- 无标题文档
查看论文信息

论文中文题名:

 本征型液晶导热材料的有序结构设计及导热机制    

姓名:

 李成功    

学号:

 18211026001    

保密级别:

 保密(2年后开放)    

论文语种:

 chi    

学科代码:

 080501    

学科名称:

 工学 - 材料科学与工程 - 材料物理与化学    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 材料科学与工程学院    

专业:

 材料物理与化学    

研究方向:

 本征型导热聚合物材料    

第一导师姓名:

 李颖    

第一导师单位:

 西安科技大学    

论文提交日期:

 2021-06-15    

论文答辩日期:

 2021-06-02    

论文外文题名:

 Microstructure design and thermal conductivity mechanism of intrinsic liquid crystal thermal conductive materials    

论文中文关键词:

 本征导热聚合物 ; 液晶单体 ; 微观有序结构 ; 导热机制 ; 液晶分散膜    

论文外文关键词:

 intrinsic ; thermal conductive polymer ; liquid crystal monomer ; morphological control    

论文中文摘要:

导热聚合物因其优异的电绝缘性能、机械性能和稳定的化学性能而被广泛地应用于电路基板、界面粘接和封装检测等行业。然而,传统聚合物由于分子链排列无序导致其较低的热导率,极大地限制了其在导热/散热领域的应用。具有特殊理化特性的液晶材料,其自身有序的微观结构、优良的加工性能以及对热、电、磁等外界刺激的响应特性,显示出了在本征型导热聚合物材料领域巨大的应用前景。本论文从聚合物微观结构出发,将刚性的液晶结构引入到聚合物体系中,利用小分子液晶基元的空间位阻和有序排列特性调整聚合物分子链的无序性,实现对聚合物微观结构的有序调控。较系统地研究了液晶单体结构、含量以及聚合物主链分子结构等对液晶-聚合物分散膜的分子链的有序排列及微观有序结构的影响关系,探索了本征型导热聚合物材料的导热性能和应用价值,主要研究内容如下:

(1)利用酯化反应和醚化反应合成了两种近晶相液晶单体4,4'-二戊酸联苯酯(M1)和4,4'-二戊氧基联苯醚(M2)。结果表明两种液晶单体的各向同性态温度分别达到108 ºC和130 ºC,均表现出可逆的相转变行为。M1在XRD小角区3.78º和7.64º,M2在小角区4.28º和8.54º都出现强烈的衍射峰,两种液晶单体均具有高有序度。

(2)将含有刚性结构的液晶单体分散于聚乙烯醇(PVA)薄膜中,采用溶液浇铸和热压的方法制备具有互穿网络结构的液晶单体-PVA分散膜(P-PDLC1和P-PDLC2)。结果表明,当M1含量为15 wt%时,M1均匀分散在P-PDLC1膜中形成层状有序结构,热导率迅速提高至1.36 W m-1 K-1,是纯PVA的10倍;当M1含量为35 wt%时,P-PDLC1膜微观形成球状有序结构,热导率提高至1.41 W m-1 K-1。当M2含量为15 wt%时,M2均匀分散在P-PDLC2膜中形成层状有序结构,热导率提高至1.20 W m-1 K-1;当M2含量增加到25 wt%时,P-PDLC2膜微观有序性被破坏,热导率降低至0.85 W m-1 K-1,M1和PVA分子链之间产生的氢键作用提高了分子链排列的有序度,P-PDLC1膜比P-PDLC2膜表现出更好的导热性能。

(3)将M1均匀分散在环氧单体和硫醇固化剂的溶液中,通过聚合工艺制备了液晶-环氧聚合物分散膜(E-PDLC),研究了M1含量和固化剂官能度对E-PDLC膜微观形貌和导热性能的影响。结果表明,三羟甲基丙烷三(3-巯基丙酸酯)(TTMP)固化的E-PDLC膜呈现出层状的穿插网络结构,在M1含量为20 wt%时,热导率达到0.50 W m-1 K-1;四(3-巯基丙酸)季戊四醇酯(PETMP)固化的E-PDLC膜微观形成鳞片状网络结构,在M1含量为30 wt%时,热导率达到0.56 W m-1 K-1

(4)将M1均匀分散在环氧单体和硫醇固化剂的溶液中,利用M1在电场环境下有序取向的特性,通过聚合工艺制备了具有电场取向的液晶-环氧聚合物分散膜(EV-PDLC)。研究发现,电场作用可以显著提高EV-PDLC膜微观形貌的有序度和热导率。TTMP固化的EV-PDLC膜在M1含量为20 wt%和30 wt%时,样品微观形成致密且均匀的层状结构,热导率达到0.75 W m-1 K-1;PETMP固化体系中在M1含量为20 wt%时,样品微观形成紧密的球状有序结构,热导率提高到0.78 W m-1 K-1,在M1含量为30 wt%时,形成有序度较低的枝状结构,热导率降至0.64 W m-1 K-1。外加电场促进了M1和环氧分子链的有序取向,使EV-PDLC膜中的有序结构更加均匀和密集,对液晶分子有序排列的稳定作用也更强。

论文外文摘要:

Thermal conductive polymers are widely used in many industries such as circuit substrates, interface bonding, and packaging testing due to their excellent electrical insulation properties, mechanical properties and stable chemical properties. However, traditional polymers have lower thermal conductivity due to the disorderly arrangement of molecular chains, which greatly limits their application in the field of thermal conduction/thermal dissipation. Liquid crystal materials with special physical and chemical properties have their own orderly microstructure, excellent processing properties, and response characteristics to external stimuli such as heat, electricity, and magnetism, which shows great application prospects in the field of intrinsic thermal conductive polymer materials. This paper started from the polymer microstructure to improve thermal conductivity of polymer materials. In this paper, the rigid liquid crystal structure was introduced into the polymer system, and the steric hindrance and orderly arrangement characteristics of the liquid crystal monomer was used to improve the disorder of the polymer molecular chains, achieving the regulation of the orderly arrangement of polymer molecular chains. In this paper, the influence of the structure and the content of liquid crystal monomer, and polymer backbone structure on the orderly arrangement was systematically studied and micro-ordered structure of the molecular chain of the liquid crystal polymer dispersion film was researched, exploring the thermal conductivity and application value of intrinsic thermal conductive polymer materials. The main research contents of this paper are as follows:

Two smectic liquid crystal monomers named 4,4′- Bis(valerate)biphenyl (M1) and 4,4'-dipentoxydiphenyl ether (M2) were synthesized by esterification reaction and etherification reaction. The results showed that the isotropic temperature of the two liquid crystal monomers reached 108 ºC and 130 ºC, respectively, and both exhibited reversible phase transition behavior. M1 exhibited strong diffraction peaks in the small XRD area of 3.78º and 7.64º, as well as M2 exhibited strong diffraction peaks in the small angle area of 4.28º and 8.54º. Both liquid crystal monomers possessed the high degree of order.

The liquid crystal monomers containing rigid structure were dispersed in the polyvinyl alcohol (PVA) film, and the liquid crystal monomer-PVA dispersion films with interpenetrating network structure (P-PDLC1 and P-PDLC2) were prepared by solution casting and hot pressing. The results showed that when the content of M1 was 15 wt%, M1 was uniformly dispersed in the P-PDLC1 film to form layered ordered structures, and the thermal conductivity rapidly increased to 1.36 W m-1 K-1, which was 10 times higher than that of pure PVA film. When the content of M1 was 35 wt%, the P-PDLC1 film microscopically formed spherical ordered structures, and the thermal conductivity increased to 1.41 W m-1 K-1. When the content of M2 was 15 wt%, M2 was uniformly dispersed in the P-PDLC2 film to form layered ordered structures, and the thermal conductivity increased to 1.20 W m-1 K-1. When the content of M2 increased to 25 wt%, the microscopic order of the P-PDLC2 film was destroyed, and the thermal conductivity reduced to 0.85 W m-1 K-1. The hydrogen bond between M1 and the PVA molecular chain increased the molecular The order of chain arrangement, P-PDLC1 film showed better thermal conductivity than P-PDLC2 film because the hydrogen bond between M1 and the PVA molecular chain improved the orderly arrangement of molecular chain.

M1 was uniformly dispersed in the solution of epoxy monomer and mercaptan curing agent, and liquid crystal-epoxy polymer dispersion film (E-PDLC) was prepared by polymerization process. The effect of the content of M1 and curing agent functionality on the microscopic morphology and thermal conductivity of E-PDLC was studied. The results showed that the E-PDLC film cured by Trimethylolpropane Tris(3-mercaptopropionate) (TTMP) exhibited layered interlaced network structures, and the thermal conductivity reached 0.50 W m-1 K-1 when the content of M1 was 20 wt%. The E-PDLC film cured by Pentaerythritol Tetra(3-mercaptopropionate) (PETMP) microscopically formed scaly network structures, and when the content of M1 was 30 wt%, the thermal conductivity reached 0.56 W m-1 K-1.

M1 was uniformly dispersed in a solution of epoxy monomer and mercaptan curing agent.  Taking advantage of the orderly orientation of M1 in an electric field environment, liquid crystal monomer-epoxy dispersion (EV-PDLC) film with electric field orientation was prepared through a polymerization process. The study found that the electric field could significantly improve the degree of order and thermal conductivity of the micro-morphology of EV-PDLC film. When the content of M1 was 20 wt% and 30 wt% in the EV-PDLC film cured by TTMP, the sample microscopically formed dense and uniform layered structures, and the thermal conductivity reached 0.75 W m-1 K-1. In the PETMP curing system, when the content of M1 was 20 wt%, the sample microscopically formed compact spherical ordered structures, and the thermal conductivity increased to 0.78 W m-1 K-1. When the content of M1 was 30 wt%, the microscopic order of the EV-PDLC film was destroyed, and the thermal conductivity decreased sharply to 0.64 W m-1 K-1. The applied electric field promoted the orderly orientation of M1 and epoxy molecular chains, maked the ordered structure in the EV-PDLC film more uniform and dense, to the benefit of stabilizing well on the orderly arrangement of liquid crystal molecules.

参考文献:

[1] 董熠哲,田恐虎,盛绍顶. 聚合物基石墨烯导热复合材料研究进展 [J]. 化工管理, 2020, 8: 21–24.

[2] 杨斌,孙蓉. 热界面材料产业现状与研究进展 [J].中国基础科学, 2020, 22(2): 56-62.

[3] 李京超,赵秀英,嵇小旺等. 石墨烯/氧化铝微-纳杂化网络及导热电绝缘硅橡胶复合材料 [J]. 绝缘材料, 2021, 54(2): 49–55.

[4] Feng C P, Chen L B, Tian G L, et al. Robust polymer-based paper-like thermal interface materials with a through-plane thermal conductivity over 9 W m−1K−1 [J]. Chemical Engineering Journal, 2020, 392: 123784.

[5] 戢炳强,吴冶平,朱春华. 贻贝仿生修饰氮化硼/石墨烯微片环氧导热绝缘材料的制备及性能研究 [J]. 功能材料, 2020,51(6): 6072–6077.

[6] Yeo H, Islam A M, You N H, et al. Characteristic correlation between liquid crystalline epoxy and alumina filler on thermal conducting properties [J]. Composites Science and Technology, 2017, 141: 99–105.

[7] 徐万顷,黄桃青,李永伟等. 聚合物/氮化硼复合导热材料研究进展 [J]. 高分子材料科学与工程, 2021, 37(1): 284–291.

[8] Han Z, Fina A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review [J]. Progress in Polymer Science (Oxford), 2011, 36(7): 914–944.

[9] Singh V, Bougher T L, Weathers A, et al. High thermal conductivity of chain-oriented amorphous polythiophene [J]. Nature Nanotechnology, 2014, 9(5): 384–390.

[10] Shen S, Henry A, Tong J, et al. Polyethylene nanofibres with very high thermal conductivities [J]. Nature Nanotechnology, 2010, 5(4): 251–255.

[11] Liu Y, Bo S. Characterization of the microstructure of biaxially oriented polypropylene using preparative temperature-rising elution fractionation [J]. International Journal of Polymer Analysis and Characterization, 2003, 8(4): 225–243.

[12] Chen J, Huang X, Sun B, et al. Highly Thermally Conductive Yet Electrically Insulating Polymer/Boron Nitride Nanosheets Nanocomposite Films for Improved Thermal Management Capability [J]. ACS Nano, 2019, 13(1): 337–345.

[13] 宋维东. 导热聚合物复合材料用填料研究进展 [J]. 中国粉体工业, 2020, 4: 12–14.

[14] 王立国,高巍,张昕等. 高导热环氧树脂复合绝缘材料的制备与性能研究 [J]. 绝缘材料, 2021, 54(2): 20–26.

[15] Guo Y, Leung S N. Strain-induced oriented crystallization of UHMWPE: Enhanced thermal conductivity through molecular chain alignment [J]. AIP Advances, 2018, 8(4): 045126.

[16] Guo Y, Ruan K, Shi X, et al. Factors affecting thermal conductivities of the polymers and polymer composites: A review [J]. Composites Science and Technology, 2020, 193: 108134.

[17] Chen H, Ginzburg V V, Yang J, et al. Thermal conductivity of polymer-based composites: Fundamentals and applications [J]. Progress in Polymer Science, 2016, 59: 41–85.

[18] Hong X, Zheng Y, Zhang X, et al. Preparation of graphene intercalated magnesium silicate for enhancing the thermal stability and thermal conductivity of ethylene-vinyl acetate copolymer [J]. Polymer, 2020, 193: 122332.

[19] 理莎莎,刘乃亮,方长青. 氮化物对增强线性酚醛树脂导热性能的对比研究 [J]. 包装工程, 2020, 41(5): 137–142.

[20] 刘少刚,王李波,王晓龙等. 高导热网络聚合物基复合材料的研究进展 [J]. 中国塑料, 2019, 33(8): 127–135.

[21] Ma T, Zhao Y, Ruan K, et al. Highly Thermal Conductivities, Excellent Mechanical Robustness and Flexibility, and Outstanding Thermal Stabilities of Aramid Nanofiber Composite Papers with Nacre-Mimetic Layered Structures [J]. ACS Applied Materials and Interfaces, 2020, 12(1): 1677–1686.

[22] Song W L, Wang P, Cao L, et al. Polymer/boron nitride nanocomposite materials for superior thermal transport performance [J]. Angewandte Chemie-International Edition, 2012, 51(26): 6498–6501.

[23] Xie F, Wang Y, Zhuo L, et al. Preparation and Properties of High Thermal Conductivity Hexagonal Boron Nitride/Aramid Fibrid Composite Film [J]. Chemical Journal of Chinese Universities, 2020, 41(3): 582–590.

[24] Liu J, Wang X, Li D, et al. Thermal conductivity and elastic constants of PEDOT:PSS with high electrical conductivity [J]. Macromolecules, 2015, 48(3): 585–591.

[25] Walker E L, Reyes-Contreras D, Jin Y, et al. Tunable Hybrid Phononic Crystal Lens Using Thermo-Acoustic Polymers [J]. ACS Omega, 2019, 4(15): 16585–16590.

[26] Lim K H, Wong K W, Cadavid D, et al. Mechanistic study of energy dependent scattering and hole-phonon interaction at hybrid polymer composite interfaces for optimized thermoelectric performance [J]. Composites Part B: Engineering, 2019, 164: 54–60.

[27] Xu X, Zhou J, Chen J. Thermal Transport in Conductive Polymer–Based Materials [J]. Advanced Functional Materials, 2020, 30(8): 1–18.

[28] 李颖,李成功,后振中等. 本征型导热液晶聚合物的制备及导热模型构建:一种提升聚合物基体热导率的方法 [J]. 材料导报, 2020, 34(10): 10192–10196.

[29] Yang X, Zhu J, Yang D, et al. High-efficiency improvement of thermal conductivities for epoxy composites from synthesized liquid crystal epoxy followed by doping BN fillers [J]. Composites Part B-Engineering, 2020, 185: 107784.

[30] Zhong Z, Wingert M C, Strzalka J, et al. Structure-induced enhancement of thermal conductivities in electrospun polymer nanofibers [J]. Nanoscale, 2014, 6(14): 8283–8291.

[31] Liu J, Yang R. Length-dependent thermal conductivity of single extended polymer chains [J]. Physical Review B - Condensed Matter and Materials Physics, 2012, 86(10): 104307.

[32] Xie X, Li D, Tsai T H, et al. Thermal Conductivity, Heat Capacity, and Elastic Constants of Water-Soluble Polymers and Polymer Blends [J]. Macromolecules, 2016, 49(3): 972–978.

[33] Zhang T, Luo T. Role of Chain Morphology and Stiffness in Thermal Conductivity of Amorphous Polymers [J]. Journal of Physical Chemistry B, 2016, 120(4): 803–812.

[34] Zhang T, Wu X, Luo T. Polymer nanofibers with outstanding thermal conductivity and thermal stability: Fundamental linkage between molecular characteristics and macroscopic thermal properties [J]. Journal of Physical Chemistry C, 2014, 118(36): 21148–21159.

[35] Guo Z, Lee D, Liu Y, et al. Tuning the thermal conductivity of solar cell polymers through side chain engineering [J]. Physical Chemistry Chemical Physics, 2014, 16(17): 7764–7771.

[36] Ma H, Tian Z. Effects of polymer topology and morphology on thermal transport: A molecular dynamics study of bottlebrush polymers [J]. Applied Physics Letters, 2017, 110(9): 091903.

[37] Luo D, Huang C, Huang Z. Decreased thermal conductivity of polyethylene chain influenced by short chain branching [J]. Journal of Heat Transfer, 2018, 140(3): 031302.

[38] Mehra N, Kashfipour M A, Zhu J. Filler free technology for enhanced thermally conductive optically transparent polymeric materials using low thermally conductive organic linkers [J]. Applied Materials Today, 2018, 13: 207–216.

[39] Mehra N, Mu L, Ji T, et al. Thermal transport in polymeric materials and across composite interfaces [J]. Applied Materials Today, 2018, 12: 92–130.

[40] Shi R, Bin Y, Jian X. Study of the structural orientation and mechanical strength of the electrospun nanofibers from polymers with different chain rigidity and geometry [J]. Polymer Bulletin, 2018, 75(3): 947–962.

[41] Bai L, Zhao X, Bao R Y, et al. Effect of temperature, crystallinity and molecular chain orientation on the thermal conductivity of polymers: a case study of PLLA [J]. Journal of Materials Science, 2018, 53(14): 10543–10553.

[42] Lu C, Chiang S W, Du H, et al. Thermal conductivity of electrospinning chain-aligned polyethylene oxide (PEO) [J]. Polymer, 2017, 115: 52–59.

[43] López-Barrón C R, Rohde B, Zabula A V, et al. Molecular Orientation and Strain-Induced Crystallization in trans-Polypentenamer [J]. Macromolecules, 2020, 53(4): 1356–1367.

[44] Untilova V, Biskup T, Biniek L, et al. Control of Chain Alignment and Crystallization Helps Enhance Charge Conductivities and Thermoelectric Power Factors in Sequentially Doped P3HT:F4TCNQ Films [J]. Macromolecules, 2020, 53(7): 2441–2453.

[45] Welford A, Maniam S, Gann E, et al. Influence of alkyl side-chain type and length on the thin film microstructure and OFET performance of naphthalene diimide-based organic semiconductors [J]. Organic Electronics, 2019, 75: 105378.

[46] Xu Y, Wang X, Zhou J, et al. Molecular engineered conjugated polymer with high thermal conductivity [J]. Science Advances, 2018, 4(3): 3031.

[47] Mehra N, Li Y, Yang X, et al. Engineering molecular interaction in polymeric hybrids: Effect of thermal linker and polymer chain structure on thermal conduction [J]. Composites Part B-Engineering, 2019, 166: 509–515.

[48] Chen X P, Liang Q H, Jiang J K, et al. Functionalization-induced changes in the structural and physical properties of amorphous polyaniline: A first-principles and molecular dynamics study [J]. Scientific Reports, 2016, 6: 20621.

[49] Xu W, Wu Y, Zhu Y, et al. Molecular dynamics simulation of thermal conductivity of silicone rubber [J]. Chinese Physics B, 2020, 29(4): 046601.

[50] Wei X, Ma R, Luo T. Thermal Conductivity of Polyelectrolytes with Different Counterions [J]. Journal of Physical Chemistry C, 2020, 124(8): 4483–4488.

[51] Liu X, Rao Z. A molecular dynamics study on heat conduction of crosslinked epoxy resin based thermal interface materials for thermal management [J]. Computational Materials Science, 2020, 172: 109298.

[52] Xiong X, Yang M, Liu C, et al. Thermal conductivity of cross-linked polyethylene from molecular dynamics simulation [J]. Journal of Applied Physics, 2017, 122(3): 035104.

[53] Yu S, Park C, Hong S M, et al. Thermal conduction behaviors of chemically cross-linked high-density polyethylenes [J]. Thermochimica Acta, 2014, 583: 67–71.

[54] Kim G H, Lee D, Shanker A, et al. High thermal conductivity in amorphous polymer blends by engineered interchain interactions [J]. Nature Materials, 2015, 14(3): 295–300.

[55] Rashidi V, Coyle E J, Sebeck K, et al. Thermal Conductance in Cross-linked Polymers: Effects of Non-Bonding Interactions [J]. Journal of Physical Chemistry B, 2017, 121(17): 4600–4609.

[56] Xie X, Yang K, Li D, et al. High and low thermal conductivity of amorphous macromolecules [J]. Physical Review B, 2017, 95(3): 035406.

[57] Wei X, Zhang T, Luo T. Chain conformation-dependent thermal conductivity of amorphous polymer blends: the impact of interand intra-chain interactions [J]. Physical Chemistry Chemical Physics, 2016, 18(47): 32146–32154.

[58] 李颖,张广成,蒋莹等. 新型液晶基元——对烯丙氧基苯甲酸对氰基苯羟酯的合成及其液晶性能 [J]. 合成化学, 2011, 19(06): 714–717.

[59] 王军会. 液晶的物理特性及其应用分析 [J]. 建筑工程技术与设计, 2018, 33: 5009.

[60] 关晓琳,孟丽,贾天明等. 液晶性直线型共轭芳炔衍生物的合成及电致发光性质 [J]. 应用化学, 2018, 35(4): 426–435.

[61] 李颖,张广成,刘斌等. 近晶A球粒织构聚硅氧烷侧链液晶的合成与液晶性能研究 [J]. 液晶与显示, 2011, 26(4): 437–442.

[62] 王宇航,魏倩,耿子傲等. 液晶弹性体的研究进展 [J]. 山东化工, 2020, 7: 61–63.

[63] 李颖. 胆甾相小板块织构聚硅氧烷侧链液晶的合成和性能 [J]. 功能高分子学报, 2016, 29(1): 84–84.

[64] Kang D G, Kim N, Park M, et al. Interfacial Engineering for the Synergistic Enhancement of Thermal Conductivity of Discotic Liquid Crystal Composites [J]. ACS Applied Materials and Interfaces, 2018, 10(4): 3155–3159.

[65] 王丽,夏艳,李东风等. 具有氰基联苯和胆固醇单元的四硫富瓦烯衍生物液晶的合成及介晶性质 [J]. 分子科学学报, 2020, 36(6): 448–453.

[66] Kang D G, Park M, Kim D Y, et al. Heat Transfer Organic Materials: Robust Polymer Films with the Outstanding Thermal Conductivity Fabricated by the Photopolymerization of Uniaxially Oriented Reactive Discogens [J]. ACS Applied Materials and Interfaces, 2016, 8(44): 30492–30501.

[67] Li Y, Li C, Zhang L, et al. Effect of microscopic-ordered structures on intrinsic thermal conductivity of liquid-crystalline polysiloxane [J]. Journal of Materials Science: Materials in Electronics, 2019, 80: 8329–8338.

[68] Liu Y, Chen J, Zhang Y, et al. Highly thermal conductive benzoxazine-epoxy interpenetrating polymer networks containing liquid crystalline structures [J]. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55(24): 1813–1821.

[69] Zhang Q, Chen G, Wu K, et al. Biphenyl liquid crystal epoxy containing flexible chain: Synthesis and thermal properties [J]. Journal of Applied Polymer Science, 2020, 137(38): 49143.

[70] 虞锦洪,陈亚鹏. 高导热环氧复合材料的制备与研究 [J]. 绝缘材料, 2021, 54(2): 14–19.

[71] 李颖,张广成,胡灵峰等. 近晶型聚硅氧烷侧链液晶的合成与表征 [J]. 功能高分子学报, 2011, 24(02): 211–216.

[72] Shen Y, Cong Y H, Zhang B Y, et al. Dispersing Nanoparticles by Chiral Liquid Crystalline Elastomers for Performance Enhancement of Epoxy Nanocomposites [J]. Macromolecular Materials and Engineering, 2018, 303(10): 215.

[73] Tanaka S, Hojo F, Takezawa Y, et al. Highly Oriented Liquid Crystalline Epoxy Film: Robust High Thermal-Conductive Ability [J]. ACS Omega, 2018, 3(3): 3562–3570.

[74] Jeong I, Kim C Bin, Kang D G, et al. Liquid crystalline epoxy resin with improved thermal conductivity by intermolecular dipole–dipole interactions [J]. Journal of Polymer Science, Part A: Polymer Chemistry, 2019, 57(6): 708–715.

[75] Islam A M, Lim H, You N H, et al. Enhanced Thermal Conductivity of Liquid Crystalline Epoxy Resin using Controlled Linear Polymerization [J]. ACS Macro Letters, 2018, 7(10): 1180–1185.

[76] Hakemi H. Polymer Dispersed Liquid Crystal (PDLC) “Industrial Technology and Devlopment in Europe” [J]. Molecular Crystals and Liquid Crystals, 2019, 684(1): 7–14.

[77] Ahmad F, Jamil M, Jeon Y J. Current trends in studies on reverse-mode polymer dispersed liquid-crystal films - A review [J]. Electronic Materials Letters, 2014, 10(4): 679–692.

[78] Dai G, Wang L, Deng L. Flexible random laser from dye doped stretchable polymer film containing nematic liquid crystal [J]. Optical Materials Express, 2020, 10(1): 68–75.

[79] 蒋莹,李颖,杨建业等. 新型含苯甲醚基团的向列型聚硅氧烷侧链液晶的合成与表征 [J]. 合成化学, 2013, 21(4): 420–423.

[80] Lee J C. Polymerization-induced phase separation: Intermediate dynamics [J]. International Journal of Modern Physics C, 2000, 11(2): 347–358.

[81] 常会,任凤梅,范华乐等. 相分离法制备聚合物分散液晶研究进展 [J]. 高分子材料科学与工程, 2010,26(8):165-167.

[82] Mouquinho A, Figueirinhas J, Sotomayor J. Digital optical memory devices based on polymer-dispersed liquid crystals films: appropriate polymer matrix morphology [J]. Liquid Crystals, 2020, 47(5): 636–649.

[83] Park S J, Lee J R. Dispersive stabilization of liquid crystal-in-water with acrylamide copolymer/surfactant mixture: Nematic curvilinear aligned phase composite film [J]. Journal of Colloid and Interface Science, 1999, 219(1): 178–183.

[84] Dierking I. Polymer network-stabilized liquid crystals [J]. Advanced Materials, 2000, 12(3): 167–181.

[85] Bacchiocchi C, Foschi G, Miglioli I, et al. Nematic Director Configuration, Local Order and Microviscosity in a PSLC Cell [J]. Molecular Crystals and Liquid Crystals, 2015, 614(1): 2–10.

[86] Guo S M, Liang X, Zhang C H, et al. Preparation of a thermally light-transmittance- controllable film from a coexistent system of polymer-dispersed and polymer-stabilized liquid crystals [J]. ACS Applied Materials and Interfaces, 2017, 9(3): 2942–2947.

[87] Allen P B, Feldman J L, Fabian J, et al. Diffusons, locons and propagons: character of atomic vibrations in amorphous Si [J]. Philosophical Magazine B, 1999, 79(11–12): 1715–1731.

[88] Cahill D G, Shenogin S, Hsieh W P, et al. Testing the minimum thermal conductivity model for amorphous polymers using high pressure [J]. Physical Review B - Condensed Matter and Materials Physics, 2011, 83(17): 174205.

[89] Regner K T, Sellan D P, Su Z, et al. Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance [J]. Nature Communications, 2013, 4: 1640.

[90] Coleman J N, Cadek M, Blake R, et al. High-performance nanotube-reinforced plastics: Understanding the mechanism of strength increase [J]. Advanced Functional Materials, 2004, 14(8): 791–798.

[91] Naik J, Bhajantri R F. Physical and Electrochemical Studies on Ceria Filled PVA Proton Conducting Polymer Electrolyte for Energy Storage Applications [J]. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28(3): 906–919.

[92] 李颖. 环己烷类聚硅氧烷侧链液晶的合成与液晶行为研究 [J]. 液晶与显示, 2016,31(2): 142–148.

[93] Strawhecker K E, Manias E. Structure and properties of poly(vinyl alcohol)/Na+ montmorillonite nanocomposites [J]. Chemistry of Materials, 2000, 12(10): 2943–2949.

[94] Nan B, Wu K, Chen W, et al. Bioinspired modification strategy to improve thermal conductivity of flexible poly(vinyl alcohol)/nanodiamond nanocomposite films for thermal management applications [J]. Applied Surface Science, 2020, 508: 144797.

[95] Li C, Li Y, Gong C, et al. High thermal conductivity of liquid crystalline monomer-poly (vinyl alcohol) dispersion films containing microscopic-ordered structure [J]. Journal of Applied Polymer Science, 2020, 138(6): 49791.

[96] Akatsuka M, Takezawa Y. Study of high thermal conductive epoxy resins containing controlled high-order structures [J]. Journal of Applied Polymer Science, 2003, 89(9): 2464–2467.

中图分类号:

 TQ317    

开放日期:

 2023-06-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式