武,王宇华. 基于TI C2000系列DSP的无刷直流电机无位置传感器驱动控制系统设计[J]. 电机与控制应用, 2019, 46(07): 82-88.

[2]杨贵营. 基于FPGA的准正弦波无刷直流电机控制及系统实现[D]. 成都:西南交通大学, 2014.

[3]钱华,李志鹏,陈辰,金燚翥.有刷直流电机真空应用研究[J].炭素技术,2020(2):20-23.

[4]寇宝泉,程树康.交流伺服电机及其控制[M].北京:机械工业出版社,2011:3-4.

[5]候海波.单相永磁无刷直流电机控制系统的研究[D].杭州:浙江大学,2017.

[6]张琛. 直流无刷电动机原理及应用[M]. 北京:机械工业出版社, 2001:1-2.

[7]张梓睿. 直流无刷电机无传感器控制关键技术研究[D]. 广州:广东工业大学, 2018.

[8]Sykes R L,Summers T J,Betz R E,Torresan H.Fault-Mitigation in Multi-Phase BLDC M-achines-Literature Review[C]//2020 Australasian Universities Power Engineering Confere-nce(AUPEC), IEEE,2020,1-6.

[9]张庆超.无刷直流电机转速伺服系统高阶滑模控制研究[D].西安:西北工业大学,2017.

[10]Baek S W.Optimum shape design of a BLDC motor for electric continuous variable valve timing system considering efficiency and torque characteristics[J].Microsystem Techn-ologies,2018,24(11):4441-4452.

[11]Yamashita R Y,Silva F L,Santiciolli F M,et al.Comparison between two models of BLDC motor,simulation and data acquisition[J].Journal of the Brazilian Society of Mechanical S-ciences and Engineering,2018,40(2):1-11.

[12]Kolano K,Drzymaa B,Gca J.Sinusoidal Control of a Brushless DC Motor with Misalignm-ent of Hall Sensors[J].Energies,2021,14(20):1-13.

[13]Lee H W,Cho D H,Lee K B.Rotor position estimation over entire speed range of interior p-ermanent magnet synchronous motors[J].Journal of Power Electronics.2021,21(4):693-702.

[14]孟姗,郎宝华.用dsPIC30F3010实现无刷直流电动机正弦波驱动[J].计算机与数字工程,2013,41(09):1538-1540.

[15]Ulasyar A, Sheh Z H, Zohaib A. Intelligent Speed Controller Design for Brushless DC Mo-tor[C]. International Conference on Frontiers of Information Technology (FIT), 2018: 19-23.

[16]Ambarisha,Mishra,et al.A comprehensive analysis and implementation of vector control of permanent magnet synchronous motor[J]. International journal of Power and energy conv-ersion: IJPEC, 2014, 5(1):1-23.

[17]潘健,张小磊,张伯顺,王淑青.基于 FPGA的SPWM变频调压电源研究[J].电源技术研究与设计.2015,39(2):386-388.

[18]张前.高速无刷直流电机控制器开发及关键技术研究[D].北京:北京科技大学,2018.

[19]郑直.一种无位置传感器无刷直流电机闭环控制系统设计[D].南京:南京理工大学,2018.

[20]赵培迪.基于改进型滑模观测器的PMSM无传感器控制策略研究[D].石家庄:河北科技大学.2018.

[21]闫美洁.基于模型预测的无位置传感器无刷直流电机控制策略研究[D].吉林:吉林大学,2022

[22]Lai Y S,Lin Y K. A unified approach to back-EMF detection for brushless DC motor dri-ves without current and hall sensors[J].IEEE Transactions on Power Electronics,2003,18(6):1293-1298.

[23]Iizuka,Kenichi,Uzuhashi,Hideo,Kano,Minoru,Endo,Tsunehiro,Mohri,Katsuo.Microcomp-uter Control for Sensorless Brushless Motor[J]. IEEE Transactions on Industry Applicatio-ns,1985,IA-21(3):595-601.

[24]高慧敏.无位置传感器无刷直流电机速度控制系统研究[D].西安:长安大学,2015

[25]Ogasawara S,Akagi H.An approach to position sensorless drive for brushless DC motors[J].IEEE Transactions on Industry Applications,1990,27(5):928-933.

[26]Moreira J C.Indirect sensing for rotor flux position of permanent magnet AC motors opera-ting over a wide speed range[J]. IEEE Transactions on Industry Applications,1996,32(6):1394-1401.

[27]Amano Y, Tsuji T, Takahashi A, et al. A sensorless drive system for brushless DC motors u-sing a digital phase‐locked loop[J].Electrical Engineering in Japan,2003,142(1): 57-66.

[28]Ertugrul N,Acarnley P. A new algorithm for sensorless operation of permanent magnet mo-tors[J]. IEEE Transactions on Industry Applications,1994.

[29]Corley M J.Rotor Position and Velocity Estimation for a Permanent Magnet Synchronous Machine at Standstill and High Speeds[C]// IEEE Ias Meeting.IEEE,1996:36-41.

[30]孙坤迪,董腾辉,张希,朱翀,鲁岩松.基于遗传算法的车用永磁同步电机在线热模型参数辨识方法[J].微电机,2021,54(6):55-59.

[31]乔林,刘颖,胡畔,聂祺昕,杨海.基于遗传算法与模糊PID复合控制的电机调速研究[J].微电机,2021,54(7):92-98.

[32]金昊,丁曙光.基于GA优化RBF网络的永磁同步电机无位置控制[J].组合机床与自动化加工技术,2021(2):95-98.

[33]张淑芳,宋香明,朱彬华.结合改进PSO-BP神经网络的无刷直流电机控制[J].南开大学学报:自然科学版,2021,54(4):62-67.

[34]张博,周达,蒋波涛.基于RBF神经网络和扰动观测器的PMLSM位置控制[J].组合机床与自动化加工技术,2021(8):90-93.

[35]韩晨,张广明.基于二阶滑模和MRAS的PMSM速度与磁链估计[J].微电机,2021,54(4):94-98.

[36]周宇,陈永军.基于MRAS的永磁同步电机改进滑模速度控制设计[J].微电机,2021,54(10):74-78+89.

[37]陈强,许昌源,孙明轩.基于扩张状态观测器的永磁同步电机重复学习控制[J].控制理论与应用,2021,38(9):1372-1380.

[38]张嘉洋,巨永锋,刘永臣,杜凯.基于扩张状态观测器的永磁同步电机自适应逆控制[J].现代电子技术,2021,44(21):96-100.

[39]Alex S S,Daniel A E.An Efficient Position Tracking Smoothing Algorithm for Sensorless Operation of Brushless DC Motor Drives[J].Modelling and Simulation in Engineering, 2018:1-9.

[40]孟得龙,李宁洲,卫晓娟.基于改进强跟踪滤波器的PMSM矢量控制[J].微特电机,2021,49(6):49-52.

[41]邹继斌,张豫,李宗政,王强,李春廷.无位置传感器无刷直流电机驱动电路的研究[J].微电机,1999,32(02):16-18+47.

[42]余长城.无位置传感器无刷直流电机控制系统设计[D].合肥:合肥工业大学,2017.

[43]方春城,孙培明,陈树钦.基于 STM8S 的无位置传感器无刷直流电机控制方法[J].云南民族大学学报(自然科学版), 2017, 26(04): 313-316+321.

[44]邓灿,张森林.一种新的无刷直流电机起动方法[J].微电机,2002,35(6):29-31+60.

[45]Jang G H,Park J H,Chang J H.Position detection and start-up algorithm of a rotor in a sens-orless BLDC motor utilizing inductance variation[J].IET electric power applications,2002(2):149.

[46]Kim W J,Kim S H.MTPA operation scheme with current feedback in V/f control for PMS-M drives[J].Journal of Power Electronics,2020,20(2):524-537.

[47]Nair S V,Hatua K,Prasad N,Reddy D.A Quick I-f Starting of PMSM Drive with Pole Slipp-ing Prevention and Reduced Speed Oscillations[J].IEEE Transactions on Industrial Electronics,2021,68(8):6650-6661.

[48]宋煜.小型电动车用无刷直流电机驱动系统研制[D].哈尔滨:哈尔滨工业大学,2019

[49]梁超,段富海,邓君毅,段雨男.无刷直流电机转矩脉动抑制方法研究综述[J]. 机电工程技术,2020,49(11):4.

[50]倪劲松.基于无位置传感器的五相无刷直流电机控制系统研究[D].哈尔滨:哈尔滨理工大学,2022.

[51]王洁,陈永军,何舟,石宽,李寅生.六种PWM方式对无刷直流电机性能影响研究[J].仪器仪表与分析监测,2019(4):8-14.

[52]李国华,刘春武,汪玉凤.单相逆变器随机PWM选择性消谐滞环随机扩频方法[J].电工技术学报,2021,36(6):1279-1289.

[53]Islam M A, Hossen M B, Banik B, et al. Field oriented space vector pulse width modulation control of permanent magnet brushless DC motor[C]//2017 IEEE Region 10 Huma-nitarian Technology Conference. IEEE, 2017: 322-327.

[54]Bertoluzzo M, Buja G, Keshri R K, et al. Sinusoidal versus square-wave current supply of PM brushless DC drives: a convenience analysis[J]. IEEE Transactions on Industrial Elect-ronics, 2015, 62(12): 7339-7349.

[55]甘时霖,陈亚爱,周京华,陈焕玉.叠加三倍次谐波的永磁同步电机控制系统研究[J].电力电子技术,2018,52(5):58-61.

[56]唐梦婷,王维庆,李贵彬.PMSM机车牵引变换器调制算法研究[J].电力电子技术:2018,52(2):25-27.

[57]Huang Y,Xu Y,Zhang W,Zou J.Hybrid RPWM Technique Based on Modified SVPWM to Reduce the PWM Acoustic Noise[J].IEEE Transactions on Power Electronics,2019,34(6):5667-5674.

[58]李运德,张淼. 正弦波驱动无刷直流电机转矩脉动的研究[J]. 电力电子技术,2010,44(12):79-81.

中图分类号:

 TN492    

开放日期:

 2026-06-26    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式