- 无标题文档
查看论文信息

论文中文题名:

 基于CNN的矿井富水区电磁反演研究    

姓名:

 杨峪坤    

学号:

 18307205002    

保密级别:

 保密(2年后开放)    

论文语种:

 chi    

学科代码:

 085208    

学科名称:

 工学 - 工程 - 电子与通信工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 通信与信息工程学院    

专业:

 电子与通信工程    

研究方向:

 计算电磁    

第一导师姓名:

 田丰    

第一导师单位:

  西安科技大学    

论文提交日期:

 2021-06-18    

论文答辩日期:

 2021-06-05    

论文外文题名:

 Research on electromagnetic inversion of mine water rich area based on CNN    

论文中文关键词:

 电磁反演 ; 卷积神经网络 ; 时域有限差分法 ; 变步长卷积    

论文外文关键词:

 Electromagnetic inversion ; Convolutional neural network ; FDTD ; Variable step size convolution    

论文中文摘要:

电磁反演是研究地球物理电磁特性的主要方法,反演算法的优劣直接影响反演精度和应用的好坏。因此,提高电磁反演算法的精度对我国进行矿产、油气等资源的勘探具有十分重要的现实意义。

针对传统卷积神经网络在电磁反演中提取数据特征时冗余信息多,导致网络反演精度低的问题,提出一种变步长卷积神经网络(Convolutional Neural Networks,CNN)电磁反演方法。基于传统卷积神经网络,变步长卷积神经网络将输入数据拓展为一维行向量,在各层网络中交替使用不同卷积步长的卷积核进行卷积运算提取数据特征,利用变步长卷积方式替代传统卷积神经网络的池化层,完成对冗余信息的过滤和特征信息的选择,并通过小卷积核级联的方式增大网络感受野提高网络的非线性表达能力。通过二维时域有限差分法(2D-FDTD)对不同电磁参数的富水区模型进行正演计算,并根据计算得出的电场时域响应特征建立样本数据集;将变步长卷积神经网络应用于电磁反演研究,建立适用于富水区问题的变步长卷积神经网络电磁反演模型;选取二次场电场时域响应特征作为网络输入,位置及其电磁参数信息作为输出对网络进行训练,通过对卷积神经网络网络进行调参优化,确定最优的卷积神经网络结构。利用训练好的网络对反演目标进行测试,将传统卷积神经网络电磁反演方法和变步长卷积神经网络电磁反演方法的反演结果进行定量的评估,验证改进后算法的反演精度。

变步长CNN的矿井富水区电磁反演方法对坐标位置的反演平均相对误差为2.85%,对相对介电常数的反演平均相对误差为6.07%,反演结果与实际模型吻合度较高。研究结果表明,基于变步长CNN的电磁反演算法反演精度较高,理论上可应用于矿井富水区的电磁反演。

论文外文摘要:

Electromagnetic inversion is the main method to study the electromagnetic properties of geophysics. The quality of the inversion algorithm directly affects the accuracy and application of the inversion. Therefore, improving the accuracy of the electromagnetic inversion algorithm has very important practical significance for the exploration of minerals, oil and gas and other resources in my country.

In order to solve the problem that the traditional convolutional neural network extracts data features in electromagnetic inversion, there is a lot of redundant information, which leads to the low accuracy of network inversion. A variable step size convolutional neural network (Convolutional Neural Networks, CNN) electromagnetic inversion method is proposed. Based on the traditional convolutional neural network, the variable-step convolutional neural network expands the input data into a one-dimensional row vector. In each layer of the network, convolution kernels with different convolution steps are used alternately to perform convolution operations to extract data features, and use variable steps The long convolution method replaces the pooling layer of the traditional convolutional neural network, completes the filtering of redundant information and the selection of feature information, and increases the network receptive field through the cascade of small convolution kernels to improve the nonlinear expression ability of the network. Forward calculation of the water-rich zone model with different electromagnetic parameters by the two-dimensional finite difference time domain method (2D-FDTD), and establish a sample data set based on the calculated electric field response characteristics in the time domain; the variable step size convolutional neural network Applied to electromagnetic inversion research, establishing a variable-step convolutional neural network electromagnetic inversion model suitable for water-rich areas; selecting the time domain response characteristics of the secondary field electric field as the network input, and the position and electromagnetic parameter information as the output to perform the network Training, by tuning and optimizing the convolutional neural network, determine the optimal convolutional neural network structure. Use the trained network to test the inversion target, quantitatively evaluate the inversion results of the traditional convolutional neural network electromagnetic inversion method and the variable-step convolutional neural network electromagnetic inversion method to verify the inversion accuracy of the improved algorithm.

The variable step size CNN electromagnetic inversion method in the rich water area of the mine has an average relative error of 2.85% for the inversion of the coordinate position and an average relative error of 6.07% for the inversion of the relative permittivity. The inversion results are in good agreement with the actual model. high. The research results show that the electromagnetic inversion algorithm based on variable step size CNN has high inversion accuracy, and can theoretically be applied to electromagnetic inversion in mine water-rich areas.

参考文献:

[1]GAO Chenqiang,LI Xindou,ZHOU Fengshun,MU Song. Face Liveness Detection Based on the Improved CNN with Context and Texture Information[J].Chinese Journal of Electronics,2019,28(06):1092-1098.

[2]缪祥华,单小撤.基于密集连接卷积神经网络的入侵检测技术研究[J].电子与信息学报,2020,42(11):2706-2712.

[3]李维刚,谌竟成,谢璐,等.基于自组织增量-图卷积神经网络的金相图半监督学习[J].电子与信息学报,2021,43(0):1-8.

[4]Yang Z, Chang E C, Liang Z. Adversarial neural network inversion via auxiliary knowledge alignment[J].arXiv preprint arXiv:1902.08552,2019.

[5]Ma F, Ayaz U, Karaman S. Invertibility of convolutional generative networks from partial measurements[J]. Advances in Neural Information Processing Systems 31,2019.

[6]Putzky P, Welling M. Invert to learn to invert[J].arXiv preprint arXiv:1911.10914,2019.

[7]Jin Jie,Gong Jianqiang.An interference-tolerant fast convergence zeroing neural network for dynamic matrix inversion and its application to mobile manipulator path tracking[J].Alexandria Engineering Journal,2021,60(1):659-669.

[8]Elsisi M,Mahmoud K,Lehtonen M,et al. An improved neural network algorithm to efficiently track various trajectories of robot manipulator arms[J].Ieee Access,2021,9:11911-11920.

[9]徐超,金光,杨秀彬,徐婷婷,常琳.综合深度卷积神经网络的摆扫影像反演恢复算法[J].光学学报,2019,39(12):361-371.

[10]Shahrebabaki A S,Siniscalchi S M,Salvi G,et al. Sequence-to-sequence articulatory inversion through time convolution of sub-band frequency signals[J]. database,2020,1:5.

[11]Aberdam A, Simon D,Elad M. When and how can deep generative models be inverted?[J].arXiv preprint arXiv:2006.15555,2020.

[12]Wu Z,Sun Y,Matlock A,et al.Simba: Scalable inversion in optical tomography using deep denoising priors[J].IEEE Journal of Selected Topics in Signal Processing,2020,14(6):1163-1175.

[13]Liang L,Deng S,Gueguen L,et al. Convolutional neural network with median layers for denoising salt-and-pepper contaminations[J].Neurocomputing,2021,442:26-35.

[14]闫星宇,顾汉明,罗红梅,闫有平.基于改进深度学习方法的地震相智能识别[J].石油地球物理勘探,2020,55(06):1169-1177+1159.

[15]Vantassel J P, Kumar K, Cox B R.Using Convolutional Neural Networks to Develop Starting Models for 2D Full Waveform Inversion[J].arXiv preprint arXiv:2104.01626,2021.

[16]Herrmann L, Schwab C, Zech J.Deep ReLU neural network expression rates for data-to-QoI maps in Bayesian PDE inversion[J].SAM Research Report,2020,2020.

[17]Sun H,Demanet L.Extrapolated full-waveform inversion with deep learning[J].Geophysics,2020,85(3):275-288.

[18]Cao R,Earp S, de Ridder S A L,et al.Near-real-time near-surface 3D seismic velocity and uncertainty models by wavefield gradiometry and neural network inversion of ambient seismic noise[J].Geophysics, 2020,85(1):KS13-KS27.

[19]Zhu W, Xu K, Darve E,et al.Integrating Deep Neural Networks with Full-waveform Inversion: Reparametrization, Regularization, and Uncertainty Quantification[J].arXiv preprint arXiv:2012.11149,2020.

[20]Liu B, Guo Q, Li S,et al.Deep learning inversion of electrical resistivity data[J].IEEE Transactions on Geoscience and Remote Sensing,2020,58(8):5715-5728.

[21]Kobayashi H,Solak A C,Batson J,et al.Image deconvolution via noise-tolerant self-supervised inversion[J].arXiv preprint arXiv:2006.06156,2020.

[22]Wei-Jian H, Yong-Tao L,Yuan H.Prediction of chaotic time series using hybrid neural network and attention mechanism[J].ACTA PHYSICA SINICA,2021,70(1).

[23]Wang X, Wang H.Forest Height Mapping Using Complex-Valued Convolutional Neural Network[J].IEEE Access,2019,7:126334-126343.

[24]Guth P A,Schillings C,Weissmann S.Ensemble Kalman filter for neural network based one-shot inversion[J].arXiv preprint arXiv:2005.02039,2020.

[25]Earp S, Curtis A.Probabilistic neural network-based 2D travel-time tomography[J].Neural Computing and Applications,2020, 32(22):17077-17095.

[26]王逸宸,柳林涛,许厚泽.基于卷积神经网络识别重力异常体[J].物探与化探,2020,44(02):394-400.

[27]吕尧,单小彩,霍守东,杨长春.基于深度卷积神经网络的地震数据局部信噪比估计[J].地球物理学报,2020,63(01):320-328.

[28]杨冠雨,王璐,孟凡顺.基于深度卷积神经网络的地震数据重建[J].地球物理学进展,2020,35(04):1497-1506.

[29]Gao M,Franz B A,Knobelspiesse K,et al.Efficient multi-angle polarimetric inversion of aerosols and ocean color powered by a deep neural network forward model[J].Atmospheric Measurement Techniques Discussions, 2021,14(6):4083-4110.

[30]Das V,Pollack A,Wollner U,et al. Convolutional neural network for seismic impedance inversion[J].Geophysics,2019,84(6):R869-R880.

[31]He Q,Wang Y.Reparameterized full-waveform inversion using deep neural networks[J].Geophysics,2021,86(1):V1-V13.

[32]Liu S,Tan H,Xiao L.A Fully Complex-Valued and Robust ZNN Model for Dynamic Complex Matrix Inversion Under External Noises[J].IEEE Access,2020,8:87478-87489.

[33]Puzyrev V. Deep learning electromagnetic inversion with convolutional neural networks[J]. Geophysical Journal International,2019,218(2):817-832.

[34]Xiao L Y, Li J, Han F, et al. Dual-Module NMM-IEM Machine Learning for Fast Electromagnetic Inversion of Inhomogeneous Scatterers With High Contrasts and Large Electrical Dimensions[J]. IEEE Transactions on Antennas and Propagation, 2020,68(8): 6245-6255.

[35]Puzyrev V, Swidinsky A. Inversion of 1D frequency-and time-domain electromagnetic data with convolutional neural networks[J]. Computers & Geosciences, 2021,149:104681.

[36]王青,刘云鹤,殷长春,等.基于模型空间压缩的大地电磁三维反演研究[J].地球物理学报,2019,062(002):752-762.

[37]张富彬,周晨,王成,赵家奇,刘祎,夏国臻,赵正予.基于深度学习的全球电离层TEC预测[J/OL].电波科学学报:1-8[2021-04-11].

[38]Xiao J, Li J, Chen Y, et al. Fast electromagnetic inversion of inhomogeneous scatterers embedded in layered media by born approximation and 3-D U-Net[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 17(10):1677-1681.

[39]能昌信,孙晓晨,徐亚,等. 基于深度卷积神经网络的场地污染非线性反演方法[J].中国环境科学,2019,039(012):5162-5172.

[40]高明亮,于生宝,郑建波,等. 基于IGA算法的介电常数神经网络反演成像研究[J].地球物理学报,2016,59(011):4372-4382.

[41]Jiang Z, Tahmasebi P, Mao Z. Deep residual U-net convolution neural networks with autoregressive strategy for fluid flow predictions in large-scale geosystems[J]. Advances in Water Resources, 2021,150:103878.

[42]廖晓龙,张志厚,姚禹,路润琪,范祥泰,曹云勇,冯涛,石泽玉.基于卷积神经网络的大地电磁反演[J].中南大学学报(自然科学版),2020,51(09):2546-2557.

[43]嵇艳鞠,徐江,吴琼,王远,冯雪,栾卉,关珊珊,林君.基于神经网络电性源半航空视电阻率反演研究[J].电波科学学报,2014,29(05):973-980.

[44]周辉林,欧阳韬,刘健.基于随机平均梯度下降和对比源反演的非线性逆散射算法研究[J].电子与信息学报,2020,42(08):2053-2058.

[45]王鹤,刘梦琳,席振铢,等. 基于遗传神经网络的大地电磁反演[J]. 地球物理学报, 2018,061(004):1563-1575.

[46]李新叶,龙慎鹏,朱婧. 基于深度神经网络的少样本学习综述[J].计算机应用研究,2020,37(8):2241-2247.

[47]李泽宇.基于微波辐射计的大气温湿廓线反演算法及应用研究[D].哈尔滨工程大学,2018.

[48]孙洲鑫,王文松.深度学习中激活函数权重初始值的选取[J].信息技术与信息化,2020(09):100-102.

[49]章琳,袁非牛,张文睿,曾夏玲.全卷积神经网络研究综述[J].计算机工程与应用,2020,56(01):25-37.

[50]郭敏钢,宫鹤.AlexNet改进及优化方法的研究[J].计算机工程与应用,2020,56(20):124-131.

[51]葛德彪,闫玉波.电磁波时域有限差分方法(第三版)[M].西安:西安电子科技大学出版社,2011.10.

中图分类号:

 TM15/O441.4    

开放日期:

 2023-06-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式