- 无标题文档
查看论文信息

论文中文题名:

 组合表面活性剂作用下茫崖诺卡氏菌对五彩湾煤的降解机理研究    

姓名:

 石晨    

学号:

 19103077013    

保密级别:

 保密(2年后开放)    

论文语种:

 chi    

学科代码:

 0819    

学科名称:

 工学 - 矿业工程    

学生类型:

 博士    

学位级别:

 工学博士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 能源学院    

专业:

 矿业工程    

研究方向:

 煤炭微生物转化    

第一导师姓名:

 刘向荣    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-27    

论文答辩日期:

 2023-06-01    

论文外文题名:

 Study on the degradation mechanism of Wucaiwan coal by Nocardia mangyaensis under the actions of combined surfactants    

论文中文关键词:

 茫崖诺卡氏菌 ; 五彩湾煤 ; 组合表面活性剂 ; 降解产物 ; 降解机理    

论文外文关键词:

 Nocardia mangyaensis ; Wucaiwan coal ; Combined surfactants ; Biodegradation products ; Biodegradation mechanism    

论文中文摘要:

低阶煤的微生物降解在常温、常压下进行,具有能耗低、设备简单和环境友好等优点,是低阶煤绿色转化的有效途径之一。然而,大多数研究发现煤的微生物降解率普遍较低,因此,研究者们尝试利用表面活性剂来优化降解过程,主要研究集中于单一表面活性剂对煤表面性质的改性,而关于组合表面活性剂对微生物细胞的影响及其协同作用促进微生物降解煤的研究较少。

本文选取了2类8种表面活性剂,第一类为化学表面活性剂共6种,包括2种阴离子表面活性剂十二烷基苯磺酸钠(LAS)和十二烷基硫酸钠(SDS),2种阳离子表面活性剂十二烷基三甲基溴化铵(DTAB)和十六烷基氯化吡啶(CPC),2种非离子表面活性剂曲拉通X-100(TR)和吐温80(TW),第二类为生物表面活性剂共2种,分别为鼠李糖脂(RH)和皂素(SA)。研究了单一表面活性剂和组合表面活性剂对茫崖诺卡氏菌降解新疆五彩湾低阶煤降解率和降解时间的影响,再基于组合表面活性剂对细菌生长特性(生物量、酶活和疏水性)、煤样表面性质(接触角、Zeta电位和吸附率)的影响,以及最优组合表面活性剂作用下产物的分布三个方面探讨组合表面活性剂作用下茫崖诺卡氏菌对五彩湾煤降解机理研究,为表面活性剂在煤炭微生物降解中的应用提供了理论依据。

主要工作如下:

(1)茫崖诺卡氏菌降解五彩湾煤最优工艺条件的探索

探索了煤浆浓度、菌液用量、降解时间、煤样粒径和培养方式五个因素对茫崖诺卡氏菌降解五彩湾煤的影响,获得了茫崖诺卡氏菌降解五彩湾煤的最佳降解工艺条件,具体为:煤浆浓度为0.3 g/mL,菌液用量为8 mL/50mL,降解时间为10 d,煤样粒径为0.125-0.250 mm,培养方式为摇床培养,此时A450值最高为0.54,降解率为53.2%。

(2)组合表面活性剂对茫崖诺卡氏菌降解五彩湾煤的影响研究

在最优工艺条件下,探究了单一表面活性剂对降解效果的影响,结果表明表面活性剂DTAB、CPC、SDS和SA均有抑制作用;而表面活性剂TR、TW、LAS和RH有促进作用。当表面活性剂TR、TW、LAS和RH的浓度分别为1200,1200,800和1000 mg/L时,此时降解率最高分别为65.3%,60.6%,56.7%和63.3%。基于表面活性剂对煤炭微生物降解具有促进作用为基本原则,同时兼顾不同类型表面活性剂的协同作用,组合了两类四种组合表面活性剂,一类为非离子-阴离子组合表面活性剂TW-LAS和TR-LAS,另一类为非离子-生物组合表面活性剂TW-RH和TR-RH。

探究了组合表面活性剂对茫崖诺卡氏菌降解五彩湾煤的降解率和降解时间影响,结果表明当非离子-阴离子组合表面活性剂TW-LAS和TR-LAS的配比分别为1200 (6:4) mg/L和1000 (6:4) mg/L时,此时降解率最高分别为69.5%和72.8%,降解时间均为8天。当非离子-生物组合表面活性剂TW-RH和TR-RH的配比分别为1000 (4:6) mg/L和800 (4:6) mg/L时,此时降解率最高,分别为73.6%和78.2%;降解时间均为8天,以上结果表明最优组合表面活性剂为TR-RH。与无表面活性剂相比,在最优组合表面活性剂TR-RH作用下降解率提高了27%,降解时间缩短了2天。

(3)组合表面活性剂对细菌生长特性和五彩湾煤表面性质影响研究

探究了TW-LAS、TR-LAS、TW-RH和TR-RH组合表面活性剂对茫崖诺卡氏菌的生物量、酶活、疏水性、通透性、表面元素和官能团的影响,结果发现四种组合表面活性剂对细菌生长特性影响不同。在最优组合表面活性剂TR-RH作用下,细菌的生物量最大,OD600为2.801,碱性蛋白酶的活性最高为102.34 U/mL,细胞的疏水性最强为47.1%,细胞的通透性最大。X射线光电子能谱和红外光谱分析表明在组合表面活性剂TR-RH作用下茫崖诺卡氏菌表面的氮、氧元素含量、-OH和-CH2官能团增加。这些结果表明在TR-RH作用下,茫崖诺卡氏菌的生长和其分泌碱性蛋白酶活性增加的更为显著,有效地提高了煤炭与茫崖诺卡氏菌或者碱性蛋白酶的接触,进而提高降解率。

同时,探究了TW-LAS、TR-LAS、TW-RH和TR-RH组合表面活性剂对煤样接触角、Zeta电位和吸附率的影响,结果表明四种组合表面活性剂均可以提高煤样的亲水性,增加煤样的Zeta电位和吸附率。与组合表面活性剂TW-LAS、TR-LAS和TW-RH相比,在TR-RH作用下煤样表面的电荷更多,亲水性更强,更有利于煤炭对茫崖诺卡氏菌的吸附。

(4)最优组合表面活性剂作用下降解产物的分布规律及降解机理研究

在最优组合表面活性剂TR-RH作用下降解产物类型与不添加表面活性剂的产物相似,主要含有芳香烃、烷烃、含硫和含氧化合物等,其中烷烃的含量高达90.82%,比不添加表面活性剂提高了16.59%。固相产物结构分析表明在组合表面活性剂TR-RH作用后,煤样中碳含量降低,氧和氮含量升高,芳香度降低,平均缩合环升高。茫崖诺卡氏菌断裂了五彩湾煤中的C-C和C-H键,煤样的热稳定性增加,煤样的孔隙结构被破坏,平均孔径增大。

综上,组合表面活性剂TR-RH不仅可以被茫崖诺卡氏菌作为碳源,进行生理代谢活动,促进自身繁殖和碱性蛋白酶活性,使更多的茫崖诺卡氏菌和碱性蛋白酶与煤炭接触,而且组合表面活性剂可以增加煤样表面的电荷和亲水性,进而增加茫崖诺卡氏菌在煤样表面的吸附,提高降解率。

论文外文摘要:

The biodegradation of low rank coal can be carried out at room temperature and pressure, with the advantages of low energy consumption, simple equipment, and environmental friendliness, making it an effective way for green conversion of low rank coal. However, most studies have found that the biodegradation rate of coal is generally low. Therefore, researchers have attempted to optimize the degradation process by single surfactants. However, there is little research on the effect of combined surfactants on microbial cells and their synergistic effect in promoting biodegradation of coal.

This article selected two categories of eight surfactants. The first category includes six chemical surfactants, including two anionic surfactants sodium dodecyl benzene sulfonate (LAS) and sodium dodecyl sulfate (SDS), two cationic surfactants dodecyl trimethyl ammonium bromide (DTAB) and cetylpyridinium chloride (CPC), and two nonionic surfactants Triton X-100 (TR) and Tween 80 (TW). The second category includes two bio-surfactants, rhamnolipid (RH) and saponin (SA). The study investigated the effects of single surfactants and combined surfactants on the degradation rate and degradation time of the Wucaiwan low rank coal from Xinjiang by the Nocardia mangyaensis (N. mangyanensis). Based on the effects of combined surfactants on bacterial growth characteristics (biomass, enzyme activity, and hydrophobicity), coal surface properties (contact angle, Zeta potential, and adsorption rate), and bioproduct distribution, the mechanism of surfactants in coal biodegradation was explored. This study provides a theoretical basis for the application of surfactants in coal biodegradation.

The main works are as follows:

(1) Study on the optimal process conditions for the degradation of Wucaiwan coal by N. mangyanensis

This study examined the influence of five factors, namely coal slurry concentration, inoculation quantity, degradation time, coal samples particle size and cultivation method on the biodegradation of the Wucaiwan coal by N. mangyanensis. The optimal conditions for the biodegradation of Wucaiwan coal by N. mangyanensis were determined, which were a coal slurry concentration of 0.3 g/mL, bacterial liquid dosage of 8 mL/50 mL, degradation time of 10 days, coal particle size of 0.125-0.250 mm, and cultivation method of shaking cultivation. Under these conditions, the A450 value was the highest at 0.54, and the degradation rate was 53.2%.

(2) Effects of combined surfactants on the degradation of Wucaiwan coal by N. mangyanensis

Under optimal conditions, the effects of single surfactants on degradation were investigated, and the results showed that surfactants DTAB, CPC, SDS, and SA had inhibitory effects, while surfactants TR, TW, LAS, and RH had promoting effects. When the concentrations of surfactants TR, TW, LAS, and RH were 1200, 1200, 800, and 1000 mg/L, the highest degradation rates were 65.3%, 60.6%, 56.7%, and 63.3%, respectively. Based on the principle that surfactants promote biodegradation of coal, while taking into account the synergistic effects of different types of surfactants, nonionic-anionic surfactants TW-LAS and TR-LAS and nonionic-biological surfactants TW-RH and TR-RH were combined.

This study investigated the effects of combined surfactants on the degradation rate and time of Wucailan low-rank coal by N. mangyanensis. The results showed that the highest degradation rates were achieved when the nonionic-anionic combined surfactants TW-LAS and TR-LAS were used at ratios of 1200 (6:4) mg/L and 1000 (6:4) mg/L, respectively, with degradation rates of 69.5% and 72.8%, and a degradation time of 8 days. When the nonionic-biological combined surfactants TW-RH and TR-RH were used at ratios of 1000 (4:6) mg/L and 800 (4:6) mg/L, respectively, the highest degradation rates were 73.6% and 78.2%, and the degradation time was 8 days for both. These results indicate that the optimal combined surfactant was TR-RH. Compared with the control group without surfactants, the degradation rate increased by 27% and the degradation time was reduced by 2 days under the optimal combined surfactants TR-RH.

(3) Effects of combined surfactants on growth characteristics of bacteria and surface properties of Wucaiwan coal

This study investigated the effects of TW-LAS, TR-LAS, TW-RH, and TR-RH combined surfactants on the biomass, enzyme activity, hydrophobicity, permeability, surface elements, and functional groups of N. mangyanensis. Results showed that the four combined surfactants had different effects on bacterial growth characteristics. Under the optimal combined surfactant TR-RH, the bacterial biomass was the highest with an OD600 of 2.801, the alkaline protease activity was the highest at 102.34 U/mL, the cell hydrophobicity was the strongest at 47.1%, and the cell permeability was the largest. XPS and FTIR analysis showed that the content of N and O on the surface of N. mangyanensis, as well as the -OH and -CH2 functional groups, increased under the action of the combined surfactant TR-RH. These results indicated that the growth of N. mangyanensis and its secretion of alkaline protease activity were more significantly increased under the action of TR-RH, effectively improving the contact between coal and N. mangyanensis or alkaline protease, thereby improving the degradation rate.

The effects of combined surfactants TW-LAS, TR-LAS, TW-RH, and TR-RH on coal contact angle were investigated, Zeta potential, and adsorption rate. The results showed that all four combined surfactants can increase the hydrophilicity of the coal sample and increase the Zeta potential and adsorption rate of the coal sample. Compared with the combined surfactants TW-LAS, TR-LAS, and TW-RH, the surface charge of the coal sample was stronger and more hydrophilic under the action of TR-RH, which was more conducive to the adsorption of coal on N. mangyanensis.

(4) Distribution patterns and degradation mechanism of degradation products under the action of the optimal combined surfactant

The types of degradation products under the action of the optimal combined surfactant TR-RH were similar to those the without surfactant, mainly including aromatic hydrocarbons, alkanes, sulfur-containing compounds, and oxygen-containing compounds. The content of alkanes was as high as 90.82%, which was increased by 16.59% compared to that the without surfactant. In addition, after the action of the combined surfactant TR-RH, the C content in the coal sample decreased, while the O and N content increased, and the aromaticity decreased while the average condensed ring increased. The N. mangyanensis broke the C-C and C-H bonds in the Wucaiwan coal, which increased the thermal stability of the coal sample and destroyed the pore structure of the coal sample, resulting in an increase in the average pore size.

In summary, the combined surfactant TR-RH can not only be used as a carbon source by N. mangyanensis, promoting physiological metabolism, self-reproduction, and alkaline protease activity, allowing more N. mangyanensis and alkaline protease to contact with coal. Moreover, the combined surfactant TR-RH can increase the surface charge and hydrophilicity of coal samples, thereby increasing the adsorption of bacteria on the surface of coal samples and improving the degradation rate.

参考文献:

[1] Wang Y M, Li Y, Wang G J, et al. Effect of Fe components in red mud on catalytic pyrolysis of low rank coal[J]. Journal of the Energy Institute, 2022, 100: 1-9.

[2] Sabar M A, Ali M I, Fatima N, et al. Degradation of low rank coal by Rhizopus oryzae isolated from a Pakistani coal mine and its enhanced releases of organic substances[J]. Fuel, 2019, 253: 257-265.

[3] Spencer D. BP Energy outlook 2023 edition[M]. 2023 edition, British Petroleum Company, 2023: 1-101.

[4] 张明旭, 王龙贵, 沈国娟, 等. 煤炭的生物转化技术研究[C]. 2005年全国选煤学术会议论文集. 2005.

[5] Lumpkin R E. Recent progress in the direct liquefaction of coal[J]. Science, 1988, 239(4842): 873-877.

[6] Shi K, Liu Y, Chen P, et al. Contribution of lignin peroxidase, manganese peroxidase, and laccase in lignite degradation by mixed white-rot fungi[J]. Waste and Biomass Valorization, 2021, 12(7): 3753-3763.

[7] Ren L, Ding L, Guo Q H, et al. Characterization, carbon-ash separation and resource utilization of coal gasification fine slag: A comprehensive review[J]. Journal of Cleaner Production, 2023, 398: 136554.

[8] 赵玉栋. 新疆吐鲁番市煤炭资源开发利用现状及问题分析[J]. 中国煤炭, 2022, 48(1): 10-15.

[9] 黄艳利, 王文峰, 卞正富. 新疆煤基固体废弃物处置与资源化利用研究[J]. 煤炭科学技术, 2021, 49(1): 319-330.

[10] 涂志民, 车延前, 李鹏, 等. 新疆后峡盆地中-低阶煤煤层气成藏模式[J]. 煤田地质与勘探, 2022, 50(5): 43-49.

[11] Liu S N, Wei N, Jiang D L, et al. Emission reduction path for coal-based enterprises via carbon capture, geological utilization, and storage: China energy group[J]. Energy, 2023, 15: 127222.

[12] Ma D Y, Ruan R H, Li Y D, et al. Characteristics of fine particle formation during combustion of Xinjiang high-chlorine-sodium coal[J]. Fuel, 2021, 297: 120772.

[13] Zhang X, Zhang J, Guo R, et al. Highly reactive coke made from Low-rank coal: relationship between thermal properties and multilevel structure[J]. Fuel, 2023, 337: 127186.

[14] Zhao J, Liu H, Zhang H C, et al. Metallurgical performance and structural characteristics of cokes of hypercoal prepared from the mixture of low-rank coal and biomass residue[J]. Fuel, 2023, 332: 126069.

[15] Wen Z H, Yuan Y W, Wei J P, et al. Study on gas production mechanism of medium and low-rank coals excited by the external DC electric field[J]. Fuel, 2022, 324: 124704.

[16] Strąpoć D, Mastalerz M, Dawson K, et al. Biogeochemistry of microbial coal-bed methane[J]. Annual Review of Earth and Planetary Sciences, 2011, 39: 617-656.

[17] Strąpoć D, P ocardal F W, Turich C, et al. Methane-producing microbial community in a coal bed of the Illinois basin[J]. Applied and Environmental Microbiology, 2008, 74: 2424-2432.

[18] Zhang J, Zhao S S, Yang Z, et al. Hydrothermal synthesis of blue-green emitting carbon dots based on the liquid products of biodegradation of coal[J]. International Journal of Energy Research, 2021, 45: 9396-9407.

[19] Sekhohola L M, Igbinigie E E, Cowan A K. Biological degradation and solubilisation of coal[J]. Biodegradation, 2013, 24: 305-318.

[20] Chen F, He H, Zhao S M, et al. Analysis of microbial community succession during methane production from Baiyinhua lignite[J]. Energy & Fuels, 2018, 32: 10311-10320.

[21] Stout S A. Aliphatic and aromatic triterpenoid hydrocarbons in a tertiary angiospermous lignite[J]. Organic Geochemistry, 1992, 18: 51-66.

[22] Fakoussa R M, Hofrichter M. Biotechnology and microbiology of coal degradation[J]. Applied Microbiology and Biotechnology, 1999, 52: 25-40.

[23] Cohen M S, Gabriele P D. Degradation of coal by the Fungi Polyporus versicolor and Poria monticola[J]. Applied Microbiology and Biotechnology, 1982, 44: 23-27.

[24] Engesser K H, Dohms C, Schmid A. Microbial degradation of model compounds of coal and production of metabolites with potential commercial value[J]. Fuel Processing Technology, 1994, 40: 217-226.

[25] Romanowska I, Strzelecki B, Bielecki S. Biosolubilization of Polish brown coal by Gordonia alkanivorans S7 and Bacillus mycoides NS1020[J]. Fuel Processing Te-chnology, 2015, 131: 430-436.

[26] 赵国俊, 郭红玉. 绿孢链霉菌对不同煤阶煤的降解转化[J]. 煤炭转化, 2020, 43(3): 40-45.

[27] Akimbekov N, Digel I, Gulzhamal A, et al. Lignite biosolubilization and bioconversion by Bacillus sp.: the collation of analytical data[J]. Biofuels, 2021, 12(3): 247-258.

[28] 李慧, 张亚婷, 汪广恒, 等. 光氧化预处理对神府煤生物转化的影响[J]. 应用化工, 2007, 36(4): 325-333.

[29] 李建涛, 刘向荣, 皮淑颖, 等. 煤的微生物转化研究进展[J]. 西安科技大学学报, 2017, 37(1): 106-120.

[30] 李建涛, 刘向荣, 杨杰, 等. 微生物降解低阶煤的光氧化预处理降解条件优化[J]. 化学与生物工程, 2019, 36(12): 17-20.

[31] 韩威, 佟威, 杨海波, 等. 煤的微生物溶(降)解及其产物研究[J]. 大连理工大学学报, 1994, 34(6): 653-661.

[32] Graff R A, Brandes S D. Modification of coal by subcritical steam: pyrolysis and extraction yields[J]. Energy & Fuels, 1987, 1(1): 84-88.

[33] 董鹏伟, 岳君容, 高士秋, 等. 热预处理影响褐煤热解行为研究[J]. 燃料化学学报, 2012, 40(8): 897-905.

[34] 李俊旺, 张明旭. 煤样预处理对义马煤生物降解的影响[J]. 煤炭科学技术, 2009, 37(1): 125-127.

[35] 皇甫燕燕, 刘向荣, 石晨, 等. 煤泥不同预处理方式对其微生物降解过程的影响研究[J]. 煤炭转化, 2023, 46(3): 81-91.

[36] Alvarez R, Clemente C, Gomez-Limon D. The influence of nitric acid oxidation of low rank coal and its impact on coal structure[J]. Fuel, 2003, 82(15-17): 2007-2015.

[37] 石开仪, 陶秀祥, 李阳, 等. 抚顺褐煤微生物溶煤机理初步研究[J]. 选煤技术, 2008, 3: 4-9.

[38] Huang Z, Liers C, Ullrich R, et al. Depolymerization and solubilization of chemically pretreated powder river basin subbituminous coal by manganese peroxidase (MnP) from Bjerkandera adusta[J]. Fuel, 2013, 112: 295-301.

[39] Jones E J P, Harris S H, Barnhart E P, et al. The effect of coal bed dewatering and partial oxidation on biogenic methane potential[J]. International Journal of Coal Geology, 2013, 115: 54-63.

[40] Liu F, Guo H, Wang Q, et al. Characterization of organic compounds from hydrogen peroxide-treated subbituminous coal and their composition changes during microbial methanogenesis[J]. Fuel, 2019, 237: 1209-1216.

[41] Orem W H, Voytek M A, Jones E J, et al. Organic intermediates in the anaerobic biodegradation of coal to methane under laboratory conditions[J]. Organic Geochemistry, 2010, 41(9): 997-1000.

[42] Niu X, Zhang J, Suo Y, et al. Proteomic analysis of Fusarium sp. NF01 revealed a multi-level regulatory machinery for lignite biodegradation[J]. Energy, 2022, 250: 123763.

[43] Catcheside D E A, Mallett K J. Solubilization of Australian lignites by fungi and other microorganisms[J]. Energy & Fuels, 1991, 5: 141-145.

[44] Başaran Y, Denizli A, Sakintuna B, et al. Bio-liquefaction /solubilization of low-rank Turkish lignites and characterization of the products[J]. Energy & Fuels, 2003, 17: 1068-1074.

[45] Fredrickson J K, Stewart D L, Campbell J A, et al. Biosolubilization of low-rank coal by a Trametes versicolor siderophore-like product and other complexing agents[J]. Journal of Industrial Microbiology and Biotechnology, 1990, 5(6): 401-406.

[46] Bonilla M, Olivaro C, Corona M. Production and characterization of a new bioemulsifier from Pseudomonas putida ML2[J]. Journal of Applied Microbiology 2005, 98: 456-463.

[47] Akimbekov N S, Digel I, Tastambek K T, et al. Biotechnology of microorganisms from coal environments: from environmental remediation to energy production[J]. Biology, 2022, 11(1306): 1-47.

[48] Akimbekov N, Digel I, Qiao X H, et al. Lignite biosolubilization by Bacillus sp. RKB 2 and characterization of its products[J]. Geomicrobiol Journal, 2020, 37: 255-261.

[49] Kamyabi A, Nouri H, Moghimi H. Characterization of pyrene degradation and metabolite identifcation by Basidioascus persicus and mineralization enhancement with bacterial-yeast co-culture[J]. Ecotoxicology and Environmental Safety, 2018, 163: 471- 477.

[50] Machnikowska H, Pawelec K, Podgórska A. Microbial degradation of low rank coals[J]. Fuel Processing Technology, 2002, 77: 17-23.

[51] 王龙贵, 张明旭, 欧泽深, 等. 菌种的选育及用于煤炭降解转化实验研究[J]. 中国矿业大学学报, 2006, 35(4): 504-509.

[52] 李建涛, 刘向荣, 皮淑颖, 等. 放线菌降解云南昭通褐煤降解条件优化研究[J]. 应用化工, 2017, 46(9): 1683-1687.

[53] Sobolczyk-Bednarek J, Choinska-Pulit A, Łaba W. Biosolubilization of low-rank coal by the newly isolated strain Streptomyces fulvissimus K59[J]. Fuel, 2021, 301: 121082.

[54] Yin S D, Tao X X, Shi K Y, et al. Bio-solubilisation of Chinese lignite[J]. Energy, 2009, 34: 775-781.

[55] 占迪, 何环, 廖远松, 等. 褐煤强化产甲烷菌群的群落分析及条件优化[J]. 微生物学报, 2018, 58(4): 684-698.

[56] Jiang F, Li Z H, Lv Z W, et al. The biosolubilization of lignite by Bacillus sp. Y7 and characterization of the soluble products[J]. Fuel, 2013, 103: 639-645.

[57] Sezen S, Güllüce M, Karadayi M, et al. First report of fungal strains from Afşin-Elbistan mine for microbial lignite process[J]. Geomicrobiology Journal, 2020, 37(2): 143-146.

[58] 申文盛, 刘向荣, 吴燕, 等. 表面活性剂对茫崖诺卡氏菌降解鄂尔多斯盆地富油煤过程的影响[J]. 应用化工, 2022, 51(08): 2279-2284.

[59] Kwiatos N, Jędrzejczak-Krzepkowska M, Strzelecki B, et al. Improvement of efficiency of brown coal biosolubilization by novel recombinant Fusarium oxysporum laccase[J]. Amb Express, 2018, 8(1): 1-9.

[60] 徐敬尧, 张明旭. 球红假单胞菌的微波诱变及对煤炭转化的影响[J]. 煤炭科学技术, 2009, 37(05): 125-128.

[61] 尚煜超, 刘向荣, 石晨, 等. 郭家沟富油煤细菌降解产腐殖酸研究[J]. 中国煤炭, 2023, 49(01): 89-99.

[62] 石晨, 刘向荣, 胡雪华. 友好戈登氏菌降解内蒙古白音华褐煤的工艺条件探究[J]. 应用化工, 2021, 50(08): 2113-2119.

[63] 徐敬尧. 煤炭生物降解转化新菌种基因工程的构建研究[D]. 安徽理工大学, 2009.

[64] 牛显, 牛煜, 索永录. 本源菌降解褐煤的生物学特性及微观结构分析[J]. 西安科技大学学报, 2021, 41(05): 836-844.

[65] 王英, 王力, 王学民. 微生物溶煤产物的分析[J]. 湿法冶金, 2006, 25(3): 165-168.

[66] 姚菁华. 褐煤的微生物解聚研究[D]. 中国矿业大学, 2014.

[67] Saha P, Sarkar S. Microbial degradation of coal into a value added product[J]. International Journal of Coal Preparation and Utilization, 2019, 39(1): 1-19.

[68] 任恒星, 李国富, 陈林勇, 等. 一株鞘氨醇杆菌对低阶煤的降解研究[J]. 煤炭转化, 2023, 46(02): 28-35.

[69] 徐云龙, 刘向荣, 李建涛, 等. 两种细菌降解内蒙古褐煤过程及液相产物分析[J]. 煤炭转化, 2017, 40(6): 34-40.

[70] 徐杰, 刘向荣, 杜志鹏, 等. 两种微生物对山西高硫煤脱硫的最优降解条件[J]. 煤炭转化, 2019, 42(2): 90-96.

[71] 赵宪志. 关于云芝培养胞外液溶煤产物应用的研究[J]. 辽宁科技学院学报, 2006, 8(2): 39-40.

[72] 张明旭, 欧泽深, 王龙贵. 煤的生物溶解产物在制备水煤浆中的应用[J]. 选煤技术, 2007, 4: 30-33.

[73] Yang Y, Yang J, Li B, et al. An esterase from Penicillium decumbens P6 involved in lignite depolymerization[J]. Fuel, 2018, 214(15): 416-422.

[74] 武丽敏. 微生物降解褐煤的研究[J]. 煤炭综合利用, 1995, 1: 26-28.

[75] 杨鑫. 褐煤的微生物降解及其黄腐酸特性的研究[D]. 昆明理工大学, 2014.

[76] Quigley D R, Ward B, Crawford D L, et al. Evidence that microbially produced alkaline materials are involved in coal biosolubilization[J]. Applied Biochemistry and Biotechnology, 1989, 20(1): 753-763.

[77] Quigley D R, Wey J E, Breckenridge C R, et al. The influence of pH on biological solubulization of oxidized, low-rank coal[J]. Resources, Conservation and Recycling, 1988, 1(3-4): 163-174.

[78] Maka A, Srivastava V J, Kllbane J J, et al. Biological solubilization of untreated North Dakota lignite by a mixed bacterial and a mixed bacterial/fungal culture[J]. Applied Biochemistry and Biotechnology, 1989, 20(1): 715-729.

[79] Strandberg G W, Lewis S N. Solubilization of coal by an extracellular product from Streptomyces setonii 75Vi2[J]. Journal of Industrial Microbiology and Biotechnology, 1987, 1(6): 371-375.

[80] Hofrichter M, Bublitz F, Fritsche W. Fungal attack on coal II. Solubilization of low-rank coal by Filamentous fungi[J]. Fuel Processing Technology, 1997, 52(1-3): 55-64.

[81] Conesa A, Punt P J, Cees A, et al. Fungal peroxidases: molecular aspects and applications[J]. Journal of Biotechnology, 2002, 93(2): 143-158.

[82] Quigley D R, Breckenridge C R, Dugan P R, et al. Effects of multivalent cations on low-rank coal solubilities in alkaline solutions and microbial cultures[J]. Energy & Fuels, 1989, 3(5): 571-574.

[83] Cohen M S, Feldman K A, Brown C S, et al. Isolation and identification of the coal-solubilizing agent produced by Trametes versicolor[J]. Applied and Environmental microbiology, 1990, 56(11): 3285-3291.

[84] Pyne J W, Stewart D L, Fredrickson J, et al. Solubilization of leonardite by an extracellular fraction from Coriolus versicolor[J]. Applied and Environmental Microbiology, 1987, 53(12): 2844-2848.

[85] Glenn J K, Morgan M A, Mayfield M B, et al. An extracellular H2O2-requiring enzyme preparation involved in lignin biodegradation by the white rot basidiomycete Phanerochaete chrysosporium[J]. Biochemical and Biophysical Research Communications, 1983, 114(3): 1077-1083.

[86] Willmann G, Fakoussa R M. Extracellular oxidative enzymes of coal-attacking fungi[J]. Fuel Processing Technology, 1997, 52(1-3): 27-41

[87] Wondrack L. Depolymerization of water soluble coal polymer from subbituminous coal and lignite by lignin peroxidase[J]. Applied Biochemistry and Biotechnology, 1989, 20(1): 765-780.

[88] 王龙贵, 张明旭, 欧泽深, 等. 白腐真菌降解转化煤炭的机理研究[J]. 煤炭科学技术, 2006, 34(3): 40-43.

[89] Polman J K, Miller K S, Stoner D L, et al. Solubilization of bituminous and lignite coals by chemically and biologically synthesized surfactants[J]. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental and Clean Technology, 1994, 61(1): 11-17.

[90] Yin S, Tao X, Shi K. The role of surfactants in coal bio-solubilisation[J]. Fuel and Energy Abstracts, 2011, 92(8): 1554-1559.

[91] Olawale J T, Edeki O G, Cowan A K. Bacterial degradation of coal discard and geologically weathered coal[J]. International Journal of Coal Science & Technology, 2020, 7(2): 405-416.

[92] Chen G, Zhu H. Lux-marked Pseudomonas aeruginosa lipopolysaccharide production in the presence of rhamnolipid[J]. Colloids and Surfaces B: Biointerfaces, 2005, 41(1): 43-48.

[93] 王龙贵, 张明旭, 欧泽深, 等. 白腐真菌对煤炭的降解转化实验[J]. 煤炭学报, 2006, 31(2): 241-244.

[94] 张栋. 表面活性剂对PAHs微生物界面行为的影响及调控机制[D]. 浙江大学, 2013.

[95] Górna H, Ławniczak Ł, Zgoła-grześkowiak A, et al. Differences and dynamic changes in the cell surface properties of three Pseudomonas aeruginosa strains isolated from petroleum-polluted soil as a response to various carbon sources and the external addition of rhamnolipids[J]. Bioresource Technology, 2011, 102(3): 3028-3033.

[96] Fakoussa R M. Coal as a substrate for microorganisms: Investigation with microbial conversion of national coals[D]. Friedrich-Wilhelms University, Bonn, 1981.

[97] Kang H, Liu X, Zhang Y, et al. Bacteria solubilization of shenmu lignite: influence of surfactants and characterization of the biosolubilization products[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2021, 43(10): 1162-1180.

[98] 肖锟, 刘聪洋, 王仁女, 等. 表面活性剂影响微生物降解多环芳烃的研究进展[J]. 微生物学通报, 2021, 48(02): 582-595.

[99] Van H J D, Singh A, Ward O P. Physiological aspects: Part 1 in a series of papers devoted to surfactants in microbiology and biotechnology[J]. Biotechnology Advances, 2006, 24(6): 604-620.

[100] Helenius A, Simons K A I. Solubilization of membranes by detergents[J]. Biochimica et Biophysica Acta(BBA)-Reviews on Biomembranes, 1975, 415(1): 29-79.

[101] Zhang D, Zhu L, Li F. Influences and mechanisms of surfactants on pyrene biodegradation based on interactions of surfactant with a Klebsiella oxytoca strain[J]. Bioresource Technology, 2013, 142: 454-461.

[102] Zita A, Hermansson M. Effects of bacterial cell surface structures and hydrophobicity on attachment to activated sludge flocs[J]. Applied and Environmental Microbiology, 1997, 63(3): 1168-1170.

[103] Ahimou F, Jacques P, Deleu M. Surfactin and iturin a effects on Bacillus subtilis surface hydrophobicity[J]. Enzyme and Microbial Technology, 2000, 27(10): 749-754.

[104] Owsianiak M, Szulc A, Chrzanowski Ł, et al. Biodegradation and surfactant-mediated biodegradation of diesel fuel by 218 microbial consortia are not correlated to cell surface hydrophobicity[J]. Applied Microbiology and Biotechnology, 2009, 84(3): 545-553.

[105] Fakoussa R M. Production of water-soluble coal-substances by partial microbial liquefaction of untreated hard coal[J]. Resources, Conservation and Recycling, 1988, 1(3-4): 251-260.

[106] Yuan H L, Yang J S, Chen W X. Production of alkaline materials, surfactants and enzymes by Penicillium decumbens strain P6 in association with lignite degradation/solubilization[J]. Fuel, 2006, 85(10/11): 1378-1382.

[107] 尹苏东, 陶秀祥. 微生物溶煤研究进展[J]. 洁净煤技术, 2005; 4: 34-38

[108] Yu H, Zhu L, Zhou W. Enhanced desorption and biodegradation of phenanthrene in soil-water systems with the presence of anionic-nonionic mixed surfactants[J]. Journal of Hazardous Materials, 2007, 142(1-2): 354-361.

[109] Zhao B, Zhu L, Li W, et al. Solubilization and biodegradation of phenanthrene in mixed anionic-nonionic surfactant solutions[J]. Chemosphere, 2005, 58(1): 33-40.

[110] Zhu L, Chou C T. Water solubility enhancements of pyrene by single and mixed surfactant solutions[J]. Journal of Environmental Science, 2001, 13(4): 491-496.

[111] 巩育军, 薛元英. 正负离子表面活性剂混合溶液的增溶作用[J]. 西北大学学报, 2000, 30(1): 28-31.

[112] Shi K Y, Tao X X, Hong F F, et al. Mechanism of oxidation of low rank coal by nitric acid[J]. Journal of Coal Science and Engineering, 2012, 8: 396-399.

[113] Shi K Y, Gui X, Tao X X, et al. Macromolecular structural unit construction of Fushun nitric-acid-oxidized coal[J]. Energy & Fuels, 2015, 29: 3566-3572.

[114] Shi K Y, Tao X X, Yin S D, et al. Bio-liquefaction of Fushun lignite: characterization of newly isolated lignite liquefying fungus and liquefaction products[J]. Procedia Earth and Planetary Sicence, 2009, 1: 627-633.

[115] Lu Z, Li Q, Ju Y, et al. Biodegradation of coal organic matter associated with the generation of secondary biogenic gas in the Huaibei Coalfield[J]. Fuel, 2022, 323: 124281.

[116] Yang L, Liu Y, Li C, et al. Biodegradation time series characteristics and metabolic fate of different aromatic compounds in the biochemical treatment process of coal chemical wastewater[J]. Bioresource Technology, 2022, 361: 127688.

[117] Shi J, Xu C, Han Y, et al. Enhanced anaerobic biodegradation efficiency and mechanism of quinoline, pyridine, and indole in coal gasification wastewater[J]. Chemical Engineering Journal, 2019, 361: 1019-1029.

[118] Guo H, Zhao S, Xia P, et al. Efficient utilization of coal slime using anaerobic fermentation technology[J]. Bioresource Technology, 2021, 332: 125072.

[119] Vera C L, Ortiz-Lopez R, Elizondo G R, et al. Complete genome sequence of Nocardia brasiliensis HUJEG-1[J]. Journal of Bacteriology, 2012, 194: 2761-2762.

[120] Yang R Q, Liu G X, Chen T, et al. Characterization of the genome of a Nocardia strain isolated from soils in the Qinghai-Tibetan Plateau that specifically degrades crude oil and of this biodegradation[J]. Genomics, 2019, 111: 356-366.

[121] Swaathy S, Kavitha V, Pravin A S, et al. Microbial surfactant mediated degradation of anthracene in aqueous phase by marine Bacillus licheniformis MTCC 5514[J]. Biotechnology Reports, 2004, 4: 161-170.

[122] Guo H, Zhao S, Dong Z, et al. Clean and efficient utilization of coal combined with corn straw by synergistic biodegradation[J]. Renewable Energy, 2020, 161: 701-711.

[123] Lin X, Liu B, Luo W, et al. Study on the bactericidal activity of dodecyl dipropylene triamine and anionic mixed surfactant systems[J]. Journal of Molecular Liquids, 2023, 378: 121606.

[124] Phulpoto I, Yu Z, Oazi M, et al. A comprehensive study on microbial-surfactants from bioproduction scale-up toward electrokinetics remediation of environmental pollutants: Challenges and perspectives[J]. Chemosphere, 2023, 311, 136979.

[125] Muhammad A B, Abbott G D. The thermal evolution of asphaltene-bound biomarkers from coals of different rank: A potential information resource during coal biodegradation[J]. International Journal of Coal Geology, 2013, 107: 90-95.

[126] Ghadiri M, Harrison S, Fagan-Endres M. Effect of surfactant on the growth and activity of microorganisms in a heap bioleaching system[J]. Minerals Engineering, 2019, 138: 43-51.

[127] Zheng C, Luo Y, Long X, et al. The structure of biodegradable surfactants shaped the microbial community, antimicrobial resistance, and potential for horizontal gene transfer[J]. Water Research, 2023, 236: 119944.

[128] Haq B, Liu J, Liu K, et al. The role of biodegradable surfactant in microbial enhanced oil recovery[J]. Journal of Petroleum Science and Engineering, 2020, 189: 106688.

[129] Pan W, Jin H, Liu Z, et al. Experimental and theoretical study on strengthening leaching of sulfide ores by surfactants[J]. Process Safety and Environmental Protection, 2020, 137: 289-299.

[130] Velmurugan R, Kanwal S, Incharoensakdi A. Non-ionic surfactant integrated extraction of exopolysaccharides from engineered Synechocystis sp. PCC 6803 under fed-batch mode facilitates the sugar-rich syrup production for ethanol fermentation[J]. Algal Research, 2022, 66: 102772.

[131] General administration of quality supervision, inspection and quarantine of the People’s republic of china, china national standardization administration. Protease preparations. GB/T23527-2009. Beijing: China Standard Press, 2009: 1-13.

[132] Mcdonald C E, Chen L L. The lowry modification of the folin reagent for determination of proteinase activity[J]. Analytical Biochemistry, 1965, 10: 175-177.

[133] Hoang S A, Lamb D, Sarkar B, et al. Plant-derived saponin enhances biodegradation of petroleum hydrocarbons in the rhizosphere of native wild plants[J]. Environmental Pollution, 2022, 313: 120152.

[134] Al-Tahhan R A, Sandrin T R, Bodour A A, et al. Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa: Effect on cell surface properties and interaction with hydrophobic substrates[J]. Applied and Environmental Microbiology, 2000, 66(8): 3262-3268.

[135] Tugarova A, Mamchenkova P, Dyatlova D, et al. FTIR and Raman spectroscopic studies of selenium nanoparticles synthesised by the bacterium Azospirillum thiophilum[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 192(5): 458-463.

[136] Cheng X, Xia M L, Yang Y. Biodegradation of vulcanized rubber by a gut bacterium from plastic-eating mealworms[J]. Journal of Hazardous Materials, 2023, 448: 130940.

[137] 盖立学, 宋考平. 基于糖显色法测定鼠李糖脂的比例、含量[J]. 生物技术, 2010, 20(02): 33-37.

[138] Liao L P, Chen S N, Peng H, et al. Biosorption and biodegradation of pyrene by Brevibacillus brevis and cellular responses to pyrene treatment[J]. Ecotoxicology and Environmental Safety, 2015, 115: 166-173.

[139] Moses E R. Permeabilized cells[J]. Methods in Enzymology, 1995, 262: 497-499.

[140] Tao Y, Qian L H, Xie J. Effect of chitosan on membrane permeability and cell morphology of Pseudomonas aeruginosa and Staphyloccocus aureus[J]. Carbohydrate Polymers, 2011, 86(2): 969-974.

[141] Yu M W, Yu X, Yu D X, et al. Molecular dynamics investigation of the effect of ammonia on coal pyrolysis and the nitrogen transformation[J]. Energy Conversion and Management, 2023, 285: 117006.

[142] Yin L, Xiao Y, Li Q W, et al. Temperature effect on thermal conductivity of oxidised coal associated with its predictive model during coal pyrolysis[J]. Energy, 2023, 274: 127417.

[143] Bos M P, Tefsen B, Geurtsen J, et al. Identification of an outer membrane protein required for the transport of lipopolysaccharide to the bacterial cell surface[J]. Proceedings of the National Academy of Sciences, 2004, 101(25): 9417-9422.

[144] Li K J, Khanna R, Zhang J, et al. Comprehensive Investigation of various structural features of bituminous coals using advanced analytical techniques[J]. Energy & Fuels, 2015, 29: 7178-7189.

[145] He X Q, Liu X F, Ni B S, et al. FTIR and Raman spectroscopy characterization of functional groups in various rank coals[J]. Fuel, 2017, 206: 555-563.

[146] Sonibare O O, Haeger T, Foley S F. Structural characterization of Nigerian coals by Xray diffraction, Raman and FTIR spectroscopy[J]. Energy, 2010, 35: 5347-5353.

[147] Okolo G N, Neomagus H W J P, Everson R C, et al. Chemical-structural properties of South African bituminous coals: Insights from wide angle XRD-carbon fraction analysis, ATR-FTIR, solid state 13C NMR, and HRTEM techniques[J]. Fuel, 2015, 158: 779-792.

[148] Wang S Q, Tang Y G, Schobert H H, et al. FTIR and 13C NMR Investigation of coal component of late permian coals from southern China[J]. Energy & Fuels, 2011, 25: 5672-5677.

[149] Davis A, Kuehn D W, Starsinic M, et al. Concerning the application of FT-IR to the study of coal: a critical assessment of band assignments and the application of spectral analysis programs[J]. Applied spectroscopy, 1981, 35: 475-485.

[150] Bao Y, Li D, Ju Y W. Constraints of biomethane generation yield and carbon isotope fractionation effect in the pathway of acetotrophic with different coal-rank coals[J]. Fuel, 2021, 305: 121493.

[151] 夏大平, 郭红玉,马俊强, 等. 生物甲烷代谢对煤孔隙结构的影响[J]. 煤炭学报, 2013, 38(1): 129-133.

[152] Yan J, Lei Z, Li Z, et al. Molecular structure characterization of low-medium rank coals via XRD, solid state 13C NMR and FTIR spectroscopy[J]. Fuel, 2020, 268: 117038.

[153] Ky A, Cs B, Yj A, et al. The genesis and controlling factors of micropore volume in transitional coal-bearing shale reservoirs under different sedimentary environments[J]. Marine and Petroleum Geology, 2019, 102: 426-438.

[154] Li P, Zhang X, Zhang S. Structures and fractal characteristics of pores in low volatile bituminous deformed coals by low-temperature N2 adsorption after different solvents treatments[J]. Fuel, 2018, 224: 661-675.

[155] Chen L, Qi X, Yang J, et al. Thermogravimetric and infrared spectral analysis of candle coal pyrolysis under low-oxygen concentration[J]. Thermochimica Acta, 2020, 696: 178840.

[156] Lu J X. Wang X L, Li H, et al. Molecular insights into the methane adsorption capacity of coal under microwave irradiation based on solid-state 13C-NMR and XPS[J]. Fuel, 2023, 339(1): 127484.

[157] Zha W, Lin B Q, Liu T. Construction of Pingdingshan coal molecular model based on FT-IR and 13C-NMR[J]. Journal of Molecular Structure, 2022, 1262: 132992.

[158] Dong Q N, Chen X Y, Qi G Q, et al. Study of lignite oxidation at low temperatures by FTIR emission spectroscopy[J]. Journal of Fuel Chemistry and Technology, 1997, 4: 46-51.

[159] Matlala I V, Moroeng O M, Wagner N J. Macromolecular structural changes in contact metamorphosed inertinite-rich coals from the No. 2 Seam, Witbank Coalfield (South Africa): Insights from petrography, NMR and XRD[J]. International Journal of Coal Geology, 2021, 247: 103857.

[160] 孙璐, 朱利中. 阴-非离子混合表面活性剂对黑麦草吸收菲和芘的影响[J]. 科学通报, 2008, 15: 1774-1779.

中图分类号:

 TQ530.2    

开放日期:

 2025-06-27    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式