- 无标题文档
查看论文信息

论文中文题名:

 红石湾煤矿开采覆岩应力场-渗流场演变规律研究    

姓名:

 钟思弘    

学号:

 20209226097    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085217    

学科名称:

 工学 - 工程 - 地质工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 地质与环境学院    

专业:

 地质工程    

研究方向:

 地质灾害预测    

第一导师姓名:

 孙学阳    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-20    

论文答辩日期:

 2023-06-07    

论文外文题名:

 Study on evolution law of overburden stress field and seepage field in Hongshiwan Coal Mine    

论文中文关键词:

 红石湾煤矿 ; 相似材料模拟 ; 数值模拟 ; 应力场 ; 渗流场    

论文外文关键词:

 Hongshiwan coal Mine ; Similar material simulation ; Numerical simulation ; Stress field ; Seepage field    

论文中文摘要:

随着煤层不断开采,打破覆岩初始应力场平衡,应力分布发生变化,引起上覆岩层发生变形破坏,形成采动裂隙。伴随着采动裂隙不断向上发育,破坏隔水层,加剧了地下水渗漏。因此,如何实现煤炭资源安全、高效开采的同时最大限度的减小对地下水流场的影响,达到煤炭资源安全开采与减轻地下水渗流对采煤的影响是当前的主要目标。

本文以红石湾煤矿五煤为研究背景,采用理论分析、相似材料模拟和FLAC3D数值模拟等研究手段,研究五煤开采裂隙场演变规律、导水裂隙带发育高度,在此基础上,以数值模拟分析应力分布特征及应力场演变规律,以地下水模拟的研究手段,对渗流场中压力水头及渗流速度对地下水演变规律进行研究,得出上覆岩层应力场与渗流场的演变规律。主要研究成果如下:

(1)根据相似材料模拟与数值模拟结果,发现应力场应力状态经历了原岩应力期、应力集中期、卸压期及应力恢复期四个阶段,主要拉应力区形成于工作面上部,拉应力变化呈现出“快速增长-慢速增长-稳定”。采用关键层理论确定上覆岩层中有一个主关键层和4个亚关键层为后续研究提供依据;依据相似材料模拟实验,结合已确定的关键层,发现覆岩裂隙呈明显阶段性发育特征,裂隙发育规律呈“发育期-快速增长期-稳定期”,在此基础上,利用FLAC3D数值模拟得出上覆岩层应力场的演变规律。

(2)建立煤层开采渗流模拟模型,随着工作面的不断推进,监测并深入分析上覆岩层裂隙扩展、压力水头、渗流变化等渗流场的演化特征。随着煤层不断开采,压力水头影响范围逐渐增大,变化速率呈现“慢速增长-快速增长”的特征。在地下水下渗时,靠近裂隙处压力水头变化速率更快,影响范围更大,且渗流速度在裂隙两侧存在明显差异。

(3)结合应力场及渗流场直接的联系,发现渗流场对应力场的影响主要是通过孔隙水压力及动力压力;应力场对渗流场的影响主要是通过应力场改变岩体裂隙场的宽度、长度等,进而影响渗流速率。应力场和渗流场相互作用是一个动态平衡的过程,岩体应力场改变导致岩体裂隙宽度发生改变,裂隙宽度导致渗透性变大,进而又影响到应力场。

论文外文摘要:

With the continuous mining of coal seam, the initial stress field balance of overlying rock is broken, the stress distribution changes, and the overlying rock is deformed and destroyed, forming mining-induced cracks. With the development of mining fractures, the barrier layer is destroyed and the groundwater leakage is aggravated. Therefore, how to achieve safe and efficient mining of coal resources while minimizing the impact on underground water flow field, achieve safe mining of coal resources and reduce the impact of groundwater seepage on coal mining is the main goal at present.

Taking 5 coal in Hongshiwan Coal Mine as the research background, this paper adopts theoretical analysis, similar material simulation and FLAC3D numerical simulation to study the evolution law of 5 coal mining fracture field and the development height of water-conducting fracture zone. On this basis, numerical simulation is used to analyze the stress distribution characteristics and stress field evolution law, and groundwater simulation is used as the research method. The evolution law of pressure head and seepage velocity on groundwater in seepage field is studied, and the evolution law of stress field and seepage field of overlying strata is obtained. The main research results are as follows:

(1) According to the results of similar material simulation and numerical simulation, it is found that the stress field stress state has experienced four stages: primary rock stress period, stress concentration period, pressure relief period and stress recovery period. The main tensile stress area is formed in the upper part of the working face, and the change of tensile stress presents "rapid growth - slow growth - stability". The key layer theory is used to determine that there is one main key layer and four sub-key layers in the overlying strata. According to the simulation experiment of similar materials and the identified key layers, it is found that the overburden fracture has obvious stage development characteristics, and the fracture development law is "development period - rapid growth period - stable period". On this basis, the evolution law of the overburden stress field is obtained by FLAC3D numerical simulation.

(2) Establish a seepage simulation model for coal seam mining. With the continuous advancement of the working surface, monitor and deeply analyze the evolution characteristics of the seepage field such as the fracture expansion of overlying rock, pressure head and seepage changes. With the continuous mining of coal seam, the influence range of pressure water head gradually increases, and the change rate presents the characteristics of "slow growth - rapid growth". When groundwater permeates, the pressure head near the fissure changes faster and the influence range is larger, and the seepage velocity is obviously different on both sides of the fissure.

(3) Combined with the direct connection between stress field and seepage field, it is found that the influence of seepage field on stress field is mainly through pore water pressure and dynamic pressure; The effect of stress field on seepage field is mainly to change the width and length of fracture field of rock mass through stress field, and then affect seepage rate. The interaction between stress field and seepage field is a dynamic equilibrium process. The change of stress field leads to the change of crack width of rock mass, and the crack width leads to the increase of permeability, which in turn affects the stress field.

参考文献:

[1]万学锋. 宁东能源化工基地煤炭资源保障能力分析[J].神华科技,2013,11(02):14-17+20.

[2]王宏. 我国采煤沉陷区综合治理技术现状与展望[J].中国煤炭,2017,43(11):116-119.

[3]钱鸣高,缪协兴,许家林. 岩层控制中的关键层理论研究[J].煤炭学报,1996(03):2-7.

[4]程志恒,齐庆新,李宏艳等. 近距离煤层群叠加开采采动应力-裂隙动态演变特征实验研究[J].煤炭学报,2016,41(02):367-375.

[5]Junwen Zhang,Zhenwei Wang,Zhixiang Song. Numerical study on movement of dynamic strata in combined open-pit and underground mining based on similar material simulation experiment[J]. Arabian Journal of Geosciences,2020,13(16).

[6]李树清,何学秋,李绍泉等. 煤层群双重卸压开采覆岩移动及裂隙动态演变的实验研究[J].煤炭学报,2013,38(12):2146-2152.

[7]李少虎. 基于相似模拟试验研究薄基岩浅埋煤层覆岩裂隙演化浅析[J].中国井矿盐,2023,54(02):10-12+19.

[8]何清波,张文进,王绪友等. 倾斜厚煤层采动覆岩裂隙演化规律数值模拟[J].西安科技大学学报,2022,42(06):1080-1087.

[9]刘文静,岳东,霍小泉等. 基于微震监测的近距离煤层重复采动覆岩裂隙发育特征研究[J].煤炭技术,2022,41(09):23-28

[10]焦安军,田世祥,林华颖等. 缓倾斜煤层开采下伏煤岩裂隙动态演化规律[J].煤炭技术,2022,41(08):96-100.

[11]C. Y. Jia,H. L.Wang,X.Z. Sun,K. M. Liu,G. B. Zhang,X. B. Yu,X. Y. Song. Similar Material Simulation Test of Overlying Strata Characteristics of Isolated Working Face Mining with Thick-Hard Strata[J]. Geotechnical and Geological Engineering: An International Journal,2020,38(12).

[12]刘恒. 深部薄煤层开采围岩应力分布规律研究[J].山西焦煤科技,2022,46(03):28-31.

[13]卞涛,陆浩. 浅埋近距离厚煤层开采对上覆采空区影响规律[J].煤炭科学技术,2021,49(S2):40-45.

[14]韩飞林,郑春山,薛生等. 首采煤层开采诱发底板应力场分布特征研究[J].煤矿安全,2020,51(12):263-269.

[15]任艳芳. 浅埋煤层长壁工作面围岩动态结构及应力特征分析[J].煤炭科学技术,2020,48(08):50-56.

[16]HOU.Junwei,SHI Weiyu,WEN Shengcang. Effect of coal mining-induced subsidence on thesoil water system of rice Paddy and its countermeasures of improvement.Songzao.miming.area[J].Coal.Geology.&Exploration,2015,43(6):97–99.

[17]JING Haihe,QI Zhongyou,ZHAO Lei,et al. Hydrophilic characteristics of rock at depth of Ronghua mine[J].Journal of Heilongjiang Institute of Science&Technology,2010,20(6):435–438.

[18]邢宇祺,宁建国,徐国栋等. 浅埋不同间距煤层群开采对地表沉陷的影响[J].现代矿业,2015,31(05):20-22.

[19]孙学阳,李鹏强,寇规规等. 特厚煤层导水裂隙带发育高度的模拟实验[J].煤炭技术,2018,37(06):143-144.

[20]李志强,田甲,张磊等. 浅埋深厚煤层开采导水裂隙带发育高度探测[J].煤炭技术,2022,41(12):156-159.

[21]伊永杰. 保德煤矿8~#煤层覆岩导水裂隙带高度发育特征研究[J].中国矿业,2023,32(01):121-126.

[22]石守桥,吴复柱, 边凯.弱胶结覆岩导水裂隙带高度预测及三维空间发育特征[J].采矿与安全工程学报,2022,39(06):1154-1160.

[23]乔倩,牛超,张艳等. 基于相关性分析的导水裂隙带发育高度预测[J].煤炭技术,2022,41(10):151-154.

[24]魏世荣,赵延林,戚春前等. 多煤层开采导水裂隙带发育与覆岩破坏高度规律[J].湖南科技大学学报(自然科学版),2022,37(02):18-26.

[25]Zhang Lei,Kan Zihao,Zhang Cun,Tang Jun. Experimental study of coal flow characteristics under mining disturbance in China[J]. International Journal of Coal Science & Technology,2022,9(1).

[26]Ma Dan,Miao Xiexing,Bai Haibo,Huang Jihui,Pu Hai,Wu Yu,Zhang Guimin,Li Jiawei. Effect of mining on shear sidewall groundwater inrush hazard caused by seepage instability of the penetrated karst collapse pillar[J]. Natural Hazards,2016,82(1).

[27]Yu Y, Xin Q, Cheng W, Rui J, Zhang X. Numerical simulation study on the seepage characteristics of coal seam infusion effected by mining-induced stress. Bulletin of Engineering Geology and the Environment: The official journal of the IAEG. 2021;80(12):9015-9028.

[28]Liu Z, Hu P, Yang H, Yang W, Gu Q. Coupling Mechanism of Coal Body Stress–Seepage around a Water Injection Borehole. Sustainability (2071-1050). 2022;14(15):9599-N.PAG.

[29]Zhang T, Zhao Y, Gan Q, Nie X, Zhu G, Hu Y. Investigations into Mining-Induced Stress–Fracture–Seepage Field Coupling in a Complex Hydrogeology Environment: A Case Study in the Bulianta Colliery. Mine Water and the Environment: Journal of the International Mine Water Association (IMWA). 2019;38(3):632-642.

[30]徐军. 变水压下采动岩体渗流演化特征数值模拟研究[D].安徽建筑工业学院,2012.

[31]Yang Ming-Qing, Xie He-Ping, Gao Ming-Zhong, et al. On distribution characteristics of the temperature field and gas seepage law of coal in deep mining. Thermal Science. 2020;24(6 Part B):3923-3931.

[32]沈荣喜,邱黎明,李保林等. 采场底板高承压水突水“三场”演化研究[J].采矿与安全工程学报,2015,32(02):213-218.

[33]Yu Y, Xin Q, Cheng W, Rui J, Zhang X. Numerical simulation study on the seepage characteristics of coal seam infusion effected by mining-induced stress. Bulletin of Engineering Geology and the Environment: The official journal of the IAEG. 2021;80(12):9015-9028.

[34]Zhen Liu, Peng Hu, He Yang, Wenzhi Yang, Qingbo Gu. Coupling Mechanism of Coal Body Stress–Seepage around a Water Injection Borehole. Sustainability. 2022;14(9599):9599.

[35]姚多喜,鲁海峰. 煤层底板岩体采动渗流场–应变场耦合分析[J].岩石力学与工程学报,2012,31(S1):2738-2744.

[36]侯聪超. 煤炭开采对地下水环境影响评价研究[D].黑龙江大学,2018.

[37]赵春虎. 陕蒙煤炭开采对地下水环境系统扰动机理及评价研究[D].煤炭科学研究总院,2016.

[38]李瑜. 榆神府煤炭开采区地下水动态特征研究[D].西安科技大学,2015.

[39]刘美乐. 小保当井田煤层开采对潜水流场的影响评价[D].西安科技大学,2016.

[40]冀瑞君,彭苏萍,范立民等. 神府矿区采煤对地下水循环的影响——以窟野河中下游流域为例[J].煤炭学报,2015,40(04):938-943.

[41]代锋刚,张发旺,王滨等. 含水层结构变异对区域地下水循环影响数值模拟[J].地球学报,2017,38(S1):64-68.

[42]李慧. 采煤沉陷区分布式水循环模型研究[D].中国水利水电科学研究院,2016.

[43]Snow D. T. Rock fracture, spacing, openings and porosities[J]. Journal of Soil Mechanics & Foundations Div, 1968,94: 73-91.

[44]Liao Gaolong,Guo Shusheng,Wang Chao,Shen Yuan,Gao Yanfang.Pressure Relief-Type Overpressure Distribution Prediction Model Based on Seepage and Stress Coupling[J]. Processes,2023,11(2).

[45]Yan Bingqian,Kang Hongpu,Li Xiangshang,Qi Qingjie,Zhang Bo,Liu Jianzhong. Damage constitutive model and mechanical properties of jointed rock mass under hydro-mechanical coupling[J]. Theoretical and Applied Fracture Mechanics,2023,123.

[46]高俊,宋马可. 煤层顶板砂岩裂隙水渗流场数值模拟研究[J].地下水,2016,38(04):42-45.

[47]盛金昌,速宝玉,王媛等. 裂隙岩体渗流-弹塑性应力耦合分析[J].岩石力学与工程学报,2000(03):304-309.

[48]肖杰,谭越峰,童超等. 基于三场耦合的膨胀土边坡浅层坍滑数值分析[J].工业建筑,2022,52(07):128-136+118.

[49]任长吉,黄涛. 裂隙岩体渗流场与应力场耦合数学模型的研究[J].武汉大学学报(工学版),2004(02):8-12.

[50]裴桂红,吴军,刘建军等. 深基坑开挖过程中渗流-应力耦合数值模拟[J].岩石力学与工程学报,2004(S2):4975-4978.

[51]Gong Xuanping,Xue Sheng,Han Baiqing,Zheng Chunshan,Zhu Licheng,Dong Yangyang,Li Yaobin. Research Progress on Stress–Fracture–Seepage Characteristics for Hazard Prevention in Mine Goafs: A Review[J]. Sustainability,2022,14(19).

[52]刘冠男,叶大羽,高峰等. 幂率型裂隙分布煤层渗流场与变形应力场耦合模型及数值模拟[J].岩石力学与工程学报,2022,41(03):492-502.

[53]宋晓晨,徐卫亚. 裂隙岩体渗流模拟的三维离散裂隙网络数值模型(Ⅰ):裂隙网络的随机生成[J].岩石力学与工程学报,2004(12):2015-2020.

[54]黄庆享,曹健,高彬等. 基于三场演化规律的浅埋近距煤层减损开采研究[J].采矿与安全工程学报,2020,37(06):1171-1179.

[55]苗霖田,夏玉成,段中会等. 黄河中游榆神府矿区煤-岩-水-环特征及智能一体化技术[J].煤炭学报,2021,46(05):1521-1531.

[56]杨天鸿,赵兴东,冷雪峰等. 地下开挖引起围岩破坏及其渗透性演化过程仿真[J].岩石力学与工程学报,2003(S1):2386-2389.

[57]孙欢. 采动煤岩应力–裂隙–渗流耦合机理研究及应用[D].西安科技大学,2017.

[58]王勇,胡勇,范卫琴. 基于离散单元法的裂隙岩体渗流应力耦合分析[J].水文地质工程地质,2009,36(01):44-47.

[59]肖维民,夏才初,邓荣贵. 岩石节理应力–渗流耦合试验系统研究进展[J].岩石力学与工程学报,2014,33(S2):3456-3465.

[60]唐佳,彭振斌,何忠明. 基于连续介质的裂隙岩体流固耦合数值分析[J].中南大学学报(自然科学版),2016,47(11):3800-3807.

[61]李元景,曹兵,宋丽华等. 灵武长枣果实外观性状分析[J].农业科学研究,2022,43(01):7-12.

[62]刘聪. 基于HYDRUS-2D模型的水稻田氮素流失特性分析[D].中国地质大学(北京),2021.

[63]李卓然. 基于HYDRUS-2D模型的滴灌棉田土壤水盐运移模拟及排盐方式分析[D].新疆农业大学,2018.

中图分类号:

 TD325    

开放日期:

 2023-06-20    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式