- 无标题文档
查看论文信息

论文中文题名:

 岩石对不同频段电磁波作用下的介电性质响应    

姓名:

 白国刚    

学号:

 20209226057    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085217    

学科名称:

 工学 - 工程 - 地质工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 地质与环境学院    

专业:

 地质工程    

研究方向:

 岩石介电响应    

第一导师姓名:

 孙强 ; 赵春虎    

第一导师单位:

 西安科技大学:中煤科工集团西安研究院有限公司    

论文提交日期:

 2023-06-16    

论文答辩日期:

 2023-06-06    

论文外文题名:

 Dielectric response of rock to electromagnetic waves of different frequency bands    

论文中文关键词:

 介电性质 ; 频率 ; 岩石电阻率 ; 微波破岩 ; 应用    

论文外文关键词:

 Dielectric properties ; Frequency ; Rock resistivity ; Microwave rock breaking ; Application    

论文中文摘要:

  电磁波所衍生的电法勘探和破岩技术对于提高地球资源开发效率、加快岩石掘进速率,存在着极大的潜力。机械破岩目前是破岩工程中最常见的方式,然而硬岩的掘进会使机械破碎效率降低、成本增加,进而影响地下破岩进展。此外,电阻率法勘探因其具有无损性,应用广的特点被广泛研究,因此探索电阻率法和微波破岩技术对于提高地球资源开发效率和地下空间利用率具有重要意义。本文以砂岩和花岗岩为研究对象,以室内试验为主要手段,结合理论分析方法,探究了低频阶段(0.01-200kHz)岩石电阻率变化规律,揭示了微波(300M-300GHz)作用岩石后温度和力学性质的变化机理,总结了不同频段电磁波的地质工程应用。本文主要取得了以下认识:

  (1)对花岗岩和两种不同砂岩进行了不同频率(0.1-200kHz)以及不同含水饱和度(0-100%)的岩石电阻率测试实验。结果表明:花岗岩和砂岩饱和度较低的情况下,岩样在激发极化效应的作用下,其电阻率会随饱和度的增大而增大,而随着饱和度增加到峰值电阻率所对应的饱和度时,孔隙水对电阻率的影响代替了激发极化效应作用的主导地位,此时岩样电阻率会随饱和度的增大而减小。此外,峰值饱和度与频率之间呈正相关的指数函数关系,且在由于104-105Hz处界面极化的消失,峰值饱和度会随着频率的增加而快速增大,增大幅度约为60%。

  (2)以带有预制裂缝的半圆型SCB花岗岩为研究对象,在对岩样进行了不同加热时间(240s、480s、720s、960s)、不同循环次数(1、4、7、10次)的微波加热过后, 进行了I型断裂韧度测试试验。结果表明:岩样表面温度与微波加热时间呈正相关,本次试验中,微波循环次数对岩样表面温度的影响不大。由于花岗岩内部辉石和黑云母对微波的敏感程度高,与其他各矿物表现出明显的吸波差异性,随着微波加热时间的推进,岩样表面裂纹开始出现并扩展,SCB花岗岩断裂韧度下降明显,下降幅度可达35%左右。声发射振铃计数和声发射能量也阐明了岩石断裂的各个阶段,此外,通过荷载-时间曲线可以看出微波加热时间越长,岩样断裂破坏所用的时长越短。

  (3)通过对低频阶段岩石电阻率变化、微波照射岩石后温度和力学性质变化的研究,再加上对前人研究的总结与学习,得出不同频段电磁波的地质工程应用。主要结论如下:低频阶段的电磁波在电法勘探领域的应用广泛,常见的电磁波勘探方法有电阻率法和地质雷达 ;红外线频段的红外热成像技术可以将岩石发出的红外能量转换为图像,这种技术也广泛应用于地质体的分析和研究中;电磁波破岩技术是一种新型破岩技术,主要分为微波破岩和脉冲破岩,前者是基于矿物之间的吸波差异性,后者则是因为压缩波产生的拉应力破岩,电磁波破岩可以辅助机械破岩,达到预先损伤岩石的效果,节约破岩成本,提高破岩效率。

论文外文摘要:

The electrical exploration and rock breaking technology derived from electromagnetic waves have great potential for improving the efficiency of Earth's resource development and accelerating the rate of rock excavation. Mechanical rock breaking is currently the most common method in rock breaking engineering, but the excavation of hard rock can reduce the efficiency of mechanical crushing, increase costs, and thus affect the progress of underground rock breaking. In addition, resistivity method exploration has been widely studied due to its non-destructive and widely applied characteristics. Therefore, exploring resistivity method and microwave rock breaking technology is of great significance for improving the efficiency of earth resource development and underground space utilization. This paper takes sandstone and granite as the research object, indoor tests as the main means, combined with theoretical analysis methods, explores the change law of rock resistivity at low frequency stage (0.01-200kHz), reveals the change mechanism of temperature and mechanical properties of rocks after microwave (300M-300GHz), and summarizes the application of electromagnetic waves at different frequency bands in geological engineering. This article mainly obtains the following understanding:

(1) Rock resistivity tests were conducted on granite and two different types of sandstone at different frequencies (0.1-200kHz) and saturation levels (0-100%). The results indicate that in the case of low saturation of granite and sandstone, the resistivity of the rock sample increases with the increase of saturation under the action of induced polarization effect. As the saturation increases to the saturation corresponding to the peak resistivity, the influence of pore water on resistivity replaces the dominant role of induced polarization effect, and the resistivity of the rock sample decreases with the increase of saturation. In addition, there is a positive exponential function relationship between peak saturation and frequency, and because of the disappearance of interface polarization at 104-105Hz, the peak saturation will rapidly increase with the increase of frequency by about 60%.

(2) Taking semi circular SCB granite with prefabricated cracks as the research object, I type fracture toughness tests were conducted on the rock samples after microwave heating with different heating times (240s, 480s, 720s, 960s) and different cycles (1, 4, 7, 10 times). The results indicate that the surface temperature of the rock sample is positively correlated with the microwave heating time. In this experiment, the number of microwave cycles had little effect on the surface temperature of the rock sample. Due to the high sensitivity of pyroxene and biotite in granite to microwave, they exhibit significant differences in absorption compared to other minerals. As the microwave heating time advances, surface cracks on the rock sample begin to appear and expand, and the fracture toughness of SCB granite decreases significantly, with a decrease of about 35%. The acoustic emission ringing count and acoustic emission energy also elucidate the various stages of rock fracture. In addition, the load time curve shows that the longer the microwave heating time, the shorter the time required for rock sample fracture and failure.

(3) Through the research on the change of rock resistivity at low frequency stage, the change of temperature and mechanical properties of rocks after microwave irradiation, and the summary and study of previous studies, the application of electromagnetic waves at different frequency bands in geological engineering is obtained. The main conclusions are as follows: low-frequency electromagnetic waves are widely used in the field of electrical exploration, and common electromagnetic wave exploration methods include resistivity method and geological radar; The infrared thermal imaging technology in the infrared frequency band can convert the infrared energy emitted by rocks into images, and this technology is also widely used in the analysis and research of geological bodies; Electromagnetic wave rock breaking technology is a new type of rock breaking technology, mainly divided into microwave rock breaking and pulse rock breaking. The former is based on the difference in absorption between minerals, while the latter is due to the tensile stress generated by compression waves. Electromagnetic wave rock breaking can assist mechanical rock breaking, achieving the effect of pre damage to the rock, saving rock breaking costs, and improving rock breaking efficiency.

参考文献:

[1] Li Q, Li XB, Yin T. Effect of microwave heating on fracture behavior of granite: An experimental investigation. Engineering Fracture Mechanics 2021, 250:107758.

[2] 毛光宁. 采用微波辅助钻进硬岩的技术[J]. 现代隧道技术, 1994, 000(011):5-11.

[3] 卢高明, 李元辉, Hassani F, 等. 微波辅助机械破岩试验和理论研究进展[J]. 岩土工程学报, 2016, 38(8):10.

[4] 戴俊, 王思琦, 王辰晨. 不同冷却方式对微波照射后花岗岩强度影响的试验研究[J]. 科学技术与工程, 2018, 18(8):5.

[5] 郭帅. 电磁波的应用及其辐射的防护方法[J]. 电子技术与软件工程, 2016(21):2.

[6] 时振栋, 黎安尧, 王晦光. 电磁波的应用[M]. 高等教育出版社, 1990.

[7] 董志浩. 煤炭地下气化覆岩高温损伤与评估研究[D]. 中国矿业大学, 2020.

[8] Hassani F, Nekoovaght P M, Ghrib N. The influence microwave irradiation on rocks for microwave-assisted underground excavation[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016b, 8(1): 1- 15.

[9] Saxenaa K. Electromagnetic theory and applications[M]. Oxford, UK: Alpha Science International, 2009.

[10] 戴俊, 宋四达, 屠冰冰, 等. 不同微波照射参数对花岗岩强度的影响[J]. 科学技术与工程, 2017, 17(18):5.

[11] 乔兰, 郝家旺, 李占金, 等. 基于微波加热技术的硬岩破裂方法探究[J]. 煤炭学报, 2021, 46(S01):12.

[12] Sun Q, Zhu S, Xue L. Electrical resistivity variation in uniaxial rock compression[J]. Arabian Journal of Geosciences, 2015, 8: 1869-1880.

[13] Sun Q, Zhao F, Wang S, et al. Thermal effects on the electrical characteristics of Malan loess[J]. Environmental Science and Pollution Research, 2021, 29: 15160-15172.

[14] Wang K, Li X, Huang Z, et al. Experimental Study on Acoustic Emission and Resistivity Response of Sandstone under Constant Amplitude Cyclic Loading. Advances in Materials Science and Engineering, 2021, 2021(4):1-13.

[15] Rekapalli R, Sarma V S, Phukon P. Direct resistivity measurements of core sample using a portable in-situ DC resistivity meter in comparison with HERT data. Journal of the Geological Society of India, 2015, 86(2):211-214.

[16] Archie G E. The electrical resistivity log as an aid in determining some reservoir characteristics[J]. Transactions of the AIME, 1942, 146(01): 54-62.

[17] Collett L S, Katsube T J. Electrical parameters of rocks in developing geophysical techniques[J]. Geophysics, 1973, 38(1): 76-91.

[18] Vinegar H J, Waxman M H. Induced polarization of shaly sands[J]. Geophysics, 1984, 49(8): 1297-1297.

[19] Schmeling H. Numerical models on the influence of partial melt on elastic, anelastic and electric properties of rocks. Part I: elasticity and anelasticity[J]. Physics of the earth and planetary interiors, 1985, 41(1): 34-57.

[20] Chelidze T L, Gueguen Y, Ruffet C. Electrical spectroscopy of porous rocks: a review—II. Experimental results and interpretation[J]. Geophysical Journal International, 1999, 137(1): 16-34.

[21] Sandler J, Li Y, Horne R N, et al. Effects of fracture and frequency on resistivity in different rocks[C]//EUROPEC/EAGE Conference and Exhibition. OnePetro, 2009.

[29] Kahraman S, Yeken T. Electrical resistivity measurement to predict uniaxial compressive and tensile strength of igneous rocks[J]. Bulletin of Materials Science, 2010, 33: 731-735.

[25] Brace W F, Orange A S. Electrical resistivity changes in saturated rocks during fracture and frictional sliding[J]. Journal of geophysical research, 1968, 73(4): 1433-1445.

[25] Liu H, Jie T, Li B, et al. Study of the low-frequency dispersion of permittivity and resistivity in tight rocks[J]. Journal of Applied Geophysics, 2017, 143: 141-148.

[25] Li K, Pan B, Horne R. Evaluating fractures in rocks from geothermal reservoirs using resistivity at different frequencies[J]. Energy, 2015, 93: 1250-1258.

[29] Busby J, Jackson P. The application of time-lapse azimuthal apparent resistivity measurements for the prediction of coastal cliff failure[J]. Journal of Applied Geophysics, 2006, 59(4): 291-292.

[29] 刘树才, 刘鑫明, 姜志海, 等. 煤层底板导水裂隙演化规律的电法探测研究[J]. 岩石力学与工程学报, 2009, 29(002):348-356.

[29] Liu S D, Wu R X, Zhang P S, et al. Three-dimensional parallel electric surveying and its applications in water disaster exploration in coal mines[J]. Journal of China Coal Society, 2009, 34(7): 929-932.

[29] Brace W F. Dilatancy-related electrical resistivity changes in rocks[J]. Earthquake Prediction and Rock Mechanics, 1975: 207-217.

[30] Brace W F. The effect of size on mechanical properties of rock[J]. Geophysical Research Letters, 1981, 8(7): 651-652.

[31] Brace W F, Orange A S. Further studies of the effects of pressure on electrical resistivity of rocks[J]. Journal of Geophysical Research, 1968, 73(16): 5407-5420.

[32] Brace W F, Paulding Jr B W, Scholz C H. Dilatancy in the fracture of crystalline rocks[J]. Journal of geophysical research, 1966, 71(16): 3939-3953.

[33] Brantut N, Heap M J, Meredith P G, et al. Time-dependent cracking and brittle creep in crustal rocks: A review[J]. Journal of Structural Geology, 2013, 52: 17-43.

[34] Matias M J S, Habberjam G M. The effect of structure and anisotropy on resistivity measurements[J]. Geophysics, 1986, 51(4): 964-971.

[35] 李夕兵, 周子龙, 王卫华. 岩石破碎工程发展现状与展望[C]// 2009—2010岩石力学与岩石工程学科发展报告. 2010.

[36] 戴俊, 潘艳宾, 孟振. 微波照射下岩石强度弱化影响因素的试验研究[J]. 西安科技大学学报, 2016, 36(3): 364-368.

[37] 戴俊, 孟振, 吴丙权. 微波照射对岩石强度的影响研究[J]. 有色金属: 选矿部分, 2014 (3): 54-57.

[38] 戴俊, 朱清耀, 冯昌超, 等. 微波照射下花岗岩强度损伤规律研究[J]. 河南科技大学学报:自然科学版, 2021, 42(6):10.

[39] 戴俊, 张越博, 李栋烁, 等. 微波照射下玄武岩冲击破碎特性研究[J]. 煤矿开采, 2018, 25(5): 5-9.

[40] 张敏超. 微波照射下影响花岗岩损伤因素敏感性研究[D]. 西安科技大学, 2017.

[41] 徐小荷, 余 静. 岩石破碎学[M]. 北京: 煤炭工业出版社, 1984.

[42] Lu G M, Feng X T, Li Y H, et al. The microwave-induced fracturing of hard rock[J]. Rock Mechanics and Rock Engineering, 2019, 52: 3017-3032.

[43] 王靖涛, 赵爱国, 黄明昌. 花岗岩断裂韧度的高温效应[J]. 岩土工程学报, 1989, 11(6):7.

[44] Kahraman S, Canpolat A N, Fener M. The influence of microwave treatment on the compressive and tensile strength of igneous rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 129: 104303.

[45] 寇青军, 方建军, 张铃, 等. 微波技术在矿石粉碎中应用的研究进展[J]. 矿产保护与利用, 2019, 39(4): 172-178.

[46] Hartlieb P, Kuchar F, Moser P, et al. Reaction of different rock types to low-power (3.2 kW) microwave irradiation in a multimode cavity[J]. Minerals Engineering, 2018, 118: 37-51.

[47] Hassani F, Nekoovaght P M, Gharib N. The influence of microwave irradiation on rocks for microwave-assisted underground excavation[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(1): 1-15.

[48] Hassani F, Radziszewski P, Ouellet J, et al. Microwave assisted drilling and its influence on rock breakage a review[C]//ISRM International Symposium-5th Asian Rock Mechanics Symposium. OnePetro, 2008.

[49] Hassani F, Nekoovaght P M, Radziszewski P, et al. Microwave assisted mechanical rock breaking[C]//12th ISRM Congress. OnePetro, 2011.

[50] Hassani F, Nekoovaght P. The development of microwave assisted machineries to break hard rocks[C]//Proceedings of the 29th international symposium on automation and robotics in construction, Seoul, South Korea. 2011: 678-684.

[51] Tian J, Lu G M, Feng X T, et al. Experimental study on the microwave sensitivity of main rock-forming minerals[J]. Rock Soil Mech, 2019, 40(6): 1-9.

[52] Mahanta B, Singh T N, Ranjith P G. Influence of thermal treatment on mode I fracture toughness of certain Indian rocks[J]. Engineering Geology, 2016, 210: 103-114.

[53] Zuo J, Li Y, Zhang X, et al. The effects of thermal treatments on the subcritical crack growth of Pingdingshan sandstone at elevated high temperatures[J]. Rock Mechanics and Rock Engineering, 2018, 51: 3439-3454.

[54] Rudashevskiy N S, Burakopv B Y, Lupal S D, et al. Electric-pulse disintegration, an optimal technique for separating unbroken grains of accessory minerals[C]. Earth Science Sections, 1993, 319(6): 172-176.

[55] 李培培. 钻孔注水高压电脉冲致裂瓦斯抽放技术基础研究[D]. 太原理工大学, 2010.

[56] Linß E, Mueller A. High performance sonic pulses-a new method for crushing of concrete[J]. International Journal of Mineral Processing, 2004, 74(Supplement 1): 199-208.

[59] Goldfarb V, Budny R, Dunton A, et al. Removal of surface layer of concrete by a pulse-periodical discharge[C]//Digest of Technical Papers. 11th IEEE International Pulsed Power Conference (Cat. No. 97CH36129). IEEE, 1997, 2: 1078-1084.

[57] Arai H, Maehata H. Plasma blasting with coaxial electrodes: U.S. Patent 6, 293, 555[P]. 2001-9-4.

[59] Pronko S, Schofield G, Hamelin M, et al. Megajoule pulsed power experiments for plasma blasting mining applications[C]//Ninth IEEE International Pulsed Power Conference. IEEE, 1993, 1: 15.

[60] Lisitsyn I V, Inoue H, Nishizawa I, et al. Breakdown and destruction of heterogeneous solid dielectrics by high voltage pulses[J]. Journal of applied physics, 1998, 84(11): 6292-6297.

[61] 肖渊甫, 郑荣才, 邓江红. 岩石学简明教程[M]. 地质出版社, 2009.

[62] 方俊鑫, 殷之文. 电介质物理学[M]. 科学出版社, 2000.

[63] Schön J. Physical properties of rocks: A workbook[M]. Elsevier, 2011.

[64] Howell Jr B F, Licastro P H. Dielectric behavior of rocks and minerals[J]. American Mineralogist: Journal of Earth and Planetary Materials, 1961, 46(3-4_Part_1): 299-298.

[65] Lowndes R P, Martin D H. Dielectric dispersion and the structures of ionic lattices[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1969, 308(1495): 473-496.

[66] 王云梅. 基于孔隙水赋存状态的泥质砂岩导电和介电饱和度模型研究[D]. 长春: 吉林大学, 2019.

[67] Archie G E. The electrical resistivity log as an aid in determining some reservoir characteristics[J]. Transactions of the AIME, 1942, 146(01): 54-62.

[68] Liu H, Jie T, Li B, et al. Study of the low-frequency dispersion of permittivity and resistivity in tight rocks[J]. Journal of Applied Geophysics, 2017, 143: 141-148.

[69] Al-Shalabi E W, Sepehrnoori K, Delshad M. Numerical simulation of the LSWI effect on hydrocarbon recovery from carbonate rocks[J]. Petroleum Science and Technology, 2015, 33(5): 595-603.

[70] Posenato Garcia A, Heidari Z. Multifrequency analytical forward modeling of dielectric permittivity dispersion in mixed-wet sedimentary rocks[J]. SPE Reservoir Evaluation & Engineering, 2021, 25(02): 450-461.

[71] 蔡运胜, 尹洪岩, 张进国,等. 激发极化法工作原理方法及应用效果探讨[J]. 矿产勘查, 2012, 3(2):7.

[72] Boulahya K, Muñoz-Gil D, Gómez-Herrero A, et al. Eu 2 SrCo 1.5 Fe 0.5 O 7 a new promising Ruddlesden–Popper member as a cathode component for intermediate temperature solid oxide fuel cells[J]. Journal of Materials Chemistry A, 2019, 7(10): 5601-5611.

[73] 潘保芝, 阿茹罕, 郭宇航, 等. 裂缝性岩石低频下复电阻率与饱和度关系研究[J]. 地球物理学报, 2021, 64(10): 3774-3787.

[74] Bai G, Sun Q, Jia H, et al. Variations in fracture toughness of SCB granite influenced by microwave heating[J]. Engineering Fracture Mechanics, 2021, 258: 108048.

[75] Bai G, Sun Q, Jia H, et al. Mechanical responses of igneous rocks to microwave irradiation: a review[J]. Acta Geophysica, 2029, 70(3): 1183-1192.

[76] 程超, 于文刚, 贾婉婷, 等. 岩石热物理性质的研究进展及发展趋势[J]. 地球科学进展, 2017, 32(10): 1072.

[77] Kuruppu M D, Obara Y, Ayatollahi M R, et al. ISRM-suggested method for determining the mode I static fracture toughness using semi-circular bend specimen[J]. Rock Mechanics and Rock Engineering, 2014, 47: 297-294.

[78] Ge Z, Sun Q, Xue L, et al. The influence of microwave treatment on the mode I fracture toughness of granite[J]. Engineering Fracture Mechanics, 2021, 259: 107768.

[79] Lu G, Li Y, Hassani F, et al. The influence of microwave irradiation on thermal properties of main rock-forming minerals[J]. Applied Thermal Engineering, 2017, 112: 1525-1532.

[80] Hartlieb P, Kuchar F, Moser P, et al. Reaction of different rock types to low-power (3.2 kW) microwave irradiation in a multimode cavity[J]. Minerals Engineering, 2018, 118: 37-51.

[81] Kahraman S, Canpolat A N, Fener M. The influence of microwave treatment on the compressive and tensile strength of igneous rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 129: 104303.

[82] Hu X, Song X, Liu Y, et al. Experiment investigation of granite damage under the high-temperature and high-pressure supercritical water condition[J]. Journal of Petroleum Science and Engineering, 2019, 180: 299-297.

[83] Zheng Y, Sun T. A method to derive the dielectric loss factor of minerals from microwave heating rate tests[J]. Measurement, 2021, 171: 108788.

[84] Zhou Z, Cai X, Ma D, et al. Effects of water content on fracture and mechanical behavior of sandstone with a low clay mineral content[J]. Engineering Fracture Mechanics, 2018, 193: 47-65.

[85] 李鑫, 李庆文, 相犇, 等. 微波加热路径对花岗岩力学及能量特性的影响[J]. 矿业研究与开发, 2029, 42(11):6.

[86] 宋永林, 陈国华, 常明澈. 大庆油田电磁波测井研究与应用[J]. 大庆石油地质与开发, 1997, 16(4): 70-72.

[87] 杨全红, 褚衍辉, 张亚宁. 地质雷达在岩石风化程度划分上的应用[J]. 电力勘测设计, 2018, 1.

[88] 潘小青,刘庆成. 红外技术的发展[J]. 东华理工大学学报(自然科学版), 2002, 25(1):66-69.

[89] 田桢. 用电磁波破碎岩石的研究[J]. 非金属矿, 1980(02):50-56.

[90] 孙西濛,马瑞吕嘉,等. 高压脉冲等离子体碎岩的实验研究[J]. 地下空间与工程学报, 2020, 16(6): 1657-1664.

[91] 章志成, 裴彦良, 刘振, 等. 高压短脉冲作用下岩石击穿特性的实验研究[J]. 高电压技术, 2012, 38(7): 1719-1725.

[92] 祝效华, 罗云旭, 刘伟吉, 等. 等离子体电脉冲钻井破岩机理的电击穿实验与数值模拟方法[J]. 石油学报, 2020, 41(9): 1146-1162.

[93] 谭诚, 卢青青, 周旭, 等. 高压电脉冲破碎技术特点及进展[J]. 现代矿业, 2022.

[94] Boev S, Vajov V, Levchenko B, et al. Electropulse technology of material destruction and boring[C]//Digest of Technical Papers. 11th IEEE International Pulsed Power Conference (Cat. No. 97CH36129). IEEE, 1997, 1: 290-295.

[95] Cho S H, Ito M, Yokota M, et al. Dynamic fragmentation of rock by high-voltage pulses[C]//Golden Rocks 2006, The 41st US Symposium on Rock Mechanics (USRMS). OnePetro, 2006.

[96] 祝效华, 刘伟吉. 旋冲钻井技术的破岩及提速机理[J]. 石油学报, 2018, 39(2): 216.

[97] Timoshkin I V, Mackersie J W, MacGregor S J. Plasma channel microhole drilling technology[C]//Digest of Technical Papers. PPC-2003. 14th IEEE International Pulsed Power Conference (IEEE Cat. No. 03CH37472). IEEE, 2003, 2: 1336-1339.

[98] 王鄂川, 樊洪海, 徐鹏, 等. 等离子通道钻井技术概况和发展前景[J]. 断块油气田, 2013 (2): 291-295.

[99] 赵大军, 房昕. 高压脉冲放电钻进实验平台的研究[J]. 科技传播, 2011 (25): 56-57.

[100] 李显靖. 电脉冲等离子爆破[J]. 国外金属矿山, 1993 (10): 120-120.

[101] 闫铁, 李玮, 毕雪亮, 等. 一种基于破碎比功的岩石破碎效率评价新方法[J]. 石油学报, 2009, 30(2): 291.

[102] 黄国良. 高压脉冲放电碎岩的研究[D]. 华中科技大学, 2013.

[103] 彭建宇, 王浩南, 吴硕, 等. 红砂岩受高压电脉冲击穿作用下的破裂行为试验研究[J]. 金属矿山, 2029, 51(11): 71.

[104] Levchenko B, Podpletnev V, Siomkin B. Features of multiaction of pulsed voltage on rock[J]. Electron Treatment of Materials, 1987, 18(3): 50-53.

[105] 刘建辉, 刘敦一, 张玉海, 等. 岩石样品破碎新方法-SelFrag 高压脉冲破碎仪[J]. 岩石矿物学杂志, 2012, 31(5): 767-770.

[106] 白丽丽, 李铮, 王营, 等. 岩石孔隙性质对电脉冲破岩的影响规律[J]. 特种油气藏, 2021, 29(1): 148.

[107] Burkin V V, Kuznetsova N S, Lopatin V V. Dynamics of electro burst in solids: I. Power characteristics of electro burst[J]. Journal of Physics D: Applied Physics, 2009, 42(18): 185204.

[108] Burkin V V, Kuznetsova N S, Lopatin V V. Dynamics of electro burst in solids: II. Characteristics of wave process[J]. Journal of Physics D: Applied Physics, 2009, 42(25): 255209.

中图分类号:

 TU458    

开放日期:

 2023-06-16    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式