论文中文题名: | 车载锂离子电池组均衡拓扑结构与控制策略研究 |
姓名: | |
学号: | 21205224061 |
保密级别: | 保密(1年后开放) |
论文语种: | chi |
学科代码: | 085500 |
学科名称: | 工学 - 机械 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2024 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 电池管理系统研究 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2024-06-18 |
论文答辩日期: | 2024-06-02 |
论文外文题名: | Research on Balanced Topology and Control Strategy of Vehicle Lithium-ion Battery Pack |
论文中文关键词: | 电池均衡 ; Buck-Boost均衡电路 ; 荷电状态估算 ; 模糊控制 |
论文外文关键词: | Battery balancing ; Buck-Boost equalization topology ; SOC estimation ; fuzzy control |
论文中文摘要: |
由于锂离子电池具有能量密度高、循环寿命长且自放电率低等优点,被作为电化学能源系统在电动汽车领域广泛应用。为满足电动汽车的功率需求,单体锂离子电池需要串并联成组使用,成组后由于单体电池的不一致性,导致电池组寿命加速衰减甚至出现安全隐患。为实现车载锂离子电池组的均衡管理,改善其单体电池的不一致性问题。本文从电池等效电路模型构建、均衡拓扑结构改进、均衡控制策略设计及均衡实验平台搭建展开研究。具体研究内容如下: (1)建立电池的等效电路模型,并辨识其内部参数,采用Simulink对所搭建二阶RC等效电路模型进行仿真,获取锂离子电池电压仿真结果。将模型仿真电压与实验测试电压进行对比,验证所搭建模型的准确性。基于所搭建电池模型,采用扩展卡尔曼滤波算法来估计电池的荷电状态(State of Charge,SOC),将仿真结果与实验数据进行对比,两者的最大误差在4.2%以内,验证所提方法的有效性。 (2)提出一种闭环分层式改进型Buck-Boost均衡拓扑结构,来弥补传统型Buck-Boost拓扑结构均衡效率低的不足。并在Simulink中对两种拓扑结构以相同的均衡控制策略进行仿真,仿真结果表明改进型Buck-Boost均衡拓扑在充电、放电和静置三种工况下的均衡效率均优于传统型,验证所设计均衡拓扑结构的可行性。 (3)提出一种基于模糊控制逻辑的电池组均衡控制策略,以电池的SOC值作为均衡变量,动态调整均衡电流的大小。利用Simulink进行仿真,仿真结果表明,该均衡控制策略可根据电池组工作状态实现均衡电流的动态调整,提高均衡系统的均衡效率。 (4)搭建电池均衡系统实验平台,根据电池均衡系统的功能需求,设计其硬件电路及软件程序。对六块串联电池组进行各工况下的均衡实验,结果表明设计的电池均衡系统有效减小了电池组的不一致性,提升了锂离子电池组的均衡效率。 |
论文外文摘要: |
Lithium-ion battery is widely used as electrochemical energy systems in electric vehicles due to their high energy density, long cycle life, and low self-discharge rate. To meet the power demand of electric vehicles, single lithium-ion batteries need to be connected in series and parallel to form a group, and the inconsistency of single batteries after forming a group leads to accelerated degradation of the battery pack life and even potential safety hazards. In order to realize the balanced management of automotive lithium-ion battery packs, and improve the inconsistency of single battery. In this dissertation, the research is carried out from the construction of a battery equivalent circuit model, the improvement of equalization topology, the design of an equalization control strategy, and the construction of an equalization experimental platform. The specific research content is as follows: (1) The equivalent circuit model of the battery is established and its internal parameters are identified, and the second-order RC equivalent circuit model is simulated using Simulink to obtain the simulation results of the lithium-ion battery voltage. The simulated voltage of the model is compared with the experimental test voltage to verify the accuracy of the model. Based on the constructed battery model, the extended Kalman filter algorithm is used to estimate the state of charge (SOC) of the battery, and the simulation results are compared with the experimental data, and the maximum error of the two is within 4.2%, which verifies the effectiveness of the proposed method. (2) A closed-loop hierarchical improved Buck-Boost equalization topology is proposed to compensate for the low equalization efficiency of the traditional Buck-Boost topology. The two topologies are simulated in Simulink with the same equalization control strategy, and the simulation results show that the equalization efficiency of the improved Buck-Boost equalization topology is better than that of the traditional one under the charging, discharging, and resting conditions, which verifies the feasibility of the designed equalization topology. (3) A battery pack equalization control strategy based on fuzzy control logic is proposed to dynamically adjust the size of the equalization current with the SOC value of the battery as the equalization variable. Simulation is carried out using Simulink, and the simulation results show that the equalization control strategy can realize the dynamic adjustment of the equalization current according to the working state of the battery pack and improve the equalization efficiency of the equalization system. (4) The experimental platform for the battery equalization system is built, and the hardware circuit and software program is designed according to the functional requirements of the battery equalization system. Six series-connected battery packs were subjected to equalization experiments under various working conditions, and the results show that the designed battery equalization system effectively reduces the inconsistency of the battery packs and improves the equalization efficiency of lithium-ion battery packs. |
参考文献: |
[1]工业和信息化部人才交流中心恩智浦(中国)管理有限公司. 电动汽车电池管理系统的设计开发[M]. 北京: 电子工业出版社, 2018. [3]王传福. 新能源汽车将形成中国市场的主导地位[J]. 高科技与产业化, 2024, 30(03): 18-19. [6]李凌云. 中国新能源汽车用锂电池产业现状及发展趋势[J]. 电源技术, 2020, 44(04): 628-630. [7]戴海峰, 王楠, 魏学哲, 等. 车用动力锂离子电池单体不一致性问题研究综述[J]. 汽车工程, 2014, 36(02): 181-188. [8]王晓辉. 动力电池组均衡控制策略研究[D]. 成都: 电子科技大学, 2019. [9]姜久春. 电动汽车动力电池应用技术[M]. 北京: 北京交通大学出版社, 2016. [10]陆长海. 锂电池组均衡系统设计与方法研究[D]. 北京: 北京交通大学, 2016. [13]陈清泉, 郑彬. 创新思维下的新能源汽车发展理念[J]. 中国工程科学, 2019, 21(03): 70-75. [23]刘辉. 基于预测控制的锂电池均衡系统设计[D]. 重庆: 重庆大学, 2018. [25]张凯, 赵鹏, 王友仁, 等. 基于荷电状态的锂离子电池组主动均衡控制[J]. 中国机械工程, 2020, 31(16): 1931-1939. [26]鲍慧,于洋.基于开路电压法的电池荷电状态估计误差校正[J].中国民航飞行学院学报,2014, 25(05): 77-80. [29]陈超, 张志刚. 一种改进的基于车载锂电池数据的SOC估算方法[J]. 电气自动化, 2016, 38(03): 28-31. [31]胡晓宇. 基于粒子滤波的锂电池SOC估计、均衡及寿命预测研究[D]. 秦皇岛: 燕山大学, 2022. [34]闵杰,缪小明,闵斌. 特斯拉纯电动汽车核心和非核心技术演化研究[J]. 世界科技研究与发展, 2017, 39(3): 291-302. [41]王通. 基于多输入绕组变压器的动力电池双层主动均衡电路研究[D]. 济南: 山东大学, 2017. [47]刘征宇, 许亚娟, 余超, 等. 基于Buck-Boost电路的分层均衡方案[J]. 仪器仪表学报, 2018, 39(11): 87-94. [53]晋山立, 赵怀林, 和阳, 等. 一种主被动复合均衡的充放电路的设计与应用[J]. 现代电子技术, 2017, 40(8): 148-152. [54]范辉, 周晶晶, 姚刚, 等. 动力锂电池的混合均衡控制与能量管理[J]. 上海理工大学学报, 2018, 40(2): 191-200. [55]刘红锐, 杜春峰, 陈仕龙, 等. 一种基于Cuk斩波电路的双向双层桥臂的蓄电池组均衡器的研究[J]. 电源学报, 2017, 15 (2): 142-147. [57]吴迪. 锂电池充电控制与管理方法研究[D]. 北京: 北京交通大学, 2015. [58]李军, 黄志祥, 唐爽. 基于K最近邻遗传算法的电池均衡策略[J]. 汽车安全与节能学报, 2019,10(04): 525-530. |
中图分类号: | U469.72 |
开放日期: | 2025-06-18 |