- 无标题文档
查看论文信息

论文中文题名:

 液态CO2-水蒸气循环冲击煤体冻融特征及三维孔隙劣化机制    

姓名:

 王平    

学号:

 20220226112    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 矿井瓦斯灾害防治    

第一导师姓名:

 秦雷    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-19    

论文答辩日期:

 2023-06-03    

论文外文题名:

 Freezing thawing characteristics and three-dimensional pore deterioration mechanism of coal impacted by liquid CO2 and steam cycles    

论文中文关键词:

 冷热循环冲击 ; 快速冻融 ; 温度应变 ; 三维重构 ; 孔隙演化 ; 劣化机制    

论文外文关键词:

 Cold and hot cycle shock ; Fast freezing and thawing ; Temperature strain ; 3D reconstruction ; Pore evolution ; damage mechanism    

论文中文摘要:

液态CO2因低温、高体积膨胀比、致裂效率高、无污染等优势,成为低渗煤层卸压增透热点技术。但是,液态CO2低温效应导致煤层水受冷凝结为冰,压缩瓦斯运移通道空间。基于此,本文利用高温水蒸气促进液态CO2冻结煤体融化,提出液态CO2-高温水蒸气冷热循环冲击煤层增透技术。自主搭建液态CO2-高温水蒸气冷热循环冲击实验平台,研究冷热循环冲击煤体冻融特征及三维孔隙劣化机制,结合COMSOL软件进行工程实践验证。

借助温度传感器和应变片,定量分析液态CO2-高温水蒸气冷热循环冲击褐煤、烟煤和无烟煤快速冻融过程温度演化规律及应变特征。结果表明,高温水蒸气可显著促进液态CO2冻结煤体融化,煤体冻融速率提高20.58倍;应变在温度突变时发生骤变,随温度传导趋于稳定,应变不断减小;随着冷热循环冲击次数增加,单次循环所用时间先增加再减少。进一步分析得,当温差一定时,煤体应变与泊松比正相关,随变质程度提高,煤体应变减小;温度冲击对煤体结构破坏随变质程度增加而减弱,冷热循环冲击6次后,褐煤破碎,烟煤和无烟煤出现宏观裂隙;残余应变随冷热循环次数增加先增加再减小,表明冷热循环冲击对煤体结构造成的损伤具有不可逆性,形变特征具有叠加性。

通过CT扫描测试技术,分析冷热循环冲击煤体三维孔隙结构参数及劣化机理。结果表明,液态CO2-高温水蒸气冷热循环冲击煤体三维孔隙不断延伸,形成贯通裂隙;三维孔隙数量、表面积、体积及切片面孔率最大值均与冷热循环冲击次数指数相关;冷热循环冲击前期,渗流孔体积比例增加,三维孔隙劣化表现为裂隙贯通,冷热循环冲击后期,吸附孔体积比例增加,三维孔隙劣化表现为内部产生大量新生孔隙。进一步分析得,冷热循环冲击煤体渗流孔半径分形维数增加,孔隙分形特征增强,表面粗糙度提高;孔隙半径分形模型中lg(r)随冷热循环冲击次数增加而增加,表明孔径劣化扩张明显。基于冷热循环冲击煤体孔隙力学损伤特征,建立液态CO2-高温水蒸气冷热循环冲击煤体三维孔隙损伤模型,讨论冷热循环冲击煤体三维孔隙结构损伤机理。

基于实验室研究成果,利用COMSOL软件实现低温液态CO2-高温水蒸气冷热循环冲击快速冻融增透煤层技术工程实践验证。数值模拟结果表明,低温液态CO2-高温水蒸气冷热循环冲击煤体实验室温度传导规律和数值模拟温度传导规律一致;液态CO2-高温水蒸气冷热冲击煤层温度有效作用半径为0.7198m;根据温度作用有效半径,模拟矿井煤层瓦斯抽采,得到煤层温度越高,瓦斯抽采效率越高。

论文外文摘要:

Liquid CO2 has become a hot technology for pressure relief and permeability enhancement in low permeability coal seams due to its advantages such as low temperature, high volume expansion ratio, high cracking efficiency, and no pollution. However, the low-temperature effect of liquid CO2 causes coalbed water to condense into ice, compressing the space of gas migration channels. Based on this, this paper uses high-temperature steam to promote the melting of liquid CO2 frozen coal, and proposes a technology of liquid CO2 high-temperature steam cold and hot cycle impact coal seam penetration enhancement. Build a liquid CO2 high-temperature steam cold and hot cycle impact experimental platform independently to study the freeze-thaw characteristics and three-dimensional pore degradation mechanism of cold and hot cycle impact coal, and conduct engineering practice verification using COMSOL software.

Using temperature sensors and strain gauges, this paper quantitatively analyzes the temperature evolution and strain characteristics during the rapid freezing and thawing process of lignite, bituminous coal, and anthracite impacted by the cold and hot cycle of liquid CO2 high-temperature water vapor. The results show that high-temperature water vapor can significantly promote the melting of liquid CO2 frozen coal, and the freezing and thawing rate of coal increases by 20.58 times; The strain changes abruptly when the temperature suddenly changes, and decreases continuously as the temperature conduction tends to stabilize; As the number of cold and hot cycle shocks increases, the time required for a single cycle first increases and then decreases. Further analysis shows that when the temperature difference is constant, the coal strain is positively correlated with Poisson's ratio, and as the degree of metamorphism increases, the coal strain decreases; The damage of temperature shock to coal structure decreases with the increase of metamorphic degree. After 6 times of cold and hot cyclic shock, lignite is broken, and macro cracks appear in bituminous coal and anthracite; The residual strain first increases and then decreases with the increase of the number of cold and hot cycles, indicating that the damage caused by the impact of cold and hot cycles on the coal structure is irreversible, and the deformation characteristics are superimposed.

Through the CT scanning testing technology, the three-dimensional pore structure parameters and degradation mechanism of coal subjected to thermal cycling impact were analyzed. The results show that the three-dimensional pores of the coal body continuously extend under the impact of the cold and hot cycle of liquid CO2 high-temperature steam, forming through cracks; The number of three-dimensional pores, surface area, volume, and maximum slice porosity are all related to the cold and hot cycle impact index; In the early stage of cold and thermal cycling impact, the volume ratio of seepage holes increases, and the three-dimensional pore degradation is manifested as fracture penetration. In the late stage of cold and thermal cycling impact, the volume ratio of adsorption holes increases, and the three-dimensional pore degradation is manifested as a large number of new pores generated inside. Further analysis shows that the pore radius fractal dimension increases, the pore fractal characteristics enhance, and the surface roughness increases during the cold and hot cycle impact coal seepage; In the fractal model of pore radius, lg (r) increases with the increase in the number of cold and thermal cycles, indicating that pore size deterioration and expansion are significant. Based on the characteristics of pore mechanical damage in coal impacted by cold and hot cycles, a three-dimensional pore damage model for coal impacted by liquid CO2 high-temperature steam cold and hot cycles was established, and the mechanism of three-dimensional pore structure damage in coal impacted by cold and hot cycles was discussed.

Based on the laboratory research results, the engineering practice verification of low-temperature liquid CO2 - high-temperature water vapor cold and thermal cycling impact rapid freeze-thaw enhanced permeability coal seam technology is realized using COMSOL software. The numerical simulation results show that the laboratory temperature conduction law of low-temperature liquid CO2 - high-temperature water vapor cold and thermal cycle impingement coal is consistent with the numerical simulation temperature conduction law; The effective action radius of liquid CO2 high-temperature water vapor cold and hot impingement on coal seam temperature is 0.7198m; Based on the effective radius of temperature action, simulation of coal seam gas extraction in a mine shows that the higher the coal seam temperature, the higher the gas extraction efficiency.

参考文献:

[1] 谢和平, 任世华, 谢亚辰, 等. 碳中和目标下煤炭行业发展机遇[J]. 煤炭学报, 2021, 46(07): 2197-2211.

[2] 林柏泉, 李庆钊, 周延. 煤矿采空区瓦斯与煤自燃复合热动力灾害多场演化研究进展[J]. 煤炭学报, 2021, 46(06): 1715-1726.

[3] Zhu CJ, Liu SY, Chen X, et al. High-pressure water and gas alternating sequestration technology for low permeability coal seams with high adsorption capacity[J]. Journal of Natural Gas Science and Engineering, 2021, 96: 104262.

[4] Ahamed MAA, Perera MSA, Elsworth D, et al. Effective application of proppants during the hydraulic fracturing of coal seam gas reservoirs: Implications from laboratory testings of propped and unpropped coal fractures[J]. Fuel, 2021, 304: 121394.

[5] 周福宝, 刘宏, 刘应科,等. 煤层群开采工作面瓦斯精准定量溯源原理与技术[J]. 煤炭科学技术, 2021, 49(05): 11-18.

[6] 袁亮, 刘业娇, 田志超, 等. 地面垂直钻孔预抽特厚煤层瓦斯数值试验与应用[J]. 岩土力学, 2019, 40(01): 370-378.

[7] 袁亮, 王伟, 王汉鹏, 等. 巷道掘进揭煤诱导煤与瓦斯突出模拟试验系统[J]. 中国矿业大学学报, 2020, 49(02): 205-214.

[8] 李树刚, 赵波, 赵鹏翔, 等. 类煤岩材料瓦斯吸附特性影响因素试验[J]. 中国矿业大学学报, 2019, 48(05): 943-954.

[9] 彭苏萍. 我国煤矿安全高效开采地质保障系统研究现状及展望[J]. 煤炭学报, 2020, 45(07): 2331-2345.

[10] Cao LT, Yao YB, Cui C, et al. Characteristics of in-situ stress and its controls on coalbed methane development in the southeastern Qinshui Basin, North China[J]. Energy Geoscience, 2020, 1(1): 69-80.

[11] Qin L, Li SG, Zhai C, et al. Changes in the pore structure of lignite after repeated cycles of liquid nitrogen freezing as determined by nitrogen adsorption and mercury intrusion[J]. Fuel, 2020, 267: 117214.

[12] 康红普, 冯彦军. 煤矿井下水力压裂技术及在围岩控制中的应用[J]. 煤炭科学技术, 2017, 45(01): 1-9.

[13] 林柏泉, 王瑞, 乔时和. 高压气液两相射流多级脉动破煤岩特性及致裂机理[J]. 煤炭学报, 2018, 43(01): 124-130.

[14] 刘生龙, 朱传杰, 林柏泉, 等.水力割缝空间分布模式对煤层卸压增透的作用规律[J]. 采矿与安全工程学报, 2020, 37(05): 983-990.

[15] 刘谦, 黄建滨, 倪冠华, 等. 不同煤级煤液相侵入效应低场核磁共振实验研究[J]. 煤炭学报, 2020, 45(3): 1108-1115.

[16] Saikia BD, Mahadevan J, Rao DN. Exploring mechanisms for wettability alteration in low-salinity waterfloods in carbonate rocks[J]. Journal of Petroleum Science and Engineering, 2018, 164: 595-602.

[17] 姜永东, 宋超, 王苏健, 等. 超声波激励下煤层气解吸扩散特性的研究[J]. 煤炭科学技术, 2020, 48(03): 174-179.

[18] 鲍先凯, 刘源, 郭军宇, 等. 煤岩体在水中高压放电下致裂效果的定量评价[J]. 岩石力学与工程学报, 2020, 39(04): 715-725.

[19] 郭德勇, 赵杰超, 朱同功, 等. 双孔聚能爆破煤层裂隙扩展贯通机理[J]. 工程科学学报, 2020, 42(12): 1613-1623.

[20] Gao J, Wang HF, Qin W, et al. Experimental Study on High-Pressure Air Blasting Fracture for Coal and Rock Mass[J]. Advances in civil engineering, 2019, 2019: 9613563.

[21] 张东明, 白鑫, 尹光志, 等. 低渗煤层液态CO2相变射孔破岩及裂隙扩展力学机理[J]. 煤炭学报, 2018, 43(11): 3154-3168.

[22] Li CX, Yao HY, Xin CP, et al. Changes in pore structure and permeability of middle-high rank coal subjected to liquid nitrogen freeze-thaw[J]. Energy Exploration & Exploitation, 2019, (35): 226-236.

[23] 秦雷. 液氮循环致裂煤体孔隙结构演化特征及增透机制研究[D].中国矿业大学,2018.

[24] Du LL, Zhao HJ, Tang HY, et al. Analysis of the synergistic effects of air pollutant emission reduction and carbon emissions at coal-fired power plants in China[J]. Environmental Progress & Sustainable Energy, 2021, 40(5): e13630.

[25] 王雅丽, 李治刚, 郭红光. 超临界CO2压裂煤岩储层增产煤层气应用发展前景[J]. 中国矿业, 2021, 30(10): 160-167.

[26] 王彦哲, 周胜, 王宇, 等. 中国核电和其他电力技术环境影响综合评价[J]. 清华大学学报(自然科学版), 2021, 61(04): 377-384.

[27] 谢和平, 熊伦, 谢凌志, 等. 中国CO2地质封存及增强地热开采一体化的初步探讨[J]. 岩石力学与工程学报, 2014, 33(S1): 3077-3086.

[28] 白鑫, 张东明, 王艳, 等. 液态CO2相变射流压力变化及其煤岩致裂规律[J]. 中国矿业大学学报, 2020, 49(4): 661-670.

[29] Allen JC, Bauer CL. Method of increasing the permeability of a subterranean hydrocarbon bearing formation[P]. America: US3638727 A, 1968-09-27.

[30] Mcdaniel BW, Grundmamnn SR, Kendrick WD, et al. Field applications of cryogenic nitrogen as a hydraulic-fracturing fluid[J]. Journal of Petroleum Technology, 1998, 50(3):39-39.

[31] Du ML, Gao F, Cai CZ, et al. Experimental Study on the Damage and Cracking Characteristics of Bedded Coal Subjected to Liquid Nitrogen Cooling[J]. Rock Mechanics and Rock Engineering, 2021, 54(11):5731-5744.

[32] Sun XH, Wang ZY, Sun BJ, et al. Research on hydrate formation rules in the formations for liquid CO2 fracturing[J]. Journal of natural gas science and engineering, 2016, 33: 1390-1401.

[33] 王海柱, 李根生, 郑永,等. 超临界CO2压裂技术现状与展望[J]. 石油学报, 2020, 41(1): 116-126.

[34] Burrows LC, Haeri F, Cvetic P, et al. A Literature Review of CO2, Natural Gas, and Water-Based Fluids for Enhanced Oil Recovery in Unconventional Reservoirs[J]. Energy & Fuels, 2020, 34(5): 5331-5380.

[35] 张军涛, 孙晓, 吴金桥. CO2干法压裂新技术在页岩气藏的应用实践[J]. 非常规油气, 2018, 5(5): 87-91.

[36] 赵丹, 刘晓青. 液态CO2煤层增透技术及应用研究[J]. 煤炭科学技术, 2021, 49(10): 107-114.

[37] 张嘉凡, 高壮, 程树范, 等. 煤岩HJC模型参数确定及液态CO2爆破特性研究[J]. 岩石力学与工程学报, 2021, 40(S1): 2633-2642.

[38] 马东东, 陈庆, 周辉, 等. 砂砾岩液态CO2破裂机制试验研究[J]. 岩土力学, 2020, 41(12): 3996-4004.

[39] 文虎, 李珍宝, 王旭, 等. 液态CO2溶浸作用下煤体孔隙结构损伤特性研究[J]. 西安科技大学学报, 2017, 37(02): 149-153.

[40] Huang ZW, Zhang SK, Yang RY, et al. A review of liquid nitrogen fracturing technology[J]. Fuel, 2020, 266: 117040.

[41] Xu JZ, Zhai C, Ranjith PG, et al. Investigation of the mechanical damage of low rank coals under the impacts of cyclical liquid CO2 for coalbed methane recovery[J]. Energy, 2022, 239: 122145.

[42] Jia JZ, Wang DM, Li B, et al. Study of the influencing factors of the liquid CO2 phase change fracturing effect in coal seams[J]. Plos One, 2021, 16(7): e0254996.

[43] 李树刚, 白杨, 林海飞, 等. CH4、CO2 和 N2 多组分气体在煤分子中吸附热力学特性的分子模拟[J]. 煤炭学报, 2018, 43(9): 2476-2483.

[44]. Wang Q, Huang L. Molecular insight into competitive adsorption of methane and carbon dioxide in montmorillonite: Effect of clay structure and water content[J]. Fuel, 2019, 239: 32-43.

[45] 李和万, 左建平, 王来贵, 等. 液氮冷加载对围压煤体结构损伤的影响规律研究[J]. 采矿与安全工程学报, 2020, 37(04): 804-811.

[46] 卢硕, 张磊, 薛俊华, 等. 液氮溶浸作用对不同煤阶煤样渗流特性的影响[J]. 煤炭学报, 2020, 45(05): 1835-1844.

[47] Epshtein SA, Shkuratnik VL, Kossovich EL, et al. Effects of cyclic freezing and thawing of coals at their behavior at low-and high-temperature oxidation[J]. Fuel, 2020, 267: 117191.

[48] 翟成, 徐吉钊. 液氮循环致裂技术强化煤层气抽采的研究与应用展望[J]. 工矿自动化, 2020, 46(10): 1-8.

[49] 张春会, 耿哲, 徐刚,等. 液氮冻融循环作用下饱水煤样力学特性试验研究[J]. 煤炭科学技术, 2020, 48(10): 218-224.

[50] Yang Y, Liu SM, Chang X, et al. Fracture stiffness evaluation with waterless cryogenic treatment and its implication in fluid flowability of treated coals[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 142: 104727.

[51] Zhai C, Wu SL, Liu SM, et al. Experimental study on coal pore structure deterioration under freeze-thaw cycles[J]. Environmental earth sciences, 2017, 76(15): 507.

[52] Lin HF, Long H, Yan M, et al. Methane adsorption thermodynamics of coal sample subjected to liquid nitrogen freezing-thawing process[J]. Journal of natural gas science & engineering, 2021, 90: 103896.

[53] Vishal V. In-situ disposal of CO2: Liquid and supercritical CO2 permeability in coal at multiple down-hole stress conditions[J]. Journal of CO2 Utilization, 2017, 17: 235-242.

[54] Ma DD, Cheng CK, Ding CD, et al. Comparisons of fracturing mechanism of tight sandstone using liquid CO2 and water[J]. Jouranl of Natural Gas Science and Engineering, 2021, 94: 104108.

[55] Sampath KHSM, Perera MSA, Elsworth D, et al. Effect of coal maturity on CO2-based hydraulic fracturing process in coal seam gas reservoirs[J]. Fuel, 2019, 236: 179-189.

[56] 樊世星. 液态CO2压裂煤岩增透及裂缝形成机制研究[J]. 岩石力学与工程学报, 2021, 40(8): 1728.

[57] 樊世星, 文虎, 程小蛟, 等. 井下高压液态CO2压裂增透煤岩成套装备研制与应用[J]. 煤炭学报, 2020, 45(S2): 801-812.

[58] 任云峰. 深部采区低渗透性煤层CO2致裂增透试验研究[J]. 煤矿开采, 2018, 23(5): 111-113.

[59] 周西华, 门金龙, 宋东平, 等. 煤层液态CO2爆破增透促抽瓦斯技术研究[J]. 中国安全科学学报, 2015, 25(02): 60-65.

[60] 张东明, 白鑫, 尹光志, 等. 低渗煤层液态CO2相变定向射孔致裂增透技术及应用[J]. 煤炭学报, 2018, 48(07): 1938-1950.

[61] 马小敏. 液态CO2相变致裂影响有效抽采半径试验研究[J]. 煤炭科学技术, 2019, 47(02): 88-93.

[62] 汪开旺. 基于CO2致裂影响的钻孔有效抽采半径研究[J]. 煤炭技术, 2020, 39(04): 114-116.

[63] 贾进章, 李斌, 王东明. 煤层液态CO2相变致裂半径范围的影响因素研究[J]. 中国安全科学学报, 2021, 31(4): 57-63.

[64] 苏伟伟. 石门揭煤区液态CO2致裂增透加速消突技术[J]. 煤矿安全, 2019, 50(02): 144-147+151.

[65] 王兆丰, 周大超, 李豪军, 等. 液态CO2相变致裂二次增透技术[J]. 河南理工大学学报(自然科学版), 2016, 35(05): 597-600.

[66] 王海东. 突出煤层掘进工作面CO2可控相变致裂防突技术[J]. 煤炭科学技术, 2016, 44(3): 70-74.

[67] 邹永洺. 煤与瓦斯突出煤层CO2相变致裂增透技术试验研究[J]. 煤矿安全, 2018, 49(03): 5-8.

[68] 郤保平, 吴阳春, 赵阳. 热冲击作用下花岗岩宏观力学参量与热冲击速度相关规律试验研究[J]. 岩石力学与工程学报, 2019, 38(11): 2194-2207.

[69] 郤保平, 吴阳春, 王帅, 等. 热冲击作用下花岗岩力学特性及其随冷却温度演变规律试验研究[J]. 岩土力学, 2020, 41(S1): 83-94.

[70] 唐世斌, 罗江, 唐春安. 低温诱发岩石破裂的理论与数值模拟研究[J]. 岩石力学与工程学报, 2018, 37(07): 1596-1607.

[71] 朱振南, 田红, 董楠楠, 等. 高温花岗岩遇水冷却后物理力学特性试验研究[J]. 岩土力学, 2018, 39(S2): 169-176.

[72] 张慧梅, 雷利娜, 杨更社. 温度与荷载作用下岩石损伤模型[J]. 岩石力学与工程学报, 2014, 33(S2): 3391-3396.

[73] Memon KR, Ali M, Awan FUR, et al. Influence of cryogenic liquid nitrogen cooling and thermal shocks on petro-physical and morphological characteristics of Eagle Ford shale[J]. Journal of Natural Gas Science and Engineering, 2021, 96: 104313.

[74] Jiang CB, Wang YF, Duan MK, et al Experimental study on the evolution of pore-fracture structures and mechanism of permeability enhancement in coal under cyclic thermal shock[J]. Fuel, 2021, 304: 121455.

[75] 魏建平, 孙刘涛, 王登科, 等. 温度冲击作用下煤的渗透率变化规律与增透机制[J]. 煤炭学报, 2017, 42(08): 1919-1925.

[76] Zhang HT, Wang DK, Yu C, et al. Microcrack evolution and permeability enhancement due to thermal shocks in coal[J]. Plos One, 2020, 15(05): e0232182.

[77] Cong YZ, Zhai C, Sun Y, et al. Visualized study on the mechanism of temperature effect on coal during liquid nitrogen cold shock[J]. Applied Thermal Engineering, 2021,194: 116988.

[78] 王登科, 孙刘涛, 魏建平. 温度冲击下煤的微观结构变化与断裂机制[J]. 岩土力学, 2019, 40(02): 529-538+548.

[79] 王登科, 张平, 刘淑敏, 等. 温度冲击下煤层内部孔缝结构演化特征实验研究[J]. 煤炭学报, 2018, 43(12): 3395-3403.

[80] 王登科, 张平, 蒲海, 等. 温度冲击下煤体裂隙结构演化的显微CT实验研究[J]. 岩石力学与工程学报, 2018, 37(10): 2243-2252.

[81] Wang DK, Zhang P, Wei JP, et al. The seepage properties and permeability enhancement mechanism in coal under temperature shocks during unloading confining pressures[J]. Journal of Natural Gas Science and Engineering, 2020, 77: 103242.

[82] 孙刘涛, 王登科, 刘淑敏. 温度冲击下煤样渗透率的围压敏感性试验研究[J]. 科学技术与工程, 2017, 17(29): 168-173.

[83] Zhang L, Lu S, Zhang C, et al. Effect of cyclic hot/cold shock treatment on the permeability characteristics of bituminous coal under different temperature gradients[J]. Journal of Natural Gas Science and Engineering, 2020, 75: 103121.

[84] 李和万, 王来贵, 牛富民, 等. 冷热交替作用致煤样裂隙结构损伤试验[J]. 安全与环境学报, 2016, 16(01): 40-43.

[85] Sheng YJ, Hou X, Yuan JQ, et al. Thermal deterioration of high-temperature granite after coolingshock: multiple-identification and damage mechanism[J]. Bulletin of Engineering Geology and The Environment, 2020, 79(10): 5385-5398.

[86] 刘淑敏, 王登科, 尹光志, 等. 温度冲击下煤的双胡克体-统计损伤本构模型研究[J]. 采矿与安全工程学报, 2019, 36(05): 1025-1033.

[87] Xu JZ, Zhai C, Ranjith PG, et al. Investigation of non-isothermal effect of cyclic carbon dioxide on the petrography of coals for coal mine methane recovery[J]. Fuel, 2021, 290: 120085.

[88] 熊益华, 周尚文, 焦鹏飞, 等. 基于低温CO2吸附的煤和页岩微孔结构分形分析[J]. 天然气地球科学, 2020, 31(07): 1028-1040.

[89] Liu SM, Yang K, Sun HT, et al. Adsorption and deformation characteristics of coal under liquid nitrogen cold soaking[J]. Fuel, 2022, 316:123026.

[90] 刘一楠, 刘勇, 辛福东, 等.压汞实验对低阶煤表征的适用性分析及校正方法[J]. 煤田地质与勘探, 2020, 48(04): 118-125.

[91] 李腾, 王海超. 不同脱气温度下低阶煤孔隙结构特征——以新疆吐哈盆地西山窑组褐煤为例[J]. 煤炭学报, 2021, 46(S1): 414-422.

[92] 翟成, 孙勇, 范宜仁, 等. 低场核磁共振技术在煤孔隙结构精准表征中的应用与展望[J].煤炭学报, 2022, 47(02): 828-848.

[93] 楚亚培, 张东明, 王满, 等. 基于核磁共振技术和压汞法的液氮冻融煤体孔隙结构损伤演化规律试验研究[J]. 岩石力学与工程学报, 2022, 41(09): 1820-1831.

[94] 李阳, 张玉贵, 张浪, 等. 基于压汞、低温N2吸附和CO2吸附的构造煤孔隙结构表征[J].煤炭学报, 2019, 44(04): 1188-1196.

[95] Qin L, Wang P, Lin HF, et al. Quantitative characterization of the pore volume fractal dimensions for three kinds of liquid nitrogen frozen coal and its enlightenment to coalbed methane exploitation[J]. Energy & Fuels, 2022,263: 125741.

[96] 秦雷, 王平, 翟成 等. 基于氮气吸附法和压汞法低温液氮冻结煤体分形特征研究[J].采矿与安全工程学报, 2023, 40(01):184-193+203.

[97] 秦雷, 王平, 林海飞, 等. 基于氮气吸附和压汞法液氮冻结煤体孔隙结构精细化表征研究[J]. 西安科技大学学报, 2020, 40(06): 945-952+959.

[98] 李恒乐, 秦勇, 周晓亭, 等. 循环高压电脉冲作用下煤体微裂隙发育特征及其煤岩学控制[J]. 煤田地质与勘探, 2021, 49(04): 105-113.

[99] Liu G. Influence of Pore Structure Characteristics of Primary Coal on Coalbed Methane Adsorption[J]. Advances in Materials Science and Engineering, 2022, 2022: 3087252.

[100] 鲍园,安超.基于FE-SEM的微生物降解煤岩孔隙演化特征[J].煤炭学报, 2022, 47(11):4105-4112.

[101] Sun LL, Zheng C, Wang G, et al. Research on the evolution of pore and fracture structures during spontaneous combustion of coal based on CT 3D reconstruction[J]. Energy, 2022, 260: 125033.

[102] 周动, 冯增朝, 王辰, 等. 煤吸附甲烷结构变形的多尺度特征[J].煤炭学报, 2019, 44(07):2159-2166.

[103] Liu DM, Zhao Z, Cai YD, et al. Review on Applications of X-ray Computed Tomography for Coal Characterization: Recent Progress and Perspectives[J]. Energy & Fuels 2022, 36(13): 6659-6674.

[104]林海飞, 罗荣卫, 李博涛, 等. 液氮冻融含水煤体孔隙损伤规律实验研究[J]. 西安科技大学学报, 2023, 43(01): 55-64.

[105]黄赞, 孙斌, 杨青, 等. 鸡西盆地煤储层吸附孔特征及分形表征研究[J]. 煤炭科学技术, 2021, 49(05): 218-226.

[106]马玉林, 王常瑞, 马凯. 红外加热储层煤岩热损伤特征扫描电镜及增透试验研究[J].煤炭科学技术, 2022, 50(07):177-183.

[107]莫云龙, 李宏艳, 邓志刚, 等. 不同冲击倾向性煤能量响应初始损伤效应分析[J]. 采矿与安全工程学报, 2020, 37(06): 1205-1212.

[108]刘怀谦, 王磊, 谢广祥, 等.煤体孔隙结构综合表征及全孔径分形特征[J].采矿与安全工程学报, 2022, 39(03):458-469+479.

[109]吴星辉. 不同受热温度花岗岩遇水冷却后物理力学特性与损伤机理研究[D].北京科技大学,2022.

[110]薛栋. 液态二氧化碳在煤层内流动过程数值模拟及增透作用研究[D].中国矿业大学,2021.

[111]任永婕. 液氮冷浸下煤体微观结构变化与热传导规律研究[D].河南理工大学,2019.

中图分类号:

 TD712    

开放日期:

 2024-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式