- 无标题文档
查看论文信息

论文中文题名:

 基于双线性Z变换的等离子体DGTD算法研究    

姓名:

 王露洁    

学号:

 20207223064    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085400    

学科名称:

 工学 - 电子信息    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 通信与信息工程学院    

专业:

 电子与通信工程    

研究方向:

 计算电磁学    

第一导师姓名:

 周远国    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-15    

论文答辩日期:

 2023-05-31    

论文外文题名:

 Research on DGTD Algorithm Based on Bilinear Z Transform for Plasma    

论文中文关键词:

 时域间断伽辽金 ; 双线性Z变换 ; 磁化等离子体 ; 辅助微分方程 ; 完美匹配层    

论文外文关键词:

 DGTD ; magnetized plasma ; bilinear Z-transform ; magnetized plasma ; auxiliary differential equations ; perfect matching layer.    

论文中文摘要:

航天飞船返回舱进入大气层时由于气动加热形成等离子体屏蔽层,会干扰甚至阻断电磁波的传输,给航天飞船再入返回时的实时通信和再入测量造成困难。本文的研究目的是建立电磁波在等离子体中传播的数学模型,采用计算电磁学算法对其进行仿真,为研究等离子体屏蔽层提供理论依据。

采用时域间断伽辽金(DGTD)算法对电磁波与等离子体之间的相互作用展开研究,基于辛普森法则,提出了一种二阶双线性Z变换(BZT)的时间离散方案,推导了可以模拟电磁波在(非磁化/磁化)等离子体中传播的高阶算法。该算法采用区域分解技术将计算域分为若干子域,针对不同子域采用混合阶基函数对等离子体控制方程进行展开,再利用BZT方法得到电磁场的时域迭代公式。为了在有限空间内模拟无限区域,引入复坐标拉伸变换,分别构建适用于各向同性及各向异性介质的完美匹配层(PML),用于截断对应的计算区域,最终形成一套完整的求解等离子体电磁传播问题的理论体系。

采用基于双线性Z变换的时域间断伽辽金(BZT-DGTD)算法分别对非磁化和磁化等离子体中电磁传播情况进行了仿真,并将仿真结果与商业软件对比。BZT-DGTD算法的平均相对误差分别为-24.91dB和-37.38dB。此外,数值算例的仿真结果与等离子体的物理性质表现出了良好的一致性,验证了算法的正确性。在高频情况下,BZT-DGTD算法展现出更好的稳定性,同时,该方法在相同仿真时间内可以采用更大的时间步长以减少计算时间,提升了本文算例90%左右的计算效率,验证了所提算法在计算效率上的优势,为解决实际等离子体的电磁问题提供了参考价值。

论文外文摘要:

When the spacecraft's re-entry module enters the atmosphere, a plasma shielding layer is formed due to aerodynamic heating, which can interfere or even block the transmission of electromagnetic waves, making it difficult for real-time communication and re-entry measurements during re-entry and re-entry of the spacecraft. The purpose of this paper is to establish the mathematical model of electromagnetic wave propagation in plasma, and simulate it with computational electromagnetism algorithm, so as to provide a theoretical basis for the study of plasma shielding layer.

The Discontinuous Galerkin Time Domain(DGTD) algorithm was used to study the interaction between electromagnetic waves and plasma. Based on the Simpson rule, a second-order bilinear Z-transform (BZT) time discretization scheme was proposed, and a higher-order algorithm was derived to simulate the propagation of electromagnetic waves in (non magnetized/magnetized) plasma. This algorithm uses domain decomposition technology to divide the computational domain into several sub domains, and uses mixed order basis functions to expand the plasma control equation for different sub domains. Then, the BZT method is used to obtain the time-domain iterative formula of the electromagnetic field. In order to simulate infinite regions in finite space, complex coordinate stretching transformation is introduced to construct perfectly matched layers (PMLs) suitable for isotropic and anisotropic media, which are used to truncate the corresponding computational regions and ultimately form a complete solution system for plasma electromagnetic problems.

The Discontinuous Galerkin Time Domain algorithm based on the bilinear Z-transform (BZT-DGTD) is used to simulate the electromagnetic propagation in the unmagnetized and magnetized plasma respectively, and the simulation results are compared with the commercial software. The average relative errors of the BZT-DGTD algorithm are -24.91 dB and -37.38 dB, respectively. In addition, the simulation results of the numerical examples show good consistency with the physical properties of the plasma, verifying the correctness of the algorithm. In high-frequency situations, the BZT-DGTD algorithm exhibits better stability. At the same time, this method can use larger time steps within the same simulation time to reduce computational time, improving the computational efficiency of the example in this paper by about 90%. This verifies the superiority of the proposed algorithm in computational efficiency and provides reference value for solving practical electromagnetic problems in plasma.

参考文献:

[1] Ginzburg V L, Sykes J B, Tayler R J. The Propagation of Electromagnetic Waves in Plasmas[M]. Springer New York, 1970.

[2] Yuan K, Chen J, Shen L, et al. Impact of Reentry Speed on the Transmission of Obliquely Incident THz Waves in Realistic Plasma Sheaths[J]. IEEE Transactions on Plasma Science, 2018, 46: 373-378.

[3] He T, Zhang X W, Pan W Y, et al. Near-Field of a VLF Electric Dipole in an Anisotropic Plasma[J]. IEEE Transactions on Antennas and Propagation, 2019, 67: 4040-4048.

[4] Zeng H, He T, et al. Current Distribution and Input Impedance of an Insulated Linear Antenna in an Anisotropic Plasma[J]. IEEE Transactions on Antennas and Propagation, 2019, 68: 2541-2549.

[5] Ren Q, Nagar J, Kang L, et al. Efficient Wideband Numerical Simulations for Nanostructures Employing a Drude-Critical Points (DCP) Dispersive Model[J]. Scientific Reports, 2017, 7.

[6] Atef E, Wenxing L, Yahya R-S. Advanced Computational Electromagnetic Methods[M]. Artech, 2020: 1.

[7] Liu N, Cai G, Ye L, et al. The Efficient Mixed FEM with the Impedance Transmission Boundary Condition for Graphene Plasmonic Waveguides[J]. Journal of Lightwave Technology, 2016, 34 (23): 5363-5370.

[8] Yee K. Propagation. Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media[J]. IEEE Transactions on Antennas and Propagation, 1966, 14: 302-307.

[9] Jin J M. The Finite Element Method in Electromagnetics[M]. John Wiley & Sons, 2015.

[10] Holland R, Cable V, Wilson L C. Finite-volume time-domain (FVTD) techniques for EM scattering[J]. IEEE Transactions on Electromagnetic Compatibility, 1991, 33: 281-294.

[11] 杨谦. 三维DGTD若干关键技术研究[D]. 西安电子科技大学, 2018.

[12] 买文鼎, 郝文曲, 李平. 改进的二维三维混合时域不连续伽辽金方法[J]. 电波科学学报, 2018, 33 (01): 33-40.

[13] Dong Y, Zhou S G, Tang M, et al. Discontinuous Galerkin Time Domain Methods for Multiscale and Multiphysics Simulations: A Review[J]. IEEE Journal on Multiscale and Multiphysics Computational Techniques, 2021, 6: 132-142.

[14]Zhao L, Chen G, Yu W, et al. A Fast Waveguide Port Parameter Extraction Technique for the DGTD Method[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 2659-2662.

[15] Tian C Y, Shi Y, Chan C H. An Improved Vector Wave Equation-Based Discontinuous Galerkin Time Domain Method and Its Hybridization With Maxwell’s Equation-Based Discontinuous Galerkin Time Domain Method[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(11): 6170-6178.

[16] Wang P, Shi Y, Tian C-Y, et al. Analysis of Graphene-Based Devices Using Wave Equation Based Discontinuous Galerkin Time-Domain Method[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17: 2169-2173.

[17] Zhang H, Wang P, Jiang L, et al. Parallel Higher Order DGTD and FETD for Transient Electromagnetic-Circuital-Thermal Co-Simulation[J]. IEEE Transactions on Microwave Theory and Techniques, 2022: 70(6): 2935-2947.

[18] Zhou Y, Huang R, Wang S, et al. An Adaptive DGTD Algorithm Based on Hierarchical Vector Basis Function[J]. IEEE Transactions on Antennas and Propagation, 2021, 69: 9038-9042.

[19] Dong Y, Tang M, Li P, et al. Transient Electromagnetic-Thermal Simulation of Dispersive Media Using DGTD Method[J]. IEEE Transactions on Electromagnetic Compatibility, 2019, 61: 1305-1313.

[20] Tian C Y, Shi Y, Shum K M, et al. Wave Equation-Based Discontinuous Galerkin Time Domain Method for Co-Simulation of Electromagnetics-Circuit Systems[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(4): 3026-3036.

[21] Yan S, Greenwood A D, Jin J M. Simulation of High-Power Microwave Air Breakdown Modeled by a Coupled Maxwell–Euler System With a Non-Maxwellian EEDF[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(4): 1882-1893.

[22] Zhan Q, Zhuang M, Mao Y, et al. Unified Riemann Solution for Multi-Physics Coupling: Anisotropic Poroelastic/Elastic/Fluid Interfaces[J]. Journal of Computational Physics, 2020, 402.

[23] Yan S, Jin J M.A Dynamic p- Adaptive DGTD Algorithm for Electromagnetic and Multiphysics Simulations[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(5): 2446-2459.

[24] Yan S, Lin C P, Arslanbekov R R, et al. A Discontinuous Galerkin Time-Domain Method With Dynamically Adaptive Cartesian Mesh for Computational Electromagnetics[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(6): 3122-3133.

[25] Dosopoulos S, Zhao B, Lee J-F. Non-Conformal and Parallel Discontinuous Galerkin Time Domain Method for Maxwell’s Equations: EM Analysis of IC Packages[J]. Journal of Computational Physics, 2013, 238: 48–70.

[26] Ren Q, Mi J. Parallel Subdomain Level DGTD Method with Automatic Load Balancing[C]//Photonics & Electromagnetics Research Symposium - Fall (PIERS - Fall), China, Xiamen, 2019: 2330-2336.

[27] Yang Q, Wei B, Li L, et al. Analysis of the Calculation of a Plasma Sheath Using the Parallel SO-DGTD Method[J]. International Journal of Antennas and Propagation, 2019, 1-9.

[28] Ban Z G, Shi Y, Yang Q, et al. GPU-Accelerated Hybrid Discontinuous Galerkin Time Domain Algorithm With Universal Matrices and Local Time Stepping Method[J]. IEEE Transactions on Antennas and Propagation, 2020, 68: 4738-4752.

[29] Zhao L, Chen G, Yu W. GPU Accelerated Discontinuous Galerkin Time Domain Algorithm for Electromagnetic Problems of Electrically Large Objects[J]. Progress In Electromagnetics Research B, 2016, 67: 137-151.

[30] Samimi A, Simpson J. An Efficient 3-D FDTD Model of Electromagnetic Wave Propagation in Magnetized Plasma[J]. IEEE Transactions on Antennas and Propagation, 2015, 63: 269-279.

[31] Hunsberger F, Luebbers R, Kunz K. Finite-difference Time-Domain Analysis of Gyrotropic Media. I. Magnetized Plasma[J]. IEEE Transactions on Antennas and Propagation, 1992, 40(12): 1489-1495.

[32] Zhong S, Lai Z, Liu S, et al. The Numerical Dispersion Relation and Stability Analysis of PLCDRC-FDTD Method for Anisotropic Magnetized Plasma[C]//International Conference on Microwave and Millimeter Wave Technology, China, Nanjing, 2008, 2: 666-669.

[33] Wu P, Xie Y, Jiang H, et al. Bilinear Z-transform perfectly matched layer for rotational symmetric microwave structures with magnetised ferrite[J]. Iet Microwaves Antennas & Propagation 2020, 14: 247-252.

[34] Sullivan D M. Frequency-Dependent FDTD Methods Using Z Transforms[J]. IEEE Transactions on Antennas and Propagation, 1992, 40 (10): 1223-1230.

[35] Liu J, Ju L, Du P, et al. An Improved Cascaded SO-FDTD Method for High Temperature Magnetized Plasma[J]. Computer Physics Communications, 2019, 235: 153-158.

[36] Yu Y, Simpson J J. An E-J Collocated 3-D FDTD Model of Electromagnetic Wave Propagation in Magnetized Cold Plasma[J]. IEEE Transactions on Antennas and Propagation, 2010, 58: 469-478.

[37] Kalluri D K, Lade R K. Frequency and Polarization Transformer (10 GHz to 1000 GHz): Interaction of a Whistler Wave With a Collapsing Plasma in a Cavity[J]. IEEE Transactions on Plasma Science, 2012, 40: 3070-3078.

[38] Li L, Wei B, Yang Q, et al. Research on the Propagation Properties of EM Wave in Inhomogeneous Plasma Sheath Using DGTD Method[C]//IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS), 2017: 1-3.

[39] Yan S, Qian J, Jin J M. An Advanced EM-Plasma Simulator Based on the DGTD Algorithm With Dynamic Adaptation and Multirate Time Integration Techniques[J]. IEEE Journal on Multiscale and Multiphysics Computational Techniques, 2019, 4: 76-87.

[40] Gedney S D, Young J C, Kramer T C, et al. A Discontinuous Galerkin Finite Element Time-Domain Method Modeling of Dispersive Media[J]. IEEE Transactions on Antennas and Propagation,2012, 60 (4): 1969-1977.

[41] Li P, Jiang L. Simulation of Electromagnetic Waves in the Magnetized Cold Plasma by a DGFETD Method[J]. IEEE Antennas and Wireless Propagation Letters, 2013, 12: 1244-1247.

[42] Ren Q, Bian Y, Kang L, et al. Leap-frog Continuous-Discontinuous Galerkin Time Domain (LP-CDGTD) Method for Nano-Architectures with the Drude Model[J]. Journal of Lightwave Technology, 2017, 1-1.

[43] Yang Q, Wei B, Li L, et al. Simulation of Electromagnetic Waves in a Magnetized Cold Plasma by the SO-DGTD Method[J]. IEEE Transactions on Antennas and Propagation, 2018, 66 (8): 4151-4157.

[44] Yang Q, Wei B, Li L, et al. A Novel DGTD Method Based on the Current Density Equation for Magnetized Cold Plasma[J]. IEEE Transactions on Antennas and Propagation, 2021, 69: 3371-3380.

[45] Yan S, Qian J, Jin J M. An Advanced EM-Plasma Simulator Based on the DGTD Algorithm With Dynamic Adaptation and Multirate Time Integration Techniques[J]. IEEE Journal on Multiscale and Multiphysics Computational Techniques, 2019, 4: 76-87.

[46] Chen G, Zhao L, Yu W, et al. A General Scheme for the Discontinuous Galerkin Time-Domain Modeling and S-Parameter Extraction of Inhomogeneous Waveports[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66: 1701-1712.

[47] Li P, Jiang L J, Bağcı H. Discontinuous Galerkin Time-Domain Modeling of Graphene Nanoribbon Incorporating the Spatial Dispersion Effects[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(7): 3590-3598.

[48] Ren Q, Zhan Q, Liu Q H. An Improved Subdomain Level Nonconformal Discontinuous Galerkin Time Domain (DGTD) Method for Materials With Full-Tensor Constitutive Parameters[J]. IEEE Photonics Journal, 2017, 9: 1-13.

[49] Wen P, Ren Q, Chen J, et al. Improved Memory- Efficient Subdomain Level Discontinuous Galerkin Time Domain Method for Periodic/Quasi-Periodic Structures[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(11): 7471-7479.

[50] Ren Q, Sun Q, Tobón L E, et al. EB Scheme-Based Hybrid SE-FE DGTD Method for Multiscale EM Simulations[J]. IEEE Transactions on Antennas and Propagation, 2016, 64: 4088-4091.

[51] Ren Q, Tobón L E, Sun Q, et al. A New 3-D Nonspurious Discontinuous Galerkin Spectral Element Time-Domain (DG-SETD) Method for Maxwell’s Equations[J]. IEEE Transactions on Antennas and Propagation, 2015, 63: 2585-2594.

[52] Tobón L E, Ren Q, Liu Q H. A new efficient 3D Discontinuous Galerkin Time Domain (DGTD) method for large and multiscale electromagnetic simulations[J]. Journal of Computational Physics, 2015, 283: 374-387.

[53] Chen J, Liu Q H. Non-Spurious Vector Spectral Element Method for Maxwell's Equations[J]. Progress in Electromagnetics Research-pier, 2009, 96: 205-215.

[54] Tobón L E, Chen J, Liu Q H, et al. Spurious solutions in mixed finite element method for Maxwell's equations: Dispersion analysis and new basis functions[J]. Comput. Phys. 2011, 230: 7300-7310.

[55] Butcher J C. Numerical Methods for Ordinary Differential Equations[M]. 2008: 459-463

[56] Wang S, Wei X, Zhou Y, et al. High-Order Conformal Perfectly Matched Layer for the DGTD Method[J]. IEEE Transactions on Antennas and Propagation, 2021, 69: 7753-7760.

[57] Bao H, Zhang T, Ding D, et al. Generalized Periodic Boundary Conditions for DGTD Analysis of Arbitrary Skewed Periodic Structures[J]. IEEE Transactions on Microwave Theory and Techniques, 2022, 70: 1-1.

[58] Alvarez J, Angulo L D, Bretones A R, et al. 3-D Discontinuous Galerkin Time-Domain Method for Anisotropic Materials[J]. IEEE Antennas and Wireless Propagation Letters, 2012, 11: 1182-1185.

[59] Wu X, Ren Q. DEH Scheme DGTD-Based Transient Modeling Approach for the Cole–Cole Dispersive Media Using Tustin’s Method[J]. IEEE Transactions on Microwave Theory and Techniques, 2022, 70: 2031-2039.

[60] Feng D, Liu S, Wang X, et al. High-order GPU-DGTD method based on unstructured grids for GPR simulation[J], Journal of Applied Geophysics, 2022,202: 0926-9851.

中图分类号:

 TM15/O441.4    

开放日期:

 2023-06-15    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式