- 无标题文档
查看论文信息

论文中文题名:

 微生物降解差异煤阶煤的甲烷吸附行为及其约束机制    

姓名:

 孟佳豪    

学号:

 20209071005    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0818    

学科名称:

 工学 - 地质资源与地质工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 地质与环境学院    

专业:

 地质资源与地质工程    

研究方向:

 非常规天然气    

第一导师姓名:

 鲍园    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-16    

论文答辩日期:

 2023-06-04    

论文外文题名:

 Methane adsorption behavior and constraint mechanism of different coal rank coals under microbial degradation    

论文中文关键词:

 微生物降解 ; 差异煤阶 ; 孔隙结构 ; 表面官能团 ; 甲烷吸附    

论文外文关键词:

 Microbial degradation ; Differential coal ranks ; Pore structure ; Surface functional groups ; Methane adsorption    

论文中文摘要:

煤层气是一种以甲烷为主的清洁型能源,微生物降解煤会生成以甲烷为主的混合气体,补充原始储层含气量,在这个过程中会改变煤的官能团和孔隙结构。微生物降解作用对于不同煤阶煤的降解改造效果不同,进而导致差异煤阶煤的甲烷吸附行为发生不同的改变,所以本文选取6种差异煤阶煤作为研究对象,在室内进行微生物降解煤生烃模拟实验,采用等温吸附、氮气吸附、核磁共振和红外光谱等方法,对降解前后煤的甲烷吸附能力、孔隙结构和官能团进行表征,揭示微生物降解作用对差异煤阶煤的甲烷吸附能力、孔隙结构和表面官能团的影响,探讨微生物降解差异煤阶煤的甲烷吸附行为约束机制。取得的主要认识如下:

经过为期42天的室内研究证明微生物降解煤会生成以甲烷为主的混合气体,随着煤变质程度的加深,甲烷产量逐渐降低,甲烷气体的生成主要经历了三个阶段:缓慢增长期、快速增长期和衰竭期。甲烷产量与煤和微生物的接触面积有关。

在甲烷吸附能力、煤孔隙结构和表面官能团变化方面,微生物降解作用使低阶煤的甲烷吸附能力降低,中高阶煤的甲烷吸附能力呈增加趋势;煤中芳香环侧链、含氧官能团减少,脂肪族长链断裂,富氢、富氧程度降低,芳香化程度和有机质成熟度升高,说明微生物作用能够有效的破坏煤的官能团结构。微生物作用对孔隙的改造行为在低阶煤中表现为扩孔,微孔和过渡孔减少,中孔增多,中高阶煤表现为增孔,微孔、过渡孔和中孔增加。

(3)在甲烷吸附行为方面,Ro,max<0.9%煤的甲烷吸附行为主要受煤孔隙结构的约束。Ro,max>1.4%煤的甲烷吸附行为主要受煤表面芳香族官能团的约束。甲烷最大吸附量与微孔数量和芳香族官能团成正相关,含氧官能团呈负相关。微生物降解后煤中微孔数量在低阶煤中减少,中高阶煤中增加,导致微生物降解后煤最大甲烷吸附量在低阶煤中降低,中高阶煤中升高。说明对于低阶煤,微生物不仅可以产生较多的甲烷,而且还能有效降低煤体甲烷吸附能力,有利于甲烷的解吸,对低阶煤煤层气的开采具有积极意义。

论文外文摘要:

Coalbed methane is a clean energy source mainly composed of methane. Microbial degradation of coal generates a mixture of methane based gases, supplementing the original gas content of the reservoir. During this process, it changes the functional groups and pore structure of coal. The effect of microbial degradation on the degradation and transformation of different coal ranks is different, which leads to different changes in the methane adsorption behavior of different coal ranks. Therefore, this article selects six different coal ranks as the research object and conducts indoor simulation experiments on microbial degradation of coal to generate hydrocarbons. Isothermal adsorption, nitrogen adsorption, nuclear magnetic resonance, and infrared spectroscopy methods are used to investigate the methane adsorption capacity of coal before and after degradation Characterization of pore structure and functional groups reveals the impact of microbial degradation on methane adsorption capacity, pore structure, and surface functional groups of differential coal rank coal, and explores the constraint mechanism of methane adsorption behavior of microbial degradation of differential coal rank coal. The main insights gained are as follows:

After 42 days of indoor research, it has been proven that microbial degradation of coal generates a mixture of gases mainly composed of methane. As the degree of coal metamorphism deepens, methane production gradually decreases. The generation of methane gas mainly undergoes three stages: slow growth, rapid growth, and depletion. Methane production is related to the contact area between coal and microorganisms.

In terms of methane adsorption capacity, coal pore structure, and surface functional group changes, microbial degradation reduces the methane adsorption capacity of low rank coal, while the methane adsorption capacity of medium to high rank coal shows an increasing trend; The reduction of aromatic ring side chains and oxygen-containing functional groups in coal, the fracture of long chains of fatty groups, the reduction of hydrogen and oxygen enrichment, and the increase of aromatization and organic matter maturity indicate that microbial action can effectively destroy the functional group structure of coal. The transformation behavior of pores by microbial action in low rank coal is manifested as pore expansion, reduction of micropores and transition pores, and increase of mesopores. In medium to high rank coal, it is manifested as pore enlargement, and increase of micropores, transition pores, and mesopores.

In terms of methane adsorption behavior, the methane adsorption behavior of coal with Ro,max <0.9% is mainly constrained by the pore structure of the coal. The methane adsorption behavior of coal with Ro,max >1.4% is mainly constrained by the aromatic functional groups on the coal surface. The maximum adsorption capacity of methane is positively correlated with the number of micropores and aromatic functional groups, while it is negatively correlated with oxygen-containing functional groups. After microbial degradation, the number of micropores in coal decreases in low rank coal and increases in medium to high rank coal, resulting in a decrease in the maximum methane adsorption capacity of coal after microbial degradation in low rank coal and an increase in medium to high rank coal. For low rank coal, microorganisms can not only produce more methane, but also effectively reduce the methane adsorption capacity of the coal, which is conducive to methane desorption and has positive significance for the extraction of low rank coal seam methane.

参考文献:

[1]杰里米·里夫金. 第三次工业革命[M]. 张体伟, 译. 北京: 中信出版社, 2012.

[2]刘瑞, 王文文, 刘笑, 等. 二氧化碳排放与经济增长脱钩关系研究[J]. 环境科学与技术, 2013, 36(11): 199-204.

[3]BP集团. BP 世界能源统计年鉴[EB/OL]. BP中国, 2022−06−28.

[4]国际能源署(IEA). 2022年世界能源展望[EB/OL]. 国际能源署-IEA, 2022−10−13.

[5]邹才能, 杨智, 何东博, 等. 常规-非常规天然气理论、技术及前景[J]. 石油勘探与开发, 2018, 45(04): 575-587.

[6]Szlązak N, Obracaj D, Swolkień J. Enhancing safety in the polish high-methane coal mines: an overview[J]. Mining, Metallurgy & Exploration, 2020, 37: 567-579.

[7]Kretschmann J. Sustainable Change of Coal-Mining Regions[J]. Mining, Metallurgy & Exploration, 2019, 37: 167-178.

[8]康永尚, 陈晶, 张兵, 等. 沁水盆地寿阳勘探区煤层气井排采水源层判识[J]. 煤炭学报, 2016, 41(09):2263-2272.

[9]Aravena R, Harrison S M, Barker J F, et al. Origin of methane in the Elk Valley coalfield, southeastern British Columbia, Canada[J]. Chemical Geology, 2003, 195: 219-227.

[10]Kotarba M J. Composition and origin of coalbed gases in the Upper Silesian and Lublin basins, Poland[J]. Organic Geochemistry, 2001, 32(1): 163-180.

[11] Smith J W, Pallasser R J. Microbial origin of Australian coalbed methane. AAPG Bull, 1996, 80 (6): 891-897.

[12]滕吉文, 司芗, 王玉辰. 我国化石能源勘探、开发潜能与未来[J].石油物探, 2021, 60(01): 1-12.

[13]刘大锰, 刘正帅, 蔡益栋. 煤层气成藏机理及形成地质条件研究进展[J]. 煤炭科学技术, 2020, 48(10): 1-16.

[14]刘亚飞, 王波波, 张洪勋, 等. 芦岭煤田微生物群落结构和生物成因气的产甲烷类型研究[J]. 微生物学报, 2019, 59(06): 1174-1187.

[15]Scott A R. Improving coal gas recovery with microbially enhanced coalbed methane. In: Mastalerz M, Glikson M, Golding SD (Eds), Coalbed Methane: Scientific, Environmental and Economic Evaluation[M]. Dordrecht: Springer Netherlands, 1999: 89-110.

[16]Strąpoć D, Mastalerz M, Dawson K, et al. Biogeochemistry of Microbial Coal-Bed Methane[J]. Annual Review of Earth and Planetary Sciences, 2011, 39: 617-656.

[17]聂志强, 杨秀清, 韩作颖. 不同煤阶生物成因煤层气微生物群落的功能及多样性研究进展[J]. 微生物学通报, 2019, 46(05): 1127-1135.

[18]郭红光, 王飞, 李治刚. 微生物增产煤层气技术研究进展[J]. 微生物学通报, 2015, 42(03): 584-590.

[19]Shimizu S, Akiyama M, Naganuma T, et al. Molecular characterization of microbial communities in deep coal seam groundwater of northern Japan[J]. Geobiology, 2007, 5: 423-433.

[20]Midgley D J, Hendry P, Pinetown K L, et al. Characterization of a microbial community associated with a deep, coal seam methane reservoir in the Gippsland Basin, Australia[J]. International Journal of Coal Geology, 2010, 82: 232-239.

[21]Strąpoć D, Mastalerz M, Eble C, et al. Characterization of the origin of coalbed gases in southeastern Illinois Basin by compound-specific carbon and hydrogen stable isotope ratios[J]. Organic Geochemistry, 2007, 38: 267-287.

[22]Tang Y, Ji P, Lai G, et al. Diverse microbial community from the coalbeds of the Ordos Basin, China[J]. International Journal of Coal Geology, 2012, 90-91: 21-33.

[23]Guo H, Yu Z, Liu R, et al. Methylotrophic methanogenesis governs the biogenic coal bed methane formation in Eastern Ordos Basin, China[J]. Appl Microbiol Biotechnol, 2012, 96: 1587-97.

[24]王爱宽, 秦勇. 生物成因煤层气实验研究现状与进展[J]. 煤田地质与勘探, 2010, 38(05): 23-27.

[25]Zehnder A J B. Biology of anaerobic microorganisms [M]. New York: John Wiley and Sons, 1988: 2-5.

[26]韩青. 沁水盆地原位真菌厌氧降解煤增产甲烷研究[D]. 太原: 太原理工大学, 2018.

[27]任付平, 韩长胜, 王玲欣, 等. 微生物提高煤层气井单井产量技术研究与实践[J]. 石油钻采工艺, 2016, 38(03): 395-399.

[28]张锦, 张登峰, 霍培丽, 等. 煤基质表面官能团对二氧化碳及甲烷吸附性能作用规律的研究进展[J]. 化工进展, 2017, 36(06): 1977-1988.

[29]Cannon C G. Sutherland G B B M.The Infra-red absorption spectra of coals and coals extracts[J]. Transactions of the Faraday Society, 1945, 41(5): 279-288.

[30]Brown J K. The infrared spectra of coals [J]. J. Chem. Soc., 1955: 744-752.

[31]Bustin R M, Ross J V, Rouzaud J N. Mechanisms of graphiteformation from kerogen: experimental evidence[J]. International Journal of Coal Geology, 1995, 28(1): 1-36.

[32]Baysal M, Yürüm A, Yıldız B, et al. Structure of some western Anatolia coals investigated by FTIR, Raman, 13C solid state NMR spectroscopy and X-ray diffraction[J]. International Journal of Coal Geology, 2016, 163: 166-176.

[33]舒新前, 王祖讷, 徐精求, 等. 神府煤煤岩组分的结构特征及其差异[J]. 燃料化学学报, 1996(05): 50-57.

[34]徐龙君, 鲜学福, 刘成伦, 等. 用X射线衍射和FTIR光谱研究突出区煤的结构[J]. 重庆大学学报(自然科学版), 1999(04): 23-27.

[35]曹代勇, 李小明, 张守仁. 构造应力对煤化作用的影响-应力降解机制与应力缩聚机制[J]. 中国科学(D辑: 地球科学), 2006, 36(01): 59-68.

[36]李小诗, 琚宜文, 侯泉林, 等. 不同变形机制构造煤大分子结构演化的谱学响应[J]. 中国科学:地球科学, 2012, 42(11): 1690-1700.

[37]张艺宣. 煤储层压裂液滞留效应特征及其影响因素[D]. 太原: 太原理工大学, 2021.

[38]Baldwin B A, Yamahashi W S. Detecting fluid movement and isolation in reservoir cores using medical NMR imaging techniques[J]. SPE Reservoir Engineering, 1989, 4(2): 207-212.

[39]唐巨鹏. 煤层气赋存运移的核磁共振成像理论和实验研究[D]. 阜新: 辽宁工程技术大学, 2006.

[40]杨明, 刘亚鹏. 高阶煤孔隙特征的低场核磁共振实验研究[J]. 中国安全生产科学技术, 2016, 12(11): 63-69.

[41]李志愿, 崔云江, 关叶钦, 等. 基于孔径分布和T2谱的低孔渗储层渗透率确定方法[J]. 中国石油大学学报(自然科学版), 2018, 42(04): 34-40.

[42]朱林奇, 张冲, 胡佳, 等. 基于单元体模型的核磁共振测井渗透率评价方法[J]. 石油钻探技术, 2016, 44(04): 120-126.

[43]马会腾, 翟成, 徐吉钊, 等. 基于NMR技术的超声波频率对煤体激励致裂效果的影响[J]. 煤田地质与勘探, 2019, 47(04): 38-44.

[44]黄家国, 许开明, 郭少斌, 等. 基于SEM、NMR和X-CT的页岩储层孔隙结构综合研究[J]. 现代地质, 2015, 29(01): 198-205.

[45]Clarkson C R, Bustin R M, LevyJ H. Application of the mono/multilayer and adsorption potential theories to coal methane adsorption isotherms at elevated temperature and pressure[J]. Carbon, 1997, 35(12): 1689-1705.

[46]于洪观, 范维唐, 孙茂远, 等. 煤中甲烷等温吸附模型的研究[J]. 煤炭学报, 2004(04): 463-467.

[47]Kuila U, Prasad M. Specific surface area and pore-size distribution in clays and shales[J]. Geophysical Prospecting, 2013, 61: 341-362.

[48]熊添. 井研—犍为地区筇竹寺组页岩孔隙结构特征及其影响因素[D]. 北京: 中国石油大学(北京), 2017.

[49]Tian H, Pan L, Zhang T, et al. Pore characterization of organic-rich Lower Cambrian shales in Qiannan Depression of Guizhou Province, Southwestern China[J]. Marine and Petroleum Geology, 2015, 62: 28-43.

[50]聂百胜, 段三明. 煤吸附瓦斯的本质[J]. 太原理工大学学报, 1998(04): 88-92.

[51]贾腾飞. 准东南低阶煤孔隙结构特征及对甲烷吸附的影响[D]. 乌鲁木齐: 新疆大学, 2021.

[52]Langmuir I. The constitution and fundamental properties of solids and liquids[J]. Langmuir Irving, 1917, 183(1): 102-105.

[53]Brunauer S, Emmett P H, Teller E. Adsorption of gases in multimolecular layers[J]. Journal of the American Chemical Society, 1938, 60(2): 309-19.

[54]桑树勋, 朱炎铭, 张时音, 等. 煤吸附气体的固气作用机理(Ⅰ)——煤孔隙结构与固气作用[J]. 天然气工业, 2005(01): 13-15+205.

[55]韩文成, 李爱芬, 方齐, 等. 含水煤岩超临界等温吸附模型的对比分析[J]. 煤炭学报, 2020, 45(12): 4095-4103.

[56]姜伟, 吴财芳, 姜玮, 等. 吸附势理论在煤层气吸附解吸研究中的应用[J]. 煤炭科学技术, 2011, 39(05): 102-104.

[57]张永强, 韩志雄, 薛海军, 等. 西南典型矿区煤等温吸附/解吸影响因素研究[J]. 煤炭工程, 2019, 51(06): 18-23.

[58]王凤林, 袁玉, 张遂安, 等. 不同含水及负压条件下煤层气等温吸附解吸规律[J]. 煤炭科学技术, 2019, 47(06): 158-163.

[59]Weniger P, Kalkreuth W, Busch A, et al. High Pressure methane and carbon dioxide sorption on coal and shale samples from the Paraná Basin, Brazil[J]. International Journal of Coal Geology, 2010, 84: 190-205.

[60]Mastalerz M, Gluskoter H, Rupp J. Carbon dioxide and methane sorption in high volatile bituminous coals from Indiana, USA[J]. International Journal of Coal Geology, 2004, 60: 43-55.

[61]李丹丹. 煤的工业分析参数对多煤阶煤岩吸附性能的影响研究[J]. 煤, 2020, 29(06): 62-65.

[62]鲍园, 安超, 琚宜文, 等. 川南煤田古叙矿区DC-5井上二叠统龙潭组煤层甲烷吸附性及其主控因素[J]. 天然气地球科学, 2020, 31(01): 93-99.

[63]Beamish B B, Gamson P D. Sorption behavior and microstructure of Bowen Basin coals[R]. Townsville: Coalseam Gas Research Institute, James Cook University, 1993.

[64]Ettinger I, Dmitriev A, Lanrba E. Natural factors influencing coal sorption properties. 5. Some special features of sorption of anthracite coal of the Eastern Donbas[J]. Fuel, 1966, 45(5): 363-371.

[65]Joubert J I, Grein C T, Bienstock D. Effect of moisture on the methane capacity of American coals[J]. Fuel, 1974, 53(3): 186-191.

[66]Kim A G. Estimating the methane content of bituminous coalbeds from adsorption data[R]. Pittsburgh: Pittsburgh Mining and Safety Research Center, 1977.

[67]Lu X Q, Jin D L, Wei S X, et al. Competitive adsorption of a binary CO2-CH4 mixture in nanoporous carbons: effects of edge-functionalization[J]. Nanoscale, 2015, 7(3): 1002-1012.

[68]Kandagal V S, Pathak A, Ayappa K G, et al. Adsorption on edge-functionalized bilayer graphene nanoribbons:assessing the role of functional groups in methane uptake[J]. The Journal of Physical Chemistry C, 2012, 116(44): 23394-23403.

[69]Zhang D F, Cui Y J, Liu B, et al. Supercritical pure methane and CO2 adsorption on various rank coals of China: experiments and modeling[J]. Energy & Fuels, 2011, 25(4): 1891-1899.

[70]降文萍. 煤阶对煤吸附能力影响的微观机理研究[J]. 中国煤层气, 2009, 6(2): 19-22, 34.

[71]Zhou F B, Liu S Q, Pang Y Q, et al. Effects of coal functional groups on adsorption microheat of coal bed methane[J]. Energy & Fuels, 2015, 29(3): 1550-1557.

[72]刘斌. 动静载荷下煤岩冲击失稳机理及多参量前兆规律研究[D]. 北京: 中国矿业大学(北京), 2021.

[73]吕国伟. 红庆河煤矿多层厚弱顶板复合诱冲效应[D]. 徐州: 中国矿业大学, 2020.

[74]Zhao Y, Tai Z, Guo X. In situ SAXS study on the evolution of coal nanopore structures with uniaxial compressive stress[J]. Journal of Natural Gas Science and Engineering, 2022, 108: 104806.

[75]侯健. 西湾露天煤矿建设项目环境评价及生态保护策略研究[D]. 咸阳: 西北农林科技大学, 2018.

[76]宫泽. 西湾露天矿边坡变形监测与参数优化研究[D]. 西安: 西安科技大学, 2018.

[77]宋昱. 低中阶构造煤纳米孔及大分子结构演化机理[D]. 徐州: 中国矿业大学, 2019.

[78]李佩. 淮北祁东煤矿构造煤中微量元素迁移聚集的构造控制[D]. 徐州: 中国矿业大学, 2015.

[79]田强国. 祁东煤矿地质构造对煤与瓦斯突出的影响研究[D]. 淮南: 安徽理工大学, 2009.

[80]李新. 高变质程度高硫煤的有机地球化学特征[D]. 邯郸: 河北工程大学, 2022.

[81]牛菲. 桑树坪煤矿3号煤层瓦斯赋存规律及防突技术研究[D]. 西安: 西安科技大学, 2020.

[82]郭红玉, 罗源, 马俊强, 等. 不同煤阶煤的微生物增透效果和机理分析[J]. 煤炭学报, 2014, 39(09): 1886-1891.

[83]李祥春, 高佳星, 张爽, 等. 基于扫描电镜、孔隙-裂隙分析系统和气体吸附的煤孔隙结构联合表征[J]. 地球科学: 1-15.

[84]翟成, 孙勇, 范宜仁, 等. 低场核磁共振技术在煤孔隙结构精准表征中的应用与展望[J]. 煤炭学报: 1-29.

[85]客昆, 秦建华, 牟必鑫, 等. 西昌盆地上三叠统白果湾组富有机质泥页岩沉积岩相古地理与孔隙特征[J]. 沉积与特提斯地质, 2020, 40(3): 140-150.

[86]B. B 霍多特著, 宋士钊等译. 煤与瓦斯突出[M]. 北京: 中国工业出版社, 1966.

[87]Sing, K. S. W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry 1985, 57 (4), 603-619.

[88]胡彪. 煤中多尺度孔隙结构的甲烷吸附行为特征及其微观影响机制[D]. 徐州: 中国矿业大学, 2022.

[89]李祥春, 李忠备, 张良, 等.不同煤阶煤样孔隙结构表征及其对瓦斯解吸扩散的影响[J]. 煤炭学报, 2019, 44(S1): 142-156.

[90]Zheng S, Yao Y, Liu D, et al. Nuclear magnetic resonance surface relaxivity of coals[J]. International Journal of Coal Geology, 2019, 205: 1-13.

[91]朱学栋, 朱子彬, 韩崇家, 等. 煤中含氧官能团的红外光谱定量分析[J]. 燃料化学学报, 1999(04): 335-339.

[92]Song Y, Jiang B, Liu J. Nanopore structural characteristics and their impact on methane adsorption and diffusion in low to medium tectonically deformed coals: case study in the Huaibei coal field[J]. Energy & Fuels 2017, 31 (7), 6711-6723.

[93]孙勇, 赵迪斐. 低温液氮吸附在高煤级煤吸附孔隙特征表征中的误差分析[J]. 非常规油气, 2020, 7(05): 9-14.

[94]Fu H, Tang D, Xu T, et al. Characteristics of pore structure and fractal dimension of low-rank coal: A case study of Lower Jurassic Xishanyao coal in the southern Junggar Basin, NW China[J]. Fuel, 2017, 193: 254-264.

[95]Liu X, Nie B. Fractal characteristics of coal samples utilizing image analysis and gas adsorption[J]. Fuel, 2016, 182: 314-322.

[96]Li H, Chang Q, Gao R, et al. Fractal characteristics and reactivity evolution of lignite during the upgrading process by supercritical CO2 extraction[J]. Applied Energy, 2018, 225: 559-569.

[97]谢松彬, 姚艳斌, 陈基瑜, 等. 煤储层微小孔孔隙结构的低场核磁共振研究[J]. 煤炭学报, 2015, 40(S1): 170-176.

[98]郝盼云, 孟艳军, 曾凡桂, 等. 红外光谱定量研究不同煤阶煤的化学结构[J]. 光谱学与光谱分析, 2020, 40(03): 787-792.

[99]Li H, Shi S, Lin B, et al. Effects of microwave-assisted pyrolysis on the microstructure of bituminous coals. Energy 2019, 187.

[100] 郝长胜, 袁迎春, 贾廷贵, 等. 不同变质程度煤的化学结构红外光谱研究[J]. 煤矿安全, 2022, 53(11): 15-22.

[101] 李伍, 杨文斌, 战星羽, 等. 煤有机大分子碳结构石墨化机制[J]. 煤炭学报, 2023, 48(2): 855-868.

中图分类号:

 P168.13    

开放日期:

 2023-06-16    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式