- 无标题文档
查看论文信息

题名:

 城市地下输水管道泄漏对黄土路基湿化变形的影响研究    

作者:

 陈豪    

学号:

 22204228085    

保密级别:

 保密(1年后开放)    

语种:

 chi    

学科代码:

 085900    

学科:

 工学 - 工程 - 土木水利    

学生类型:

 硕士    

学位:

 工程硕士    

学位年度:

 2025    

学校:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 土木水利    

研究方向:

 岩土工程    

导师姓名:

 胡梦玲    

导师单位:

 西安科技大学    

提交日期:

 2025-06-15    

答辩日期:

 2025-06-02    

外文题名:

 Study on the Impact of Urban Underground Water Supply Pipeline Leakage on the Wetting Deformation of Loess Subgrade    

关键词:

 非饱和黄土 ; 输水管道泄漏 ; 水-力耦合 ; 湿化变形 ; 数值模拟    

外文关键词:

 Unsaturated loess ; Water supply pipeline leakage ; Hydro-mechanical coupling ; Wetting deformation ; Numerical simulation    

摘要:

城市地下输水管道是城市供水系统的主要组成部分,对于保障城市居民的日常生活用水、工业用水和农业用水具有重要意义。在长期的使用过程中,地下输水管道因管道材料老化、交通荷载的振动波以及施工扰动等问题常常导致管道破损发生泄漏,引起黄土路基的水分迁移和湿化变形,甚至严重的地面塌陷事故,影响了城市居民的正常用水和交通安全。因此,开展城市地下输水管道泄漏对黄土路基湿化变形的影响研究对于科学预测城市道路灾害和保障城市稳定运行具有重要的应用价值。本文以西安地区城市道路黄土路基为研究对象,针对城市地下输水管道泄漏引起的路基湿化及变形灾害问题,采用室内试验、理论分析和数值模拟相结合的研究方法,开展压实黄土的水力特性试验和湿化变形特性试验,建立非饱和土水-力耦合模型,分析输水管道泄漏作用下黄土路基的水分迁移规律和增湿变形特性,探讨地下水位深度、泄漏位置、泄漏孔尺寸和管道覆土厚度等对黄土路基湿化变形的影响。获得的主要结论有:

(1)采用压力板仪进行土水特征曲线试验,获得试验黄土增湿与减湿阶段的土水特征曲线,分析并得出了非饱和黄土的基质吸力与体积含水率之间的关系。试验表明,在增减湿的循环过程中,体积含水率与基质吸力的平衡关系呈现非一一对应性,相同吸力条件下,增湿阶段含水率较减湿阶段存在明显滞后现象,滞回曲线幅度覆盖全含水率变化范围,且在孔隙水快速排出与吸收区域最为突出。

(2)采用应力应变式非饱和土三轴仪,开展多级净应力工况下土体湿化变形特性实验。通过孔隙结构变化与吸力变化联立分析,建立水-力耦合参数关联模型,进而得到土体结构和水的变形状态变量:以净应力和基质吸力为状态变量的水-力耦合本构方程。

(3)基于净应力-基质吸力对土体体积变形的影响,构建非饱和土水-力耦合本构模型,推导多应力路径下各体积模量的表达式;改进达西渗流理论,建立以孔隙水压力梯度为驱动势的渗流控制方程,实现饱和-非饱和渗流场的连续表征。

(4)基于COMSOL Multiphysics数值模拟软件,构建输水管道泄漏作用下的渗流-应力耦合模型,通过地下水位深度、泄漏位置、泄漏孔尺寸和管道覆土厚度等因素,分析路基的水分迁移与湿化变形的机理。研究表明:湿润锋几何形态从拟圆形演变为非对称水滴形,其前锋抵达区域饱和度迅速达到稳定,而路基湿化变形呈持续发展趋势;地表形变速率先急后缓,孔心轴线地表位移峰值始终存在,最终沉降形成“漏斗状”分布;管道埋深增大导致其上方地表沉降量显著上升;地下水位越深地表最大沉降量越大,管道中轴线区域位移变化最为显著;管道破损孔洞尺寸的扩大导致路基饱和区向下延伸,湿润锋水平扩展范围小幅增长,这种水力条件的变化加剧了路基的湿化与沉降。

外文摘要:

Urban underground water supply pipelines are crucial components of urban water supply systems, playing a vital role in ensuring daily domestic water consumption, industrial water use, and agricultural irrigation for urban residents. During prolonged service, underground pipelines frequently experience leakage due to material aging, vibration waves from traffic loads, and construction disturbances. These leaks can induce moisture migration and wetting deformation in loess subgrades, potentially leading to severe ground collapse accidents that disrupt normal water supply and compromise transportation safety. Therefore, investigating the impact of underground pipeline leakage on wetting deformation of loess subgrades holds significant application value for scientifically predicting urban road hazards and ensuring urban operational stability.This study focuses on loess subgrades of urban roads in Xi"an region, addressing the wetting and deformation disasters caused by underground water pipeline leakage. Adopting an integrated research methodology combining laboratory experiments, theoretical analysis, and numerical simulations, it conducts hydraulic characteristic tests and wetting deformation tests on compacted loess. The research establishes an unsaturated soil hydro-mechanical coupling model to analyze moisture migration patterns and wetting deformation characteristics of loess subgrades under pipeline leakage conditions. It further investigates the influences of groundwater table depth, leakage location, leak aperture size, and pipeline burial depth on subgrade wetting deformation. Key conclusions obtained include:

(1) Soil-water characteristic curve (SWCC) tests were conducted using a pressure plate apparatus to obtain wetting and drying paths of the tested loess, establishing the relationship between matric suction and volumetric water content in unsaturated loess. The results revealed a non-unique correspondence between volumetric water content and matric suction during cyclic wetting-drying processes. Under identical suction conditions, moisture content during the wetting phase exhibited significant hysteresis compared to the drying phase. The hysteresis loops spanned the entire range of moisture content variation, with the most pronounced effects observed in zones of rapid pore water drainage and absorption.

(2) Wetting Deformation Characteristics under Multi-Stage Net Stress Conditions were investigated using a stress-strain controlled unsaturated triaxial apparatus. By jointly analyzing pore structure evolution and suction changes, a hydro-mechanical coupling parameter correlation model was established. This led to defining deformation state variables for soil structure and water, culminating in a hydro-mechanical constitutive equation with net stress and matric suction as state variables.

(3) Hydro-Mechanical Coupling Constitutive Model for Unsaturated Soil was developed based on the influence of net stress and matric suction on soil volumetric deformation. Expressions for bulk moduli under multi-stress paths were derived. Darcy’s seepage theory was enhanced by formulating a seepage control equation driven by pore water pressure gradients, enabling continuous characterization of saturated-unsaturated seepage fields.

(4) A seepage-stress coupled model under water supply pipeline leakage was developed using COMSOL Multiphysics software. By incorporating parameters such as groundwater table depth, leak location, leak aperture size, and pipeline burial depth, the mechanisms of moisture migration and wetting deformation in the subgrade were systematically analyzed. Key findings demonstrate:The geometric morphology of the wetting front evolved from quasi-circular to asymmetric droplet-shaped. Saturation rapidly stabilized in the advancing front region, while subgrade wetting deformation exhibited persistent progression; Surface deformation rates showed an initial abrupt phase followed by gradual deceleration. Persistent displacement peaks along the leak axis ultimately formed a "funnel-shaped" settlement distribution; Increased pipeline burial depth significantly amplified surface settlement above the pipeline; Deeper groundwater tables correlated with greater maximum surface settlements, with the most pronounced displacement variations observed along the pipeline central axis; The enlargement of pipeline breach apertures induces downward extension of the subgrade's saturated zone, resulting in a slight horizontal expansion of the wetting front. Such hydraulic modifications exacerbate wetting deformation and settlement in the subgrade.

参考文献:

[1]李学军, 洪立波. 城市地下管线探测与管理技术的发展及应用[J]. 城市勘测, 2010(04): 5-11.

[2]平学惠. 市政道路整治工程中的综合管线设计[J]. 铁道标准设计, 2009(06): 137-139.

[3]邹延延. 地下管线探测技术综述[J]. 勘探地球物理进展, 2006(01): 14-19.

[4]蒋丽萍. 浅谈城市供水管道损坏原因及修复措施[J]. 水利科技与经济, 2011(04): 30-31.

[5]陈立道, 施兰章, 朱保罗. 城市下水道损坏原因分析与修复对策研究[J]. 中国市政工程, 2002(01): 49-51.

[6]陈兰. 基于负压波法的有压输水管道泄漏检测研究[D]. 西安理工大学, 2022.

[7]刘红. 西宁公交站地面塌陷,以至10死17伤[N]. 青海日报. 2020-1-13.

[8]师悦. 北京海淀紫竹院路地面塌陷跑水[N]. 北京日报. 2019-12-9.

[9]王俭. 广州一地下水管爆裂引起地面塌陷[N]. 2015-3-4.

[10]李兴高, 王霆. 管线渗漏诱发地铁工程事故的安全控制技术研究[J]. 中国安全科学学报, 2010, 20(05): 125-130.

[11]王帅超. 城市地下管道渗漏引起的路面塌陷机理分析与研究[D]. 郑州大学, 2017.

[12]Davies J P, Clarke B A, Whiter J T, et al. Factors influencing the structural deterioration and collapse of rigid sewer pipes[J]. Urban Water, 2001, 3(1): 73-89.

[13]Franz T, Krebs P. Statistical methods towards more efficient infiltration measurements[J]. Water Science &Technology, 2006, 54(6-7): 153.

[14]李若晗. 城市污水管道检测、评价与影响因素研究[D]. 清华大学, 2016.

[15]Reemtsma T, Regina Gnirß, Jekel M . Infiltration of Combined Sewer Overflow and Tertiary Municipal Wastewater: An Integrated Laboratory and Field Study on Nutrients and Dissolved Organics[J]. Water Research, 2000, 34(4): 1179-1186.

[16]高国瑞. 黄土显微结构分类与湿陷性[J]. 中国科学, 1980, (12): 1203-1208+1237-1240.

[17]高国瑞. 黄土湿陷变形的结构理论[J]. 岩土工程学报, 1990, 12(4): 1-10.

[18]刘新喜, 夏元友, 刘祖德,等. 复杂应力下强风化软岩湿化变形试验研究[J]. 岩石力学与工程学报, 2006, (05): 925-930.

[19]关亮, 陈正汉. 非饱和填土(黄土)的湿化变形研究[J]. 岩石力学与工程学报, 2011, 30(8)1698-1704.

[20]郑明新, 方焘, 刁心宏. 风化软岩填筑路基可行性室内试验研究[J]. 岩土力学, 2005, 26(增刊): 53-56.

[21]韦慧, 曾胜, 赵健,等. 路用红砂岩碎石土湿化变形特性试验[J]. 中南大学学报(自然科学版), 2015, 46(06): 2261-2266.

[22]谈云志, 孔令伟, 郭爱国,等. 压实红黏土的湿化变形试验研究[J]. 岩土工程学报, 2011, 33(03): 483-489.

[23]蔡国庆, 韩博文, 韦靖威,等. 复杂水–力路径下非饱和砂质黄土增湿变形特性[J]. 岩石力学与工程学报, 2022, 41(S1): 3073-3080.

[24]金松丽, 邢义川, 赵卫全,等. 基于单线法试验的黄土增湿变形非线性模型研究[J]. 水利学报, 2017, 48(06): 710-719.

[25]葛苗苗, 李宁, 盛岱超,等. 水力耦合作用下非饱和压实黄土细观变形机制试验研究[J]. 岩土力学, 2021, 42(09): 2437-2448.

[26]李倩. 填方区非饱和黄土体水分迁移及变形规律研究[D]. 西安科技大学, 2017.

[27]杨玉生, 李靖, 邢义川,等. 压实黄土增湿变形性质及其影响因素试验研究[J]. 岩土工程学报, 2017, 39(04): 626-635.

[28]刘鹏飞. 含水量和干密度对压实黄土工程特性的影响研究[D]. 兰州大学, 2015.

[29]Lambe T W. The engineering behavior of compacted clay[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1958, 184(2): 46-55.

[30]张沛然, 黄雪峰, 扈胜霞,等. 非饱和填土侧限压缩变形特性试验研究及应用初探[J]. 岩土力学, 2018, 39(02): 437-444.

[31]Wei Y, Fan W, Yu B, et al. Characterization and evolution of three-dimensional microstructure of Malan loess[J]. Catena, 2020, 192: 104585.

[32]Yu B, Fan W, Fan J H, et al. X-ray micro-computed tomography (μ-CT) for 3D characterization of particle kinematics representing water-induced loess micro-fabric collapse[J]. Engineering Geology, 2020, 279: 105895.

[33]Yu B, Fan W, Dijkstra T A, et al. Heterogeneous evolution of pore structure during loess collapse: Insights from X-ray micro-computed tomography[J]. Catena, 2021, 201: 105206.

[34]蔡国庆, 刘倩倩, 杨雨,等. 水-力耦合作用下干燥和湿润砂质黄土渗透特性试验研究[J]. 土木工程学报, 2022, 55(03): 74-82.

[35]Zhang X, Lu Y, Li X, et al. Microscopic structure changes of Malan loess after humidification in South Jingyang Plateau, China[J]. Environmental Geology, 2019, 78(10): 287-287.

[36]Shao X, Zhang H, Tan Y. Collapse behavior and microstructural alteration of remolded loess under graded wetting tests[J]. Engineering Geology, 2018, 233: 11-22.

[37]陈平, 张有天. 裂隙岩体渗流与应力耦合分析[J]. 岩石力学与工程学报, 1994, 13(4): 299-308.

[38]平扬, 白世伟, 徐燕萍. 深基坑工程渗流—应力耦合分析数值模拟研究[J]. 岩土力学, 2001, 1: 37-41.

[39]孙德安, 向黎. 非饱和土水力和力学性状耦合的弹塑性模型研究进展[J]. 水利水电科技进展, 2008, (01): 82-85.

[40]陈益峰, 胡冉, 周嵩,等. 高堆石坝水力耦合模型及工程应用[J]. 岩土工程学报, 2011, 33 (09): 1340-1347.

[41]胡梦玲, 姚海林, 刘杰,等. 干密度对路基性能的影响研究[J]. 岩土力学, 2012(S2): 91-97.

[42]Gallipoli D. A hysteretic soil-water retention model accounting for cyclic variations of suction and void ratio[J]. Geotechnique, 2012, 62(7): 605-616.

[43]Assouline S. Modeling the Relationship between Soil Bulk Density and the Water Retention Curve[J]. Vadose Zone Journal, 2006, 5(2): 554-563.

[44]Sun D A, Sheng D C, Cui H B, et al. A density-dependent elastoplastic hydro-mechanical model for unsaturated compacted soils[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2007, 31(11): 1257-1279.

[45]Tarantino A. A water retention model for deformable soils[J]. Geotechnique, 2009, 59(9): 751-762.

[46]Zhou A N, Sheng D, Carter J P. Modelling the effect of initial density on soil-water characteristiccurves[J]. Geotechnique, 2015, 62(8): 669-680.

[47]李幻, 李云飞, 樊铁兵,等. 任意干湿路径下非饱和土的水力耦合本构模型[J]. 工程地质学报, 2021, 31(01): 43-50.

[48]刘武, 过申磊, 陆倩,等. 基于TOUGHREACT的岩石水力损伤耦合数值模型研究[J]. 岩土工程学报, 2021, 43 (07): 1306-1314+1380.

[49]Showkat R, Mohammadi H, Babu G S. Effect of rainfall infiltration on the stability of compacted embankments[J]. International Journal of Geomechanics, 2022, 22(7): 04022104.

[50]Yao Z, Chen Z, Fang X, et al. Elastoplastic damage seepage-consolidation coupled model of unsaturated undisturbed loess and its application[J]. Acta Geotechnica, 2020. 15(6): 1637-1653.

[51]邵帅, 邵生俊, 高梦洁,等. 水-力耦合非饱和黄土的弹塑性模型适用性研究[J]. 岩土力学, 2023, 44(S1): 436-442.

[52]孙文静, 孙德安. 非饱和土力学试验技术[M]. 中国水利水电出版社: 201801. 181.

[53]Buckingham E. Studies on the movement of soil moisture[J]. US Dept. Agic. Bur. Soils Bull., 1907, 38.

[54]Richards L A. Capillary conduction of liquids through porous mediums[J]. Physics, 1931, 1(5): 318-333.

[55]王文焰, 张建丰. 在一个水平土柱上同时测定非饱和土壤水各运动参数的试验研究[J]. 水利学报, 1990, (7): 26-30.

[56]戴经梁, 伍石生, 盛安连. 压实黄土路基积水入渗规律研究[J]. 西安公路交通大学学报, 1998(S1): 15-18.

[57]朱伟, 陈学东 ,钟小春. 降雨入渗规律的实测与分析[J]. 岩土力学, 2006, 27(11): 1873-1879.

[58]晏长根, 邹群, 许昱,等. 砂夹层黄土路基水分迁移规律[J]. 交通运输工程学报, 2016, 16(06): 21-29.

[59]曾健, 费良军, 裴青宝. 土壤容重对红壤水分垂直入渗特性的影响[J]. 排灌机械工程学报, 2017, 35(12): 1081-1087.

[60]贾书岭. 非饱和重塑土渗透特性试验研究[D]. 长安大学, 2017.

[61]覃小华, 刘东升, 宋强辉,等. 降雨条件下一维土柱垂直入渗模型试验研究及其渗透系数求解[J]. 岩石力学与工程学报, 2017, 36(02): 475-484.

[62]胡海军, 李博鹏, 田堪良,等. 积水和降雨下非饱和重塑黄土水分入渗模拟[J]. 同济大学学报(自然科学版), 2019, 47(11): 1565-1573.

[63]赵文赫, 杨秀娟, 王宝仲,等. 降雨作用下黄土填方区交界面水分迁移及沉降规律研究[J]. 岩土工程学报, 2022, 44(09): 1710-1720+10-11.

[64]张林, 张登飞, 陈存礼,等. 竖向压力作用下重塑黄土土柱压缩湿陷及渗水试验研究[J]. 水利学, 2019, 50(10): 1214-1221.

[65]潘振辉, 李萍, 肖涛. 黄土水分入渗规律的数值模拟研究[J]. 西北大学学报(自然科学版), 2021, 51(03): 470-484.

[66]赵文赫, 杨秀娟, 王宝仲,等. 降雨作用下黄土填方区交界面水分迁移及沉降规律研究[J]. 岩土工程学报, 2022, 44(09): 1710-1720+10-11.

[67]刘敏, 冯学茂, 赵炼恒,等. 一种可预测非饱和土壤中入渗和汇水的水力耦合模型(英文)[J]. Journal of Central South University, 2023, 30(10):3 435-3449.

[68]JTG 3430-2020. 公路土工试验规程[S]. 北京: 人民交通出版社, 2020.

[69]D.G 弗雷德隆德等. 非饱和土力学[M]. 北京: 中国建筑工业出版社, 1997.

[70]胡梦玲, 张小龙, 许文昊,等. 干密度和增减湿对压实黄土水力特性的影响[J]. 长江科学院院报, 2024, 41(08): 128-134.

[71]叶祖洋, 姜清辉, 刘艳章,等. 岩体离散裂隙网络的非饱和渗流数值分析[J]. 岩土力学, 2017, 38(11): 3332-3340.

[72]任青文, 张林飞, 沈雷,等. 考虑非饱和渗流过程的岩体变形规律分析[J]. 岩石力学与工程学报, 2018, 37(S2): 4100-4107.

[73]邵建立, 周斐, 薛彦超,等. 岩体孔隙-裂隙双渗流数值模拟研究[J]. 煤矿安全, 2019, 50(09): 1-4.

[74]COMSOL Inc. COMSOL Multiphysics User’s Guide, Version 5.3[M]. Burlington, Massachusetts, USA: COMSOL Inc., 2014.

[75]李广信. 高等土力学[M]. 清华大学出版社, 2016: 50-65.

[76]Gerke H H , Van Genuchten M T .A dual-porosity model for simulating the preferential movement of water and solutes in structured porous media[J].Water Resources Research, 2010, 29(2): 305-319.

[77]邹立芝. 关于贮水率与贮水系数概念的再探讨[J]. 水文地质工程地质, 1989(3): 50-52.

[78]VAN Genuchten M T .A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J].Soil Science Society of America Journal, 1980, 44(5):892-898.

[79]Brooks R H ,Corey A T .Properties of Porous Media Affecting Fluid Flow[J].Journal of the Irrigation & Drainage Division Proceedings of the American Society of Civil Engineers, 1964, 92(2):61-88.

[80]GB 50282-2016, 城市给水工程规划规范[S].

[81]Wilcox D C. Turbulence modeling for CFD[M]. La Canada, CA: DCW industries, 1998.

[82]Lashkarbolok M. Fluid-structure interaction in thin laminated cylindrical pipes during water hammer[J]. Composite Structures, 2018, 204: 912-919.

[83]吴吉春;薛禹群. 地下水动力学[M]. 中国水利水电出版社: 200901. 210.

[84]GB/T50123-2019, 土工试验方法标准[S].

[85]张菁. 基于声学理论的供水管道泄漏数值模拟与试验研究[D]. 西华大学, 2023.

[86]张建伟. Origin9.0科技绘图与数据分析超级学习手册[M]. 人民邮电出版社, 2014.

中图分类号:

 TU444    

开放日期:

 2026-06-16    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式