- 无标题文档
查看论文信息

论文中文题名:

 彬长矿区深埋综放面顺槽围岩变形规律与支护技术    

姓名:

 林海    

学号:

 19204209073    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 085213    

学科名称:

 工学 - 工程 - 建筑与土木工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 建筑与土木工程    

研究方向:

 矿山岩体力学与支护    

第一导师姓名:

 任建喜    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-17    

论文答辩日期:

 2022-05-31    

论文外文题名:

 Deformation law and support technology of surrounding rock along the trough in deep buried fully mechanized top coal caving face in Binchang mining area    

论文中文关键词:

 深埋 ; 综放面顺槽 ; 围岩变形 ; 室内试验 ; FLAC模拟 ; 支护设计    

论文外文关键词:

 Deeply buried ; Fully mechanized caving face trough ; Surrounding rock deformation ; Laboratory test ; Numerical simulation ; Support design    

论文中文摘要:

开展深埋综放面顺槽围岩变形规律及其支护技术研究对煤炭安全回采具有重要工程价值,本文以陕西彬长矿区某煤矿4105综放面顺槽支护设计为依托,采用理论分析、宏细观室内试验、数值模拟及现场试验相结合的方法开展研究工作。主要内容与结论是:

(1)分析了深埋综放面顺槽围岩卸荷变形特征,影响彬长矿区深埋综放面顺槽围岩变形规律的主要因素包括:埋深、顺槽围岩性质、顺槽断面形状及面积、动压扰动、矿井水、地热及煤层自燃。

(2)完成了完整煤岩和裂隙煤岩不同围压下三轴压缩试验,结果表明:裂隙会降低煤岩的强度,随着围压的升高,完整煤岩由延性变为脆性破坏,裂隙煤岩峰后塑性变形能力增强;裂隙煤岩在较高围压下环向变形能力明显增强。含裂隙的煤岩,含裂隙的煤岩的抗压强度比完整煤岩低,残余变形能力比完整煤岩强。完成了完整煤岩和裂隙煤岩在不同围压和不同卸荷速率下的三轴卸围压试验,对比结果表明:卸围压试验比三轴压缩试验更具有突然性。随着围压的升高,煤岩破坏模式由纵向劈裂破坏转变为顶部冲击破坏,脆性增加;同一围压下,随着卸荷速率的增加,煤岩破坏后应力跌落幅度增大,延性减弱,脆性增强。裂隙的存在导致裂隙煤岩的环向变形增加。

(3)完成了完整煤岩和裂隙煤岩三轴压缩和卸围压破坏后的核磁共振扫描试验,得到了煤岩破坏后的T2谱弛豫曲线和孔隙分布,结果表明:煤岩破坏后T2谱峰总面积和围压成正相关,破坏后完整煤岩第三峰和裂隙煤岩第四峰所占比例随着围压升高而上升。试验后煤岩孔隙孔径主要为小孔和大孔。裂隙煤岩试验后大孔径孔隙所含比完整煤岩略高。随着围压的增加,煤岩破坏时峰值应力也在增加,中孔和大孔径孔隙所占比例也在增加。裂隙煤岩内部孔隙发育程度比完整煤岩大。

(4)分析了深埋综放面顺槽支护设计原则,基于“强支强卸”的理念,运用自然平衡拱理论进行了4105综放面运输顺槽支护参数设计,采用FLAC软件进行了支护参数合理性评价,结果表明:支护参数合理。研究了4105综放面运输顺槽钻孔卸压方案及特殊段补强支护方案;针对断层特殊构造区段,给出了“补强支护”方案。

(5)对4105综放面支护设计方案及卸压效果进行了工程检验。现场监测结果表明:4105综放面初次来压步距为71.25m,周期来压步距为28.25m,卸压后周期来压步距减小。同时顺槽围岩松动圈、围岩变形量、锚杆(索)受力均处于安全范围。工程检验结果表明,支护参数及卸压方案安全有效。

论文外文摘要:

It is of great engineering value to carry out the research on the deformation law of surrounding rock and its supporting technology in the deep-buried fully mechanized top coal caving face. Based on the supporting design of the 4105 fully mechanized top coal caving face in a coal mine in Binchang mining area of Shaanxi Province, this paper adopts the methods of theoretical analysis, macro and micro laboratory test, numerical simulation and field test to carry out the research work. The main contents and conclusions are :

(1)The unloading deformation characteristics of the surrounding rock along the deep-buried fully mechanized caving face are analyzed. The main factors affecting the deformation law of the surrounding rock along the deep-buried fully mechanized caving face in Binchang mining area include buried depth, surrounding rock properties, cross section shape and area, dynamic pressure disturbance, mine water, geothermal and coal spontaneous combustion.

(2)The triaxial compression tests of intact coal rock and fractured coal rock under different confining pressures were completed. The results show that the strength of coal rock decreases with the increase of confining pressure. The intact coal rock changes from ductility to brittle failure, and the plastic deformation ability of fractured coal rock increases after peak. The circumferential deformation ability of fractured coal rock is obviously enhanced under high confining pressure. The compressive strength, elastic modulus and residual deformation capacity of coal with cracks are lower than those of intact coal. The triaxial unloading confining pressure tests of intact coal and fractured coal under different confining pressures and unloading rates were completed. The results show that the unloading confining pressure test is more abrupt than the triaxial compression test. With the increase of confining pressure, the failure mode of coal rock changes from longitudinal splitting failure to top impact failure, and the brittleness increases. Under the same confining pressure, with the increase of unloading rate, the stress drop amplitude of coal rock after failure increases, the ductility decreases, and the brittleness increases. The existence of cracks increases the circumferential deformation of fractured coal rock.

(3)The NMR meso-scanning tests of intact coal and fractured coal under triaxial compression and unloading confining pressure were completed, and the relaxation curves and pore distribution of T2 spectrum after coal failure were obtained. The results show that the total area of T2 spectrum peak after coal failure is positively correlated with confining pressure, and the proportion of the third peak of intact coal and the fourth peak of fractured coal increases with the increase of confining pressure. Before and after the fracture coal-rock test, the content of large aperture pores is slightly higher than that of intact coal-rock. With the increase of confining pressure, the peak stress of coal rock is also increasing when it is damaged, and the proportion of medium and large aperture pores is also increasing. The development degree of internal pores in fractured coal is larger than that in intact coal.

(4)Based on the concept of “ strong support and strong unloading ”, the natural balance arch theory was used to design the support parameters of 4105 fully mechanized caving face, and the FLAC numerical simulation software was used to evaluate the rationality of the support parameters. The results show that the support parameters are reasonable. The pressure relief scheme of 4105 fully mechanized caving face and the reinforcement support scheme of special section are studied. In view of the special fault structure section, the reinforcement support scheme is given.

(5)The supporting design scheme and pressure relief effect of 4105 fully mechanized caving face are tested. The field monitoring results show that the initial weighting step of 4105 fully mechanized caving face is 71.25 m, and the periodic weighting step is 28.25 m. the surrounding rock loose circle, surrounding rock deformation and bolt (cable) stress are in the safe range. The engineering test results show that the support parameters and pressure relief scheme are safe and effective.

参考文献:

[1] 刘增辉,孙梦迪. 深埋软岩巷道层位优化布置研究[J]. 煤炭技术, 2021,40(11):1-6.

[2] 谢学斌,高山,过江, 等. 地震动荷载下深埋巷道压力拱高度响应规律的数值模拟研究[J]. 黄金科学技术, 2021,29(02):226-235.

[3] 袁海平,吕文涛,陈承浩, 等. 基于应变硬(软)化模型的深埋巷道开挖对邻近巷道的影响[J]. 合肥工业大学学报(自然科学版), 2021,44(02):210-216.

[4] 李可,张进红,张开智, 等 高地应力区域动载扰动诱发深埋巷道冲击致灾机理研究[J]. 煤矿安全, 2017,48(07):52-56.

[5] 曹平,李好月,钟涌芳, 等. 深埋高侧压巷道底臌机理分析及控制[J]. 中南大学学报(自然科学版), 2017,48(02):457-464.

[6] 蒋威. 深埋大倾角工作面巷道围岩稳定性分析[J]. 煤炭工程, 2016,48(06):95-98.

[7] ZHANG Dong, BAI Jianbiao, YAN Shuai, et al. Investigation on the Failure Mechanism of Weak Floors in Deep and High-Stress Roadway and the Corresponding Control Technology[J]. Minerals,2021,11(12).

[8] TANG Bin, YEBOATH Mathias, CHENG Hua, et al. Numerical study and field performance of rockbolt support schemes in TBM-excavated coal mine roadways: A case study[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research,2021,115.

[9] LI Peng, LAI Xingping, GONG Peilin, et al. Mechanisms and Applications of Pressure Relief by Roof Cutting of a Deep-Buried Roadway near Goafs[J]. Energies,2020,13(21).

[10] ERYU Wang, Guangbo Chen, Xiaojie Yang, et al. Study on the Failure Mechanism for Coal Roadway Stability in Jointed Rock Mass Due to the Excavation Unloading Effect[J]. Energies,2020,13(10).

[11] 靳西传,周宗红,龙刚, 等. 深部顺槽开挖加卸荷诱发围岩失稳的模拟研究[J]. 中国矿业, 2019,28(06):104-110.

[12] 谢和平,鞠杨,黎立云, 等. 岩体变形破坏过程的能量机制[J]. 岩石力学与工程学报, 2008,27(09):1729-1740.

[13] 黄润秋,黄达. 高地应力条件下卸荷速率对锦屏大理岩力学特性影响规律试验研究[J]. 岩石力学与工程学报, 2010,29(01):21-33.

[14] 程远平,刘洪永,郭品坤, 等. 深部含瓦斯煤体渗透率演化及卸荷增透理论模型[J]. 煤炭学报, 2014,39(08):1650-1658.

[15] 王春,程露萍,唐礼忠, 等. 高静荷载下卸载速率对岩石动力学特性及破坏模式的影响[J]. 岩石力学与工程学报, 2019,38(02):217-225.

[16] 侯公羽,梁金平,胡涛, 等. 不同围压下卸荷速率对围岩变形与破坏的影响[J]. 岩石力学与工程学报, 2019,38(03):433-444.

[17] 李克钢,杨宝威,秦庆词. 基于核磁共振技术的白云岩卸荷损伤与渗透特性试验研究[J]. 岩石力学与工程学报, 2019,38(S2):3493-3502.

[18] 孙雪,李二兵,韩阳, 等. 卸荷路径下花岗岩变形与破坏特征试验研究[J]. 地下空间与工程学报, 2020,16(03):665-679.

[19] 赵洪宝,刘一洪,刘瑞, 等. 卸荷扰动下窄煤柱巷道底板破坏力学行为分析[J]. 华中科技大学学报(自然科学版),2022,50(01):105-112.

[20] 蔡美峰. 岩石力学与工程[M]. 北京: 科学出版社, 2002.

[21] 王黔,范明建,姚蔚利, 等. 呼吉尔特矿区深井强动压顺槽支护技术研究与应用[J]. 煤炭技术, 2020,39(01):19-22.

[22] 于远祥,王京滨,王根元, 等. 深埋巷道拉裂-剪切式片帮力学机理及支护技术[J]. 煤炭科学技术, 2021,49(12):49-57.

[23] 王涛,漆寒冬,张德飞, 等. 考虑应变软化的超千米深井巷道锚杆支护机理研究[J]. 煤炭技术, 2020,39(07):18-20.

[24] 潘锐,程桦,王雷, 等. 深部巷道锚注支护效果及组合式高强锚注控制技术研究[J]. 采矿与安全工程学报, 2020,37(03):461-472.

[25] 鹿伟,江贝,王琦, 等. 深部软岩巷道方钢约束混凝土拱架基本构件力学特性及参数影响机制研究[J]. 采矿与安全工程学报 ,2020,37(03):473-480.

[26] 韦庆亮,李彦斌,谷攀, 等. 深部高应力软岩巷道置孔释压材料置孔率合理性研究[J]. 矿业研究与开发, 2020,40(04):62-66.

[27] CAO Juncai, ZHANG Nong, WANG Shanyong, et al. Physical model test study on support of super pre-stressed anchor in the mining engineering[J]. Engineering Failure Analysis,2020.

[28] YANG Xiaojie, LIU Chenkang, SUN Honglei, et al. Research on the Deformation Mechanism and Directional Blasting Roof Cutting Control Measures of a Deep Buried High-Stress Roadway[J]. Shock and Vibration,2020,2020.

[29] XU Qingyun, LI Yongming, LU Jie, et al. The use of surrounding rock loosening circle theory combined with elastic-plastic mechanics calculation method and depth learning in roadway support.[J]. PloS one,2020,15(7).

[30] 付玉凯,鞠文君,吴拥政, 等. 深部回采巷道锚杆(索)防冲吸能机理与实践[J].煤炭学报,2020,45(S2):609-617.

[31] 龙景奎,杨风才,何敏, 等. 深部回采巷道超前压力区锚索梁协同锚固试验研究[J]. 采矿与安全工程学报, 2021,38(01):103-109.

[32] 李鹏飞. 深部矿井回采顺槽围岩变形破坏机理与控制技术研究[J]. 石化技术, 2020,27(09):203-207.

[33] 张勇,孙晓明,郑有雷,等. 深部回采顺槽防冲释能耦合支护技术及应用[J]. 岩石力学与工程学报, 2019,38(09):1860-1869.

[34] 王文才,王政,冯志斌,等. 深部软岩回采顺槽锚网索耦合支护技术研究[J]. 煤炭技术, 2019,38(02):8-11.

[35] 郭泽洋,王斌,宁勇. 可伸长让压锚杆的研究现状及展望[J]. 采矿技术, 2019,19(03):38-42.

[36] 王炯,郭志飚,马成荣,等. 深部回采顺槽锚网索耦合支护技术研究[J]. 煤炭科学技术, 2015,43(05):17-21.

[37] 王政. 软岩条件下顺槽锚网索耦合支护参数优化研究[D]. 包头:内蒙古科技大学,2019.

[38] 董博,王志远,张海军. 深部高应力回采顺槽支护技术研究[J]. 现代工业经济和信息化, 2020,10(08):25-26.

[39] 马骁,邢涛. 深部软岩顺槽长短锚索联合支护技术研究[J]. 能源科技,2020,18(S1):79-82.

[40] 王志强. 倾斜面煤巷锚网喷与锚索支护技术研究[J]. 煤炭技术,2020,39(05):34-36.

[41] 常雁,高贯林,王阁. 大倾角煤层回采顺槽锚网索支护技术应用[J]. 煤炭技术,2019,38(02):19-22.

[42] 陈磊. 四台矿复合顶板锚网索支护技术应用[J]. 江西煤炭科技, 2020,32(02):57-60+64.

[43] LI W, LIU Jinxiao, CHEN Lianjun, et al. Roadway Support in Deep “Three-Soft” Coal Seam: A Case Study in Yili Mining Area, China[J]. Shock and Vibration,2021,2021.

[44] WANG HaiTao, CHENG Tong, WANG YaJun, et al. Research of mechanical characteristics and roadway support in two-soft and one-hard coal seam[J]. IOP Conference Series: Earth and Environmental Science,2018,186(5).

[45] MENG Qingbin, HAN Lijun, CHEN Yanlong, et al. Influence of dynamic pressure on deep underground soft rock roadway support and its application[J]. International Journal of Mining Science and Technology,2016,26(5).

[46] SANG Fengyu,, HUANG jing. Study on Support Optimization of mining roadway in deep steeply dipping coal seam[J]. IOP Conference Series: Earth and Environmental Science,2020,526(1).

[47] 任建喜,张杨洋,张琨. 深埋厚煤层综放工作面顺槽支护技术研究[J]. 煤炭技术, 2014,33(10):104-107.

[48] 王其胜. 深部软岩巷道矿压特征与支护技术研究[D]. 长沙:中南大学, 2008.

[49] 李向阳,韩立军,宗义江. 深埋软岩巷道破坏机理与控制技术研究[J]. 矿冶工程, 2012,32(06):21-25.

[50] 孔德玺,徐素国. 矿井深埋巷道底鼓治理新技术可行性试验研究[J]. 煤炭技术, 2014,33(11):109-111.

[51] 顾士坦,邹通,韩传磊, 等. 大直径钻孔卸压锚固层局部充填强化技术探究[J]. 矿业研究与开发, 2022,42(03):174-178.

[52] 袁红辉,季相栋,杜泽文,等. 深部巷道钻孔卸压围岩力学性能研究[J]. 煤炭技术,2022,41(03):39-43.

[53] 高涛,张小宇,王速勇. 煤巷掘进工作面分区段钻孔卸压防冲技术应用[J]. 江西煤炭科技,2022,20(01):152-154.

[54] 李小彦,孙德全,谢风华, 等. 大直径钻孔卸压对围岩强度与锚固力影响研究[J]. 煤矿安全, 2022,53(01):79-84.

[55] 庞立宁,付书俊,苏波. 煤层大直径钻孔和顶板预裂孔防冲机理研究及应用[J]. 煤矿安全, 2021,52(09):183-189.

[56] ZUO Jing, HU Shanchao, ZHOU Xuedong, et al. Effective evaluation of pressure relief drilling layout for reducing rock bursts and sensitive factor analysis[J]. Arabian Journal of Geosciences,2021,14(23).

[57] YAO Jinpeng, YIN Yanchun, TONG Bin, et al. Segmented enlarged‐diameter borehole destressing mechanism and its influence on anchorage support system[J]. Energy Science & Engineering,2020,8(8).

[58] ZHANG Shuguang, CHEN Long, Jia Hong Yu. The Surrounding Rock of Deep Borehole Pressure Relief and Let the Pressure Bolt Coupling Analysis[J]. Applied Mechanics and Materials,2013,446-447(446-447).

[59] WEN Yan Liang, ZHANG Guo Jian, ZHANG Zhi Qiang. Numerical Experiments of Drilling Pressure Relief Preventing Roadway Rock Burst[J]. Applied Mechanics and Materials,2013,2545(353-356).

[60] 王猛,王襄禹,肖同强. 深部巷道钻孔卸压机理及关键参数确定方法与应用[J]. 煤炭学报, 2017,42(05):1138-1145.

[61] 李国宏,杨发武,吴元良. 利用卸压钻孔防治冲击地压的实践[J]. 煤矿安全, 2004,35(11):8-10.

[62] 陈峰,潘一山,李忠华, 等. 利用钻屑法对卸压钻孔措施效果的分析评价[J]. 岩土工程学报, 2013,35(S2):266-270.

[63] 张永将,孟贤正,季飞.顺层长钻孔超高压水力割缝增透技术研究与应用[J]. 矿业安全与环保, 2018,45(05):1-5+11.

[64] 杜春志,刘卫群. 煤层钻孔卸压效果影响因素分析[J]. 河北理工大学学报(自然科学版), 2009,31(04):6-10.

[65] 郑贺,王猛,徐少辉. 深部巷道围岩钻孔卸压与围岩控制技术研究[J]. 矿业安全与环保, 2014,41(05):51-55.

[66] 梁银权,王进尚,冯星宇. 高瓦斯低透气性煤层深钻孔高压水力割缝增透技术[J]. 煤炭工程, 2019,51(06):99-102.

[67] 李树彬. 三软煤层回采巷道支护中钻孔卸压技术[J]. 煤炭科学技术, 2012,40(06):29-32.

[68] 姚艳斌,刘大锰. 基于核磁共振弛豫谱的煤储层岩石物理与流体表征[J]. 煤炭科学技术, 2016,44(06):14-22.

[69] 陈煜朋,姜文忠,秦玉金, 等. 煤的孔隙分布特征研究理论与方法综述[J]. 煤矿安全, 2021,52(03):190-196.

[70] 孟武峰,董社,秦伟超. 采空区下煤巷锚网索支护技术研究及应用[J]. 煤炭工程,2022,54(5):54-58.

[71] 史明将,弓培林,姚春波,等. 深部煤巷偏应力场分布特征及围岩控制研究[J]. 煤炭工程,2022,54(4):122-127.

[72] 单仁亮,孔祥松,蔚振廷,等. 煤巷强帮支护理论与应用[J]. 岩石力学与工程学报,2013(7):1304-1314.

[73] 张兴文. 煤矿锚杆支护理论和技术[J]. 地质与勘探,2003,39(Z2):23-27.

[74] 杨文帅. 高应力动压巷道锚杆索组合支护技术研究与应用[J]. 能源与节能,2022(3):168-170.

[75] 郭钇君,洛锋,李盟,等. 方形巷道围岩拉剪破裂网络发育及演化规律[J]. 采矿与岩层控制工程学报,2022,4(2):50-58.

[76] 殷帅峰,左安家,马丽洁,等. 中厚煤层窄煤柱沿空掘巷围岩稳定性研究[J]. 煤炭工程,2022,54(5):90-96.

[77] 侯公羽,梁金平,李小瑞. 常规条件下巷道支护设计的原理与方法研究[J]. 岩石力学与工程学报, 2022,41(04):691-711.

[78] 高永格,靳志新,孟晓强, 等.钻孔孔径及布置方式对煤巷卸压效果的影响[J].煤炭技术,2017,36(01):138-140.

[79] 刘华博,赵毅鑫,姜耀东, 等. 综放工作面煤层大直径钻孔卸压防灾技术[J]. 煤矿安全, 2018,49(05):79-82.

[80] 杨渴. 深埋巷道围岩动力破坏特征及控制技术研究[D]. 西安:西安科技大学,2018.

中图分类号:

 TD353    

开放日期:

 2023-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式