- 无标题文档
查看论文信息

论文中文题名:

 基于牙冠特征的牙齿根部模拟仿真    

姓名:

 李宇绒    

学号:

 18208088021    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 083500    

学科名称:

 工学 - 软件工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 计算机科学与技术学院    

专业:

 软件工程    

研究方向:

 媒体计算及可视化    

第一导师姓名:

 马天    

第一导师单位:

 西安科技大学    

论文提交日期:

 2021-06-21    

论文答辩日期:

 2021-06-04    

论文外文题名:

 Research on simulation of tooth root based on crown characteristics    

论文中文关键词:

 牙冠边缘 ; 平滑处理 ; 拉普拉斯算子 ; B 样条插值 ; 牙齿仿真    

论文外文关键词:

 Crown edge ; smoothing ; Laplacian ; B-spline interpolation ; tooth simulation    

论文中文摘要:

三维数字化牙齿模型被广泛的应用于口腔正畸领域,特别是三维数字化成像在口腔正畸诊断、治疗和疗效预测中发挥的作用。牙齿的好坏会影响一个人的气质和形象,如今不同年龄阶段的人都会存在牙齿方面的疾病或者问题。因此,利用计算机技术辅助诊断牙齿疾病,发展计算机辅助模拟矫正系统,对牙齿矫正具有重要意义。由于目前的牙齿三维模型都是口腔扫描得来的,只有牙冠和牙龈表面部分,缺少牙根部分数据,不利于牙齿模拟仿真。为了帮助医生进行虚拟牙齿矫正,本文通过研究牙冠模型边缘特点,将牙冠模型进行平滑处理,去除边缘噪点,可以更好的进行牙齿三维仿真。并针对如何基于三维牙冠数据模型建立完整的牙齿模型进行了研究,主要研究内容如下:

(1)针对三维牙冠模型边缘存在噪点的问题,本文提出了一种基于噪点分类的牙冠边缘平滑处理方法。该方法首先依据牙冠边缘特点,经拟合分析提出将噪点分为边界线中的噪点和拟合曲线中的噪点两种。然后,利用高斯曲率进行噪点识别。最后,使用改进的拉普拉斯算子和最小二乘拟合方法分别对这两种噪点进行去除,输出去噪后的三维牙冠模型。实验结果证明,该方法针对于牙冠边缘的平滑处理效果从噪点去除率、面片填充率、面片删除率三个方面,和传统的拉普拉斯相比,噪点去除率提升了86.0%,面片填充概率增大约为两倍,删除面片的概率基本一致。和最小二乘拟合方法相比,噪点去除率提升了75.9%,面片填充率减少22.61%,删除面片也减少22.14%。

(2)由于口腔扫描的牙颌三维模型缺少牙根数据,而完整的三维牙齿模型关系到医生排牙、种植、正畸和生物力学分析的结果。因此,本文提出了基于牙冠特征的牙齿根部模拟仿真方法。该方法首先将牙齿根部分为单牙根和多牙根分别进行仿真,将单牙根和多牙根牙齿进行分段,并对每个分段设计不同仿真方案。然后,针对多牙根仿真,根据多牙根的支根空间分布情况和空间曲线交汇特点,提出了一种基于几何特征的多牙根的支根选择方法和一种改进快速交点选择的曲线融合方法。根据牙根的数目进行支根选择,完成牙根模拟仿真。最后,利用机器学习的方法学习真实牙冠模型表面的特征,进行根部的风格迁移,使得牙齿仿真效果更加接近于真实牙齿。该方法从冠根比和粗糙度两个方面进行了单牙根和多牙根仿真处理前后的对比,对风格迁移前后效果进行了对比。实验结果表明,本文构造的牙根模型已经非常接近真实牙齿。

论文外文摘要:

Three-dimensional digital tooth models are widely used in the field of orthodontics, especially the role of three-dimensional digital imaging in the diagnosis, treatment and curative effect prediction of orthodontics. The quality of teeth will affect a person's temperament and image. Nowadays, people of different ages will have dental diseases or problems. Therefore, the use of computer technology to assist in the diagnosis of dental diseases and the development of computer-assisted simulation correction systems are of great significance to orthodontics. As the current 3D models of teeth are obtained from oral scans, only the crown and gingival surface are part of the tooth, and the root part of the data is lacking, which is not conducive to tooth simulation. In order to help doctors perform virtual orthodontics, this thesis studies the edge characteristics of the crown model, smoothes the crown model, removes edge noise, and can better perform 3D simulation of teeth. And research on how to build a complete tooth model based on the three-dimensional crown data model, the main research contents are as follows:

(1) Aiming at the problem of noise points on the edges of 3D dental crown models, this thesis proposed a method for smoothing the edges of teeth based on noise points classification. Firstly, according to the characteristics of the edge of the tooth crown, this method proposed to divide the noise into two types: the noise in the boundary line and the noise in the fitting curve. Then, the Gaussian curvature was used for noise recognition. Finally, the improved Laplacian operator and the least square fitting method were used to remove these two noise points, and the denoised three-dimensional crown model is output. The experimental results show that the method is aimed at the smoothing effect of the crown edge in terms of noise removal rate, patch filling rate, and patch deletion rate. Compared with the traditional Laplacian, the noise removal rate is increased by 86.0%. , The probability of patch filling increases approximately twice, and the probability of deleting patches is basically the same. Compared with the least squares fitting method, the noise removal rate is increased by 75.9%, the patch filling rate is reduced by 22.61%, and the deleted patch is also reduced by 22.14%.

(2) Because the three-dimensional dental model of the oral scan lacks root data, the complete three-dimensional tooth model is related to the results of the doctor's tooth arrangement, implantation, orthodontics and biomechanical analysis. Therefore, this thesis proposed a simulation method of tooth root based on the characteristics of the crown. Firstly, this method simulated the two types of tooth roots as single root and multiple roots respectively, divided the single root and multiple root teeth into segments, and designed different simulation schemes for each segment. Then, for multi-root simulation, based on the spatial distribution of multi-root roots and the intersection characteristics of spatial curves, a method for multi-root root selection based on geometric features and a curve fusion method for improving fast intersection selection are proposed. The roots are selected according to the number of roots, and the root simulation is completed. Finally, the machine learning method was used to learn the characteristics of the surface of the real crown model and transfer the style of the root, so that the simulation effect of the tooth is closer to the real tooth. This method compared single root and multiple roots before and after simulation treatment in terms of crown-to-root ratio and roughness, and compares the effects before and after the style transfer. Experimental results show that the tooth root model constructed in this thesis is very close to real teeth.

参考文献:

[1] Gao Zhifan, Chung Jonathan, Abdelrazek Mohamed, Leung Stephanie, Hau William Kongto, Xian Zhanchao, Zhang Heye, Li Shuo. Privileged Modality Distillation for Vessel Border Detection in Intracoronary Imaging[J]. IEEE transactions on medical imaging, 2020, 39(5) :1524- 1534.

[2] Barone Sandro, Neri Paolo, Paoli Alessandro, Razionale Armando Viviano. Design and manufacturing of patient-specific orthodontic appliances by computer-aided engineering techniques[J]. Journal of engineering in medicine, 2018, 232(1) :54- 66.

[3] Falko Schmidt, Fatih Kilic, Neltje Emma Piro, Martin Eberhard Geiger, Bernd Georg Lapatki. Novel Method for Superposing 3D Digital Models for Monitoring Orthodontic Tooth Movement[J]. Annals of Biomedical Engineering, 2018, 46(8) :1160- 1172.

[4] Zheng S X, Li J, Sun Q F. A novel 3D morphing approach for tooth occlusal Surface reonstruction[J]. Comput Aided Design, 2011, 43 (3) :293- 302.

[5] Guth J F, Wallbach J, Stimmelmayr M, et al. Computer aided evaluation of preparations for CAD/CAM-fabricated all ceramic crowns[J]. Clin Oral Invest, 2013, 17(5) :1389- 1395.

[6] 姚森. 口腔正畸诊断与矫治计划[M]. 北京:世界图书出版公司, 2003 :1- 372.

[7] 范然, 钮叶新, 金小刚等. 计算机辅助牙齿隐形正畸系统[J]. 计算机辅助设计与图形学学报, 2013, 25(1) :81- 92.

[8] Yuan Tianran, Liao Wenhe, Cheng Xiaosheng, et al. Tooth Shape modeling scheme for 3D dental model[J]. Journal of Computer-Aided Design & Computer Graphics, 2010,22 (4):703-711(in Chinese)(袁天然, 廖文和, 程筱胜等. 三维牙颌模型的牙齿形状建模方法[J]. 计算机辅助设计与图形学学报, 2010, 22(4) :703- 711).

[9] Sorkine O, Cohen-Or D. Least squares meshes[C] // Proceedings of Internetional Conference on Shape Modeling and Applications.Los Alamitos: IEEE Computer Society Press, 2004 :191- 199.

[10] Zhifan Gao, Xin Wang, Shanhui Sun, Dan Wu, Junjie Bai, Youbing Yin, Xin Liu, Heye Zhang, Victor Hugo C. de Albuquerque. Learning physical properties in complex visual scenes: An intelligent machine for perceiving blood flow dynamics from static CT angiography imaging[J]. Neural Networks, 2020. (DOI:https://doi.org/10.1016/j.neunet.2019.11.017).

[11] Joo Young Kim, Sun K. Yoo, W. S. Jang, Byung Eun Park, Wonse Park, and Kee Deog Kim.Tooth Segmentation Using Gaussian Mixture Model and Genetic Algorithm[J]. Journal of Medical Imaging and Health Informatics. 2017, 7(6) :1271– 1276.

[12] 刘冠阳, 张玉茹, 王党校. 触觉交互系统中牙齿网格模型被切削过程的图形仿真[J]. 系统仿真学报, 2005, 17(5) :1129– 1131+ 1136.

[13] 王仁洁. 三维网格模型去噪算法的研究[D]. 哈尔滨:尔滨工业大学, 2017.

[14] 卢显利. 三维模型获取及网格简化算法研究[D]. 成都:西南交通大学, 2012.

[15] 缪静姣. 基于三角网格的离散曲率计算方法研究[D]. 扬州:扬州大学, 2016.

[16] 马献德, 谢小峰. 三角网格曲面上离散曲率改进算法[J]. 计算机工程与应用, 2014, 50(13) :196- 200.

[17] Remesikova, Mariana;Sagat, Marian;Novysedlak, Peter. Discrete Lagrangian algorithm for finding geodesics on triangular meshes[J]. Applied Mathematical Modelling, 2019, 76 :396- 427.

[18] Lei Xiao, Guoxiang Yang, Kunyang Zhao, Gang Mei. Efficient Parallel Algorithms for 3D Laplacian Smoothing on the GPU[J]. Applied Sciences, 2019. (DOI:10.3390/app9245437).

[19] N. Chernov, H.Ma. Least squares fitting of quadratic curves and surfaces[J]. Computer Vision, 2011, 13:285- 302.

[20] 王卉, 黄玉清. 基于拉普拉斯算子的三角网格模型的平滑与压缩算法[J]. 计算机系统应用, 2015, 24(12):191- 195.

[21] 代文征, 杨勇. 基于改进高斯—拉普拉斯算子的噪声图像边缘检测方法[J]. 计算机应用研究, 2019, 36 (8) :2544– 2547+ 2555.

[22] 唐泽宇, 高保禄, 窦明亮. 基于加权最小二乘法曲率计算的点云精简算法[J]. 计算机工程与设计, 2019, 40(6) :1606– 1610+ 1659.

[23] Élodie Puybareau, Edwin Carlinet, Alessandro Benfenati, Hugues Talbot. Efficient position estimation of 3D fluorescent spherical beads in confocal microscopy via Poisson denoising [J]. Journal of mathematical imaging and vision. 2021, 63 (1) :56- 72.

[24] 顾天奇, 张雷, 冀世军, 谭晓丹, 胡明. 封闭离散点的曲线拟合方法[J]. 吉林大学学报(工学版) , 2015, 45( 2 ):437- 441.

[25] 吴斌, 汤文成, 严斌. 埋伏牙正畸半自动逆向建模及有限元分析[J]. 计算机辅助工程, 2010, 19(1) :65- 69+ 91.

[26] 孙杨. 计算机辅助隐形牙齿正畸功能实现[D]. 杭州:浙江大学, 2010.

[27] 马俐丽, 徐宝华. 一种确立三维数字化牙颌模型咬合关系的新方法[J]. 临床口腔医学杂志, 2011, 27(7) :420- 422.

[28] 曹巍, 袁赞, 吴志红. 基于点云数据的牙齿表面重建算法[J]. 四川大学学报(自然科学版), 2015, 52(3) :517- 522.

[29] Othtake Y, Belyaev A G, Seidel H P. A multi-scale approach to 3D scattered data interpolation with compactly supported basis funcions[C] // Proceedings of Shape Modeling International. Seoul South Korea:IEEE, 2003:153- 161.

[30] Yan H T, Yang Y J, Jian H Z. A region growing algorithm using parallel computing for surface reconstruction from unorganized points[J]. Adv Eng Softw, 2013, 59:29- 37.

[31] Lin H W, Tai C L, Wang G J. A mesh reconstruction algorithm driven by an intrinsic property of a point cloud[J]. Comput Aided Design, 2004, 36(1) :1- 9.

[32] 朱煜. 散乱点云数据简化及三角网格重构的研究[D]. 西安:西北大学, 2012.

[33] 王楠. 基于三维散乱点云的网格重构技术研究[D]. 大连:大连大学, 2013.

[34] 韩科, 吕培军, 张豪等.牙齿三维数据模型的建立[J]. 中国图象图形学报, 1996, 1(5, 6) :433- 436.

[35] 吕培军等. 计算机辅助可摘局部义齿设计的专家系统[J]. 中华口腔医学杂志, 1993, 28(1) :9- 11.

[36] Barone S, Paoli A, Razionale A V. Creation of 3D multi-body orthodontic models by using independent imaging sensor [J]. Sensors, 2013, 13(2) :2033- 2050.

[37] 王黎, 崔进, 韩清凯, 闻邦椿等. 基于CT图像的牙齿3维实体模型建立[J]. 中国图象图形学报, 2005, 10(10) :1289- 1292.

[38] 曾庆国. 基于CT图像的牙齿三维可视化建模[D]. 广州:华南理工大学, 2013.

[39] 于涛, 刘文涛, 朱淑亮, 刘伟明. 基于牙齿CT图像的三维实体重建及有限元分析[J]. 武汉理工大学学报, 2015, 37(3) :117- 123.

[40] 吴婷, 张礼兵. 水平集活动轮廓模型的3维牙齿重建[J]. 中国图象图形学报, 2016, 21(8) :1078- 1087.

[41] 赵一姣, 刘怡, 孙春玉等. 基于曲率连续性算法的牙冠和根的三维数据融合方法[J]. 北京大学学报(医学版), 2017, 49(4) :719- 723.

[42] Zhang D X, Gan Y Z, Xiong J, et al. Three-dimensional tooth model reconstruction based on fusion of dental computed tomography images and laser-scanned images[J]. Journal of biomedical engineering, 2017. 34(1) :7- 14.

[43] 王明忠. 基于锥形束CT的牙齿建模与加工技术研究[D]. 福州:福州大学, 2017.

[44] 王翠珍. 口腔CT图像预处理及三维重建研究[D]. 山东:山东大学, 2018.

[45] 韩敬阳. 牙科CT图像三维可视化技术研究[D]. 洛阳:河南科技大学, 2019.

[46] 时文敬. 基于CT和光学扫描数据的牙齿模型重建系统的研究[D]. 天津:天津工业大学, 2019.

[47] 李占利, 高天宇, 李洪安, 武璠菲. 基于牙冠与牙根特征的牙齿建模方法[J]. 图学学报, 2017, 38(4) :483- 488.

[48] 王耀钟, 官群立, 邓婧等. 山东地区部分青少年第一前磨牙的外形特征[J]. 国际口腔医学杂志, 2012, 39(5) :597- 600.

[49] 吴熹. 逆向工程中任意三角网格模型的区域划分方法研究[D]. 南京:南京航空航天大学, 2003.

[50] 高天宇. 基于牙冠数据的牙齿建模方法研究[D]. 西安:西安科技大学, 2016.

[51] Ahn, Sung Joon; Rauh, Wolfgang; Recknagel, Matthias. Least squares orthogonal distance fitting of implicit curves and surfaces[J]. Lecture Notes in Computer Science, 2001, 2191(12) :398- 405.

[52] Yilmaz, N; Sahiner, A. New Smoothing Approximations to Piecewise Smooth Functions and Applications[J]. Numerical Functional Analysis and Optimization, 2019, 40(5) :513- 534.

[53] Nung-Hsiang Lin, Ting-Lan Lin, Xiaoyue Wang, Wan-Ting Kao, Hua-Wei Tseng, Shih-Lun Chen, Yih-Shyh Chiou, Szu-Yin Lin, Jocelyn Flores Villaverde, and Yu-Fang Kuo.Teeth Detection Algorithm and Teeth Condition Classification Based on Convolutional Neural Networks for Dental Panoramic Radiographs[J]. Med Imaging Health Inf, 2018, 8(3) :507– 515.

[54] 田素云, 王小明, 赵雪青. 基于拉普拉斯算子和图像修补的图像去噪算法[J]. 计算机应用, 2012, 32(10) :2793- 2797.

[55] 何三纲, 于海洋. 口腔解剖生理学第八版8版[M]. 北京:人民卫生出版社, 2020:46- 47.

中图分类号:

 TP391.41    

开放日期:

 2021-06-21    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式