论文中文题名: |
冻融作用下土石混合体力学特性 及强度劣化机制研究
|
姓名: |
李刚
|
学号: |
19204209051
|
保密级别: |
保密(2年后开放)
|
论文语种: |
chi
|
学科代码: |
085213
|
学科名称: |
工学 - 工程 - 建筑与土木工程
|
学生类型: |
硕士
|
学位级别: |
工程硕士
|
学位年度: |
2022
|
培养单位: |
西安科技大学
|
院系: |
建筑与土木工程学院
|
专业: |
建筑与土木工程
|
研究方向: |
寒区岩土工程
|
第一导师姓名: |
唐丽云
|
第一导师单位: |
西安科技大学
|
第二导师姓名: |
金龙
|
论文提交日期: |
2022-06-15
|
论文答辩日期: |
2022-05-28
|
论文外文题名: |
Study on mechanical properties and strength deterioration mechanism of soil-rock mixture under freezing and thawing
|
论文中文关键词: |
冻融作用 ; 土石混合体 ; 孔隙结构 ; 力学特性 ; 强度劣化机制
|
论文外文关键词: |
Freezing and thawing ; Soil-rock mixture ; Pore characteristics ; Mechanical properties ; Strength deterioration mechanism
|
论文中文摘要: |
︿
冻土区浅表层土石混合体受冻融作用影响,内部冰晶反复消融重聚、孔隙结构重组诱发其强度折减,极易引起工程病害,往往是寒区致灾、诱灾的发源处。探明冻融作用下土石混合体力学特性及强度劣化机制是寒区工程灾变防控的关键科学问题之一。论文以不同含石率、冻融次数、温度下土石混合体为研究对象,开展宏细观试验、数值模拟及理论研究。利用核磁共振(NMR)对土石混合体在冻融作用下孔隙结构演化及未冻水含量进行识别;开展高低温三轴试验探明土石混合体宏观力学行为;结合数值模拟建立土石混合体三轴压缩过程变形破坏特征与宏观力学行为的对应关系;首次建立考虑冰水比例变化的冻结土石混合体细观计算模型,并揭示出冻融作用下土石混合体强度劣化机制。文章内容为寒区土石混合体灾害防治提供理论参考。
针对冻融过程中土石混合体孔隙结构变化及冰水相变问题,采用NMR技术获取了不同冻融次数试样孔隙分布、连通性等演化特征及不同冻融次数后试样冰水相变过程融冰、持水特性。研究发现冻融后高含石率试样T2谱形态变化差异较为明显,主要体现在大、中孔孔隙分布。-15℃~-5℃区间试样内部大孔隙中的冰最先消融,而相变区间不同温度下T2曲线差异性明显,有更多小孔隙内的冰在该阶段消融。冻融循环后由于试样孔隙孔径增大及连通性的增强导致融冰速率增加。
针对冻融环境下土石混合体宏观力学特性,通过三轴试验明确了土石混合体力学行为随冻融循环次数及温度的变化规律。结果表明,随冻融次数增加,土石混合体强度参数均呈现递减趋势,且在第1次冻融后衰减率最大。3、15、20次冻融后的试样受应力集中影响发生非对称破坏。不同负温下试样应力应变曲线的形态差异明显:-10℃以下呈脆性破坏特征,-5℃时曲线具有良好的线性关系,而-3℃时曲线出现了“二次升高”的现象。除含石率为35%的试样,其余含石率的试样的应力应变曲线在冻融后均发生更加显著的跳跃、波动,黏聚力及内摩擦角的冻融损失率均在含石率为35%时出现拐点。
针对冻融作用下土石混合体受荷变形破坏特征,利用PFC2D及COMSOL软件获取了试样裂隙、颗粒旋转等细观结构演化过程,明确了受荷下冻结土石混合体应力分布、变形等特征。研究发现未经历冻融及10次冻融后试样最终为鼓胀变形破坏,1、6、15次冻融后试样发生单侧偏心破坏。冻融后45%、55%含石率试样破坏后形成贯通剪切带而65%含石率试样发生单侧偏心破坏。在-5℃~0℃区间应力集中分布明显增强,损伤破坏的贯通性明显。达到正温后试样内部仅有部分区域出现应力集中且整体应力值较小,损伤破坏主要产生于土石界面区。
针对冻融作用下土石混合体强度劣化机制,基于考虑冰水比例变化的冻结土石混合体细观计算模型以及孔隙结构与强度关联变化,明确了冻融作用下土石混合体强度劣化机制。研究表明,-3℃以下试样宏观强度主要来源于颗粒间的摩擦力,随温度升高强度逐渐受颗粒间咬合力控制。土石混合体强度衰减快慢主要取决于其内部水分迁移通路的通畅性及孔隙大小、数目。低含石率试样中小孔隙数目衰减率的降低是其黏聚力和剪切强度衰减逐渐趋于平缓的原因,而高含石率试样强度的劣化主要是由于大孔孔隙形态变化引起骨架效应衰减所导致。以上研究成果不仅对于认知寒区土石混合体孕灾机制及针对性防控具有重要指导价值,而且是对土石混合体研究体系的前瞻探索与有益补充。
﹀
|
论文外文摘要: |
︿
Affected by freezing and thawing, the shallow soil-rock mixture in cold regions is subject to strength reduction induced by repeated melting and regrouping of internal ice crystals and pore structure reorganization, which is very easy to cause engineering diseases, and is often the source of disasters in cold regions. It is one of the key scientific problems in the prevention and control of engineering disasters in cold regions to explore the mechanical properties and strength deterioration mechanism of soil-rock mixtures under the action of freezing and thawing. This paper took the soil-rock mixture under different rock content, freeze–thaw cycle times and temperature as the research object, carried out macro and meso test, numerical simulation and theoretical research. Nuclear magnetic resonance (NMR) was used to identify the evolution of pore structure and unfrozen water content of soil-rock mixture under freeze–thaw cycle. Carried out high and low temperature triaxial test to explore the macro mechanical behavior of soil-rock mixture. Numerical simulation was used to establish the corresponding relationship between deformation and failure characteristics during triaxial compression and macro mechanical behavior of soil-rock mixture. The meso calculation model of frozen soil-rock mixture considering the change of ice water ratio was established for the first time, and the strength deterioration mechanism of soil-rock mixture under freeze–thaw was revealed. The content of this paper provides a theoretical reference for the disaster prevention of soil-rock mixture in cold regions.
Aiming at the change of pore structure and ice water phase transition of soil-rock mixture during freezing and thawing, the evolution characteristics of pore distribution and connectivity of samples with different freeze–thaw cycle times were obtained by NMR technology. At the same time, the ice melting and water holding characteristics of the sample in the ice water phase change process after different freeze–thaw cycle times were obtained. It is found that, the morphological change difference of high rock content samples is obvious after freeze–thaw cycles, which is mainly reflected in the distribution of large and medium pores. The ice in the sample’s large pore in the range of –15℃ ~ –5℃ melts first. In the phase transition range, the T2 curve is obviously different at different temperature, more ice in the small pore melts at this stage. After freeze–thaw cycles, the ice melting rate of the sample increases due to the increase of pore size and the change of connectivity.
Aiming at the macro mechanical characteristics of soil-rock mixture under freeze–thaw environment, through the triaxial test, the change law of mechanical behavior of soil-rock mixture with the number of freeze–thaw cycles and temperature was clarified. The results show that with the increase of freeze–thaw cycles, the strength parameters show a decreasing trend, and the loss rate is the largest after the first freeze–thaw cycle. The samples after 3, 15 and 20 times of freeze–thaw cycle are asymmetrically damaged under the influence of stress concentration. The shape of stress–strain curves of samples at different negative temperatures is obviously different: The curves below –10℃ show the characteristics of brittle failure, the curves at –5℃ have a good linear relationship, and the curves at –3℃ show the phenomenon of "secondary rise". Except for the samples with rock content of 35%, the stress–strain curves of samples with other rock content have more significant jump and fluctuation after freeze–thaw cycles. The loss rates of cohesion and internal friction angle have inflection points when the rock content is 35%.
Aiming at the load deformation and failure characteristics of soil-rock mixture under freezing and thawing, using PFC2D and COMSOL software, the meso structure evolution processes such as crack and particle rotation of the sample were obtained, and the stress distribution and deformation characteristics of the frozen soil-rock mixture under load were determined. The results show that the samples without and 10 times freeze–thaw cycles were finally bulging deformation failure, and the samples have unilateral eccentric failure after 1, 6 and 15 times of freeze–thaw. After freeze–thaw cycles, the samples with 45% and 55% rock content broke through the shear band, while the sample with 65% rock content had unilateral eccentric failure. In the range of –5℃~0℃, the stress concentration distribution is obviously enhanced, and the transfixion of damage failure is obvious. After reaching the positive temperature, only some areas of the sample appear stress concentration and the overall stress value is small, and the damage mainly occurs in the soil-rock interface area.
Aiming at the strength deterioration mechanism of soil-rock mixture under freezing–thawing, based on the meso calculation model of frozen soil-rock mixture considering the change of ice water ratio and the correlation between pore structure and strength, the strength degradation mechanism of soil-rock mixture under freeze-thaw was clarified. The results show that the macroscopic strength of the sample below –3℃ mainly comes from the friction between particles. With the increasing of temperature, the strength is gradually controlled by the biting force of the particle. The strength decay rate of soil-rock mixture mainly depends on the smoothness of its internal water migration path and the size and number of pores. For the samples with low rock content, the decrease of the decay rate of the number of small pores is the reason for the gradual flattening of the decay of cohesion and shear strength, and the degradation of high rock content samples is mainly due to the weakening of the skeleton effect caused by big pore morphology changes. The above research results not only have important guiding value for understanding the mechanism of soil-rock mixture disaster pregnancy and targeted prevention and control in cold regions, but also provide a forward-looking exploration and beneficial supplement for the research system of soil-rock mixture.
﹀
|
参考文献: |
︿
[1]Liu J K, Chang D, Yu Q M. Influence of freeze-thaw cycles on mechanical properties of a silty sand[J]. Engineering Geology, 2016, 210: 23-32. [2]崔鹏, 贾洋, 苏凤环, 等. 青藏高原自然灾害发育现状与未来关注的科学问题[J]. 中国科学院院刊, 2017, 32(09): 985-992. [3]中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[N]. 人民日报, 2021-03-13(001). [4]汪双杰, 王佐, 陈建兵. 青藏高原工程走廊冻土环境与高速公路布局[M]. 上海: 上海科学出版社, 2017. [5]Meng Q X, Wang H L, Xu W Y, et al. A numerical homogenization study of the elastic property of a soil-rock mixture using random mesostructure generation[J]. Computers and Geotechnics, 2018, 98: 48-57. [6]马巍, 牛富俊, 穆彦虎. 青藏高原重大冻土工程的基础研究[J]. 地球科学进展, 2012, 27(11): 1185-1191. [7]中铁第一勘察设计院集团有限公司. 改建铁路青藏线格尔木至拉萨段扩能改造车站工程勘察报告[R]. 西安: 中铁第一勘察设计院集团有限公司, 2014. [8]Hu B, Wu Y, Zhang X F, et al. Monitoring the Thaw Slump-Derived Thermokarst in the Qinghai-Tibet Plateau Using Satellite SAR Interferometry[J]. Journal of Sensors, 2019. [9]Wang S Y, Wang G L. Study on Strength and Deformation Characteristics of Rock Soil Mixture and Soil Stone Interaction[J]. Chemical Engineering Transactions, 2017, 62: 991-996. [10]汪双杰, 王佐, 袁堃, 等. 青藏公路多年冻土地区公路工程地质研究回顾与展望[J]. 中国公路学报, 2015, 28(12): 1-8+32. [11]牛富俊, 马巍, 吴青柏. 青藏铁路主要冻土路基工程热稳定性及主要冻融灾害[J]. 地球科学与环境学报, 2011, 33(02): 196-206. [12]Chang W J, Phantachang T. Effects of gravel content on shear resistance of gravelly soils[J]. Engineering Geology, 2016, 207: 78-90. [13]廖秋林, 李晓, 郝钊, 等.土石混合体的研究现状及研究展望[J]. 工程地质学报, 2006(06): 800-807. [14]徐文杰, 张海洋. 土石混合体研究现状及发展趋势[J]. 水利水电科技进展, 2013, 33(01): 80-88. [15]王宇, 李晓, 赫建明, 等. 土石混合体细观特性研究现状及展望[J]. 工程地质学报, 2014, 22(01): 112-123. [16]胡瑞林, 李晓, 王宇, 等. 土石混合体工程地质力学特性及其结构效应研究[J]. 工程地质学报, 2020, 28(02): 255-281. [17]Edmund M, Eric S L. The engineering significance of the scale-independence of some Franciscan melanges in California, USA. In: Proceedings of the 35th US rock mechanics symposium, Balkema, Rotterdam; 1995. p. 907–14. [18]Kalender A, Sonmez H, Medley E, et al. An approach to predicting the overall strengths of unwelded bimrocks and bimsoils[J]. Engineering geology, 2014, 183: 65-79. [19]Avşar E. Contribution of fractal dimension theory into the uniaxial compressive strength prediction of a volcanic welded bimrock[J]. Bulletin of Engineering Geology and the Environment, 2020: 1-15. [20]Jia H L, Ding S, Zi F, et al. Evolution in sandstone pore structures with freeze-thaw cycling and interpretation of damage mechanisms in saturated porous rocks[J]. Catena, 2020, 195: 104915. [21]Jamshidi A, Nikudel M R, Khamehchiyan M. A novel physico-mechanical parameter for estimating the mechanical strength of travertines after a freeze–thaw test[J]. Bulletin of Engineering Geology and the Environment, 2017, 76(1): 181-190. [22]李杰林, 刘汉文, 周科平, 等. 冻融作用下岩石细观结构损伤的低场核磁共振研究[J]. 西安科技大学学报, 2018, 38(02): 266-272. [23]许玉娟, 周科平, 李杰林, 等. 冻融岩石核磁共振检测及冻融损伤机制分析[J]. 岩土力学, 2012, 33(10): 3001-3005+3102. [24]Li J L, Kaunda R B, Zhou K P. Experimental investigations on the effects of ambient freeze-thaw cycling on dynamic properties and rock pore structure deterioration of sandstone[J]. Cold Regions Science and Technology, 2018, 154: 133-141. [25]Ke B, Zhou K P, Deng H W, et al. NMR pore structure and dynamic characteristics of sandstone caused by ambient freeze-thaw action[J]. Shock and Vibration, 2017, 2017. [26]Jin S S, Zheng G P, Yu J. A micro freeze-thaw damage model of concrete with fractal dimension[J]. Construction and Building Materials, 2020, 257: 119434. [27]冯上鑫, 柴军瑞, 许增光, 等. 基于核磁共振技术研究渗流作用下土石混体细观结构的变化[J]. 岩土力学, 2018, 39(08): 2886-2894. [28]Tang L Y, Li G, Li Z, et al. Shear properties and pore structure characteristics of soil–rock mixture under freeze–thaw cycles[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(4): 3233-3249. [29]郑郧, 马巍, 邴慧. 冻融循环对土结构性影响的试验研究及影响机制分析[J]. 岩土力学, 2015, 36(05): 1282-1287+1294. [30]张熙胤, 张明义, 路建国, 等. 土体冻融特征研究现状与展望[J]. 冰川冻土, 2016, 38(06): 1644-1657. [31]Tian H H, Wei C F, Lai Y M, et al. Quantification of water content during freeze–thaw cycles: A nuclear magnetic resonance based method[J]. Vadose Zone Journal, 2018, 17(1): 1-12. [32]Li Z M, Chen J, Sugimoto M. Pulsed NMR measurements of unfrozen water content in partially frozen soil[J]. Journal of Cold Regions Engineering, 2020, 34(3): 04020013. [33]寇璟媛, 滕继东, 张升. 冻土未冻水含量与孔径分布的试验探究[J]. 西安科技大学学报, 2018, 38(02): 246-252. [34]Weng L, Wu Z J, Liu Q S, et al. Evolutions of the unfrozen water content of saturated sandstones during freezing process and the freeze-induced damage characteristics[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 142: 104757. [35]Jia H L, Ding S, Wang Y, et al. An NMR-based investigation of pore water freezing process in sandstone[J]. Cold Regions Science and Technology, 2019, 168: 102893. [36]Kong L M, Wang Y S, Sun W J, et al. Influence of plasticity on unfrozen water content of frozen soils as determined by nuclear magnetic resonance[J]. Cold Regions Science and Technology, 2020, 172: 102993. [37]Vallejo L E, Mawby R. Porosity influence on the shear strength of granular material–clay mixtures[J]. Engineering Geology, 2000, 58(2): 125-136. [38]Simoni A, Houlsby G T. The direct shear strength and dilatancy of sand–gravel mixtures[J]. Geotechnical & Geological Engineering, 2006, 24(3): 523. [39]Xua W J, Xu Q, Hu R L. Study on the shear strength of soil–rock mixture by large scale direct shear test[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(8): 1235-1247. [40]Coli N, Berry P, Boldini D. In situ non-conventional shear tests for the mechanical characterisation of a bimrock[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(1): 95-102. [41]唐建一, 徐东升, 刘华北. 含石量对土石混合体剪切特性的影响[J]. 岩土力学, 2018,39(01): 93-102. [42]Liu L Q, Mao X S, Xiao Y J, et al. Effect of rock particle content on the mechanical behavior of a soil-rock mixture (SRM) via large-scale direct shear test[J]. Advances in Civil Engineering, 2019, 2019. [43]Wei H Z, Xu W J, Xu X F, et al. Mechanical properties of strongly weathered rock-soil mixtures with different rock block contents[J]. International Journal of Geomechanics, 2018, 18(5): 04018026. [44]刘新荣, 涂义亮, 王林枫, 等.土石混合体的剪切面分形特征及强度产生机制[J]. 岩石力学与工程学报, 2017, 36(09): 2260-2274. [45]Afifipour M, Moarefvand P. Mechanical behavior of bimrocks having high rock block proportion[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 65: 40-48. [46]Terzaghi K, Peck R B, Mesri G. Soil mechanics in engineering practice[M]. John Wiley & Sons, 1996. [47]程展林, 丁红顺, 吴良平. 粗粒土试验研究[J]. 岩土工程学报, 2007(08): 1151-1158. [48]金磊, 曾亚武, 张森. 块石含量及形状对胶结土石混合体力学性能影响的大型三轴试验[J]. 岩土力学, 2017, 38(01): 141-149. [49]夏加国, 胡瑞林, 祁生文, 等. 含超径颗粒土石混合体的大型三轴剪切试验研究[J]. 岩石力学与工程学报, 2017, 36(08): 2031-2039. [50]刘龙旗, 毛雪松, 肖亚军, 等.含水率对坡积体路基填料剪切特性影响试验研究[J]. 中国公路学报, 2020, 33(09): 126-135. [51]Wei H Z, Xu W J, Wei C F, et al. Influence of water content and shear rate on the mechanical behavior of soil-rock mixtures[J]. Science China Technological Sciences, 2018, 61(8): 1127-1136. [52]薛亚东, 岳磊, 李硕标. 含水率对土石混合体力学特性影响的试验研究[J]. 工程地质学报, 2015, 23(01): 21-29. [53]邓华锋, 原先凡, 李建林, 等.土石混合体直剪试验的破坏特征及抗剪强度取值方法研究[J]. 岩石力学与工程学报, 2013, 32(S2): 4065-4072. [54]Li Z, Hu F, Qi S, et al. Strain-softening failure mode after the post-peak as a unique mechanism of ruptures in a frozen soil-rock mixture[J]. Engineering Geology, 2020, 274: 105725. [55]Qi C Q, Li L Y, Wei J H, et al. Shear behavior of frozen rock-soil mixture[J]. Advances in Materials Science and Engineering, 2016, 2016. [56]王青志, 朱鑫鑫, 刘建坤, 等.寒区高速铁路路基粗颗粒填料大型直剪试验研究[J]. 铁道学报, 2016, 38(08): 102-109. [57]卜建清,王天亮.冻融及细粒含量对粗粒土力学性质影响的试验研究[J].岩土工程学报,2015,37(04):608-614. [58]朱磊, 谢强, 任新红, 等. 川藏线季节性粗颗粒冻土抗剪强度特性试验研究[J]. 铁道学报, 2018, 40(03): 107-111. [59]Qu Y L, Ni W K, Niu F J, et al. Mechanical and electrical properties of coarse-grained soil affected by cyclic freeze-thaw in high cold regions[J]. Journal of Central South University, 2020, 27(3): 853-866. [60]Zhou Z, Xing K, Yang H, et al. Damage mechanism of soil-rock mixture after freeze-thaw cycles[J]. Journal of Central South University, 2019, 26(1): 13-24. [61]Zhou Z, Liu Z Z, Yang H, et al. Freeze-thaw damage mechanism of elastic modulus of soil-rock mixtures at different confining pressures[J]. Journal of Central South University, 2020, 27(2): 554-565. [62]Yang H, Zhou Z, Wang X C, et al. Elastic modulus calculation model of a soil-rock mixture at normal or freezing temperature based on micromechanics approach[J]. Advances in Materials Science and Engineering, 2015, 2015. [63]Xing K, Zhou Z, Yang H, et al. Macro–meso freeze–thaw damage mechanism of soil–rock mixtures with different rock contents[J]. International Journal of Pavement Engineering, 2018: 1-11. [64]王宇, 李晓. 土石混合体损伤开裂计算细观力学探讨[J]. 岩石力学与工程学报, 2014, 33(S2): 4020-4031. [65]张强, 汪小刚, 赵宇飞, 等. 基于围压柔性加载的土石混合体大型三轴试验离散元模拟研究[J]. 岩土工程学报, 2019, 41(08): 1545-1554. [66]Gu X Q, Huang M S, Qian J G. Discrete element modeling of shear band in granular materials[J]. Theoretical and Applied Fracture Mechanics, 2014, 72: 37-49. [67]Xu W J, Wang S, Zhang H Y, et al. Discrete element modelling of a soil-rock mixture used in an embankment dam[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 86: 141-156. [68]Cho N, Martin C D, Sego D C. Development of a shear zone in brittle rock subjected to direct shear[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(8): 1335-1346. [69]杨升, 李晓庆. 基于3维离散元颗粒流的土石混合体大型直剪试验模拟分析[J]. 工程科学与技术, 2020, 52(03): 78-85. [70]金磊, 曾亚武. 土石混合体宏细观力学特性和变形破坏机制的三维离散元精细模拟[J]. 岩石力学与工程学报, 2018, 37(06): 1540-1550. [71]张强, 汪小刚, 赵宇飞, 等. 土石混合体三维细观结构随机重构及其力学特性颗粒流数值模拟研究[J]. 岩土工程学报, 2019, 41(01): 60-69. [72]Xu W J, Hu L M, Gao W. Random generation of the meso-structure of a soil-rock mixture and its application in the study of the mechanical behavior in a landslide dam[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 86: 166-178. [73]Shan P F, Lai X P. Mesoscopic structure PFC∼ 2D model of soil rock mixture based on digital image[J]. Journal of Visual Communication and Image Representation, 2019, 58: 407-415. [74]丁秀丽, 李耀旭, 王新. 基于数字图像的土石混合体力学性质的颗粒流模拟[J]. 岩石力学与工程学报, 2010, 29(03): 477-484. [75]赵欢, 李东升. 严寒地区铁路路基冻融沉降数值模拟研究[J]. 铁道标准设计, 2013, (12): 5-9. [76]白青波, 李旭, 田亚护, 等. 冻土水热耦合方程及数值模拟研究[J]. 岩土工程学报, 2015, 37(S2): 131-136. [77]杨天娇, 王述红, 张泽, 等. 寒区隧道围岩水热力耦合数值分析[J]. 东北大学学报(自然科学版), 2019, 40(08): 1178-1184. [78]侯曙光, 沙爱民. 土体冻融过程温度场与位移场耦合分析[J]. 长安大学学报(自然科学版), 2009, 29(05): 25-29. [79]Lai Y M, Pei W S, Zhang M Y et al. Study on theory model of hydro-thermal–mechanical interaction process in saturated freezing silty soil[J]. International Journal of Heat and Mass Transfer, 2014, 78 : 805-819. [80]罗会武, 刘恩龙. 饱和土在单向冻结过程中的水-热-力耦合分析[J]. 防灾减灾工程学报, 2017, 37(04): 586-592. [81]中华人民共和国住房和城乡建设部. 土工试验方法标准 (GBT 50123-2019)[S]. 北京:中国计划出版社, 2019. [82]Lindquist E S, Goodman R E. Strength and deformation properties of a physical model. In: Proceedings of the first North American rock mechanics conference, Balkema, Rotterdam; 1994. p. 843–50. [83]Kravchenko E, Liu J K, Niu W W, et al. Performance of clay soil reinforced with fibers subjected to freeze-thaw cycles[J]. Cold Regions Science and Technology, 2018, 153: 18-24. [84]Jamshidi R, Lake C. Hydraulic and strength performance of three cement-stabilized soils subjected to cycles of freezing and thawing[J]. Canadian Geotechnical Journal, 2015. [85]Rosa M G, Cetin B, Edil T B, et al. Freeze–thaw performance of fly ash–stabilized materials and recycled pavement materials[J]. Journal of Materials in Civil Engineering, 2017, 29(6): 04017015. [86]Yang L, Jia H L, Han L, et al. Hysteresis in the ultrasonic parameters of saturated sandstone during freezing and thawing and correlations with unfrozen water content[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2021, 13(5): 1078-1092. [87]Cowan B, Cowan B P. Nuclear magnetic resonance and relaxation[M]. Cambridge: Cambridge University Press, 1997. [88]Cutmore N G, Sowerby B D, Lynch L J, et al. Determination of moisture in black coal using pulsed nuclear magnetic resonance spectrometry[J]. Fuel, 1986, 65(1): 34-39. [89]Tice A R, Anderson D M, Sterrett K F. Unfrozen water contents of submarine permafrost determined by nuclear magnetic resonance[M]. Developments in Geotechnical Engineering. Elsevier, 1982, 28: 135-146. [90]Watanabe K, Wake T. Measurement of unfrozen water content and relative permittivity of frozen unsaturated soil using NMR and TDR[J]. Cold Regions Science and Technology, 2009, 59(1): 34-41. [91]Jia H L, Zi F, Yang G S, et al. Influence of pore water (ice) content on the strength and deformability of frozen argillaceous siltstone[J]. Rock Mechanics and Rock Engineering, 2020, 53(2): 967-974. [92]Tang L Y, Wang K, Jin L, et al. A resistivity model for testing unfrozen water content of frozen soil[J]. Cold Regions Science and Technology, 2018, 153: 55-63. [93]Shen Y J, Wang Y Z, Wei X, et al. Investigation on meso-debonding process of the–concrete interface induced by freeze–thaw cycles using NMR technology[J]. Construction and Building Materials, 2020, 252: 118962. [94]Xin F D, Xu H, Tang D Z, et al. Experimental study on the change of reservoir characteristics of different lithotypes of lignite after dehydration and improvement of seepage capacity[J]. Fuel, 2020, 277: 118196. [95]Tang L Y, Du Y, Liu L, et al. Effect mechanism of unfrozen water on the frozen soil-structure interface during the freezing-thawing process[J]. Geomechanics and Engineering, 2020, 22(3): 245-254. [96]Harmer J, Callcott T, Maeder M, et al. A novel approach for coal characterization by NMR spectroscopy: global analysis of proton T1 and T2 relaxations[J]. Fuel, 2001, 80(3): 417-425. [97]Li J L, Kaunda R B, Zhou K P. Experimental investigations on the effects of ambient freeze-thaw cycling on dynamic properties and rock pore structure deterioration of sandstone[J]. Cold Regions Science and Technology, 2018, 154: 133-141. [98]穆彦虎, 陈涛, 陈国良, 等. 冻融循环对黏质粗粒土抗剪强度影响的试验研究[J]. 防灾减灾工程学报, 2019, 39(03): 375-386. [99]Dong H, Peng B C, Gao Q F, et al. Study of hidden factors affecting the mechanical behavior of soil–rock mixtures based on abstraction idea[J]. Acta Geotechnica, 2021, 16(2): 595-611. [100]Cui K, Qin X T. Ultrasonic experiment and mechanical properties of rock and soil mixture under triaxial deformation[J]. Arabian Journal of Geosciences, 2019, 12(24): 1-7. [101]夏加国, 胡瑞林, 祁生文, 等. 含超径颗粒土石混合体的大型三轴剪切试验研究[J]. 岩石力学与工程学报, 2017, 36(08): 2031-2039. [102]Coetzee C J. Calibration of the discrete element method[J]. Powder Technology, 2017, 310: 104-142. [103]石崇, 张强, 王盛年. 颗粒流(PFC5.0)数值模拟技术及应用[M]. 北京: 中国建筑工业出版社, 2018: 257. [104]Sun W. A py model for predicting the lateral nonlinear interaction between pile and soil-rock mixture material based on discrete element modeling[J]. Simulation Modelling Practice and Theory, 2020, 100: 102060. [105]Cen D F, Huang D, Ren F. Shear deformation and strength of the interphase between the soil–rock mixture and the benched bedrock slope surface[J]. Acta Geotechnica, 2017, 12(2): 391-413. [106]吴帅峰, 蔡红, 魏迎奇, 等. 土石混合料剪切机理及抗剪强度分量特性研究[J]. 岩土工程学报, 2019, 41(S2): 230-234. [107]李志军, 沈照伟, 曲月霞, 等. 非冻结合成模型冰的动摩擦系数[J]. 水利学报, 2001(09): 51-54. [108]Oksanen P, Keinonen J. The mechanism of friction of ice[J]. Wear, 1982, 78(3): 315-324. [109]Liang H, Martin J M, Mogne T L. Experimental investigation of friction on low-temperature ice[J]. Acta materialia, 2003, 51(9): 2639-2646. [110]Lishman B, Sammonds P, Feltham D. A rate and state friction law for saline ice[J]. Journal of Geophysical Research: Oceans, 2011, 116(C5). [111]Schulson E M, Fortt A L. Static strengthening of frictional surfaces of ice[J]. Acta Materialia, 2013, 61(5): 1616-1623. [112]Fortt A L, Schulson E M. The resistance to sliding along Coulombic shear faults in ice[J]. Acta materialia, 2007, 55(7): 2253-2264. [113]Graham J, Noonan M L, Lew K V. Yield states and stress–strain relationships in a natural plastic clay[J]. Canadian geotechnical journal, 1983, 20(3): 502-516. [114]Maher M H, Ho Y C. Mechanical properties of kaolinite/fiber soil composite[J]. Journal of Geotechnical Engineering, 1994, 120(8): 1381-1393. [115]Perfect E. Fractal models for the fragmentation of rocks and soils: a review[J]. Engineering geology, 1997, 48(3-4): 185-198. [116]Porteneuve C, Korb J P, Petit D, et al. Structure-texture correlation in ultra-high-performance concrete: A nuclear magnetic resonance study[J]. Cement and Concrete Research, 2002, 32: 97-101. [117]Al-Mahrooqi S H, Grattoni C A, Moss A K, et al. An investigation of the effect of wettability on NMR characteristics of sandstone rock and fluid systems[J]. Journal of Petroleum Science and Engineering, 2003, 39(3-4): 389-398. [118]Qi J L, Vermeer P A, Cheng G D. A review of the influence of freeze-thaw cycles on soil geotechnical properties[J]. Permafrost and Periglacial Processes, 2006, 17(3): 245-252. [119]Viklander P. Permeability and volume changes in till due to cyclic freeze/thaw[J]. Canadian Geotechnical Journal, 1998, 35(3): 471-477 [120]Zhang Z, Pendin V V, Feng W J, et al. The influence of freeze-thaw cycles on the granulometric composition of Moscow morainic clay[J]. Sciences in Cold and Arid Regions, 2018, 7(3): 199-205. [121]Baker R, Frydman S. Unsaturated soil mechanics: Critical review of physical foundations[J]. Engineering Geology, 2009, 106(1-2): 26-39.
﹀
|
中图分类号: |
TU445
|
开放日期: |
2024-06-14
|