- 无标题文档
查看论文信息

论文中文题名:

 黏弹性液滴撞击固壁面的改进SPH模拟与分析    

姓名:

 周亚丽    

学号:

 21208103033    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 070104    

学科名称:

 理学 - 数学 - 应用数学    

学生类型:

 硕士    

学位级别:

 理学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 计算机科学与技术学院    

专业:

 应用数学    

研究方向:

 复杂流体建模与建模    

第一导师姓名:

 许晓阳    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-17    

论文答辩日期:

 2024-05-30    

论文外文题名:

 Improved SPH Simulation and Analysis of Viscoelastic Droplets Impacting a Solid Wall Surface    

论文中文关键词:

 光滑粒子流体动力学 ; 黏弹性 ; Oldroyd-B ; 粒子迁移技术 ; 液滴弹跳    

论文外文关键词:

 Smoothed particle hydrodynamics ; Viscoelasticity ; Oldroyd-B ; Particle shifting technique ; Droplet bouncing    

论文中文摘要:

黏弹性液滴广泛存在于自然界和工业生产中,研究其与固壁面碰撞对深化液滴动力学机理的理解具有重要的学术意义,并对指导相关工业过程具有潜在的应用价值。光滑粒子流体动力学(Smoothed Particle Hydrodynamics, SPH)方法是一种Lagrangian型的无网格数值方法,适用于含自由面的黏弹性流动模拟,但传统的SPH方法在模拟黏弹性液滴撞击固壁面问题时会出现张力不稳定问题,这种张力不稳定性会使粒子在运动过程中形成团块并最终导致模拟的中断,因此,有必要对传统的SPH算法进行改进。本文提出了一种改进的SPH算法,随后对改进的SPH算法进行了准确性和有效性验证,并在此基础上通过降低Reyonlds数捕捉到了黏弹性液滴撞击固壁面后的弹跳行为。最后,利用改进SPH算法模拟了各模型下黏弹性液滴撞击固壁面后的铺展和弹跳行为,并详细分析了相关动力学机理。本论文的主要内容如下:

(1) 针对传统SPH方法模拟黏弹性液滴撞击固壁面后出现的张力不稳定问题,本文提出了改进算法:为了防止粒子穿透固壁,提出了一种增强型的边界处理技术;为了消除张力不稳定性,发展了粒子迁移技术。通过黏弹性Poiseuille流验证本文改进SPH方法的准确性,实验结果表明本文改进的SPH方法具有良好的准确性和收敛性。随后利用本文改进SPH方法数值模拟了基于Oldroyd-B模型的黏弹性液滴撞击固壁面后的铺展行为,通过与解析解或有限差分方法解的比较和对数值收敛性的评价进一步验证了本文改进SPH方法的有效性和优势。

    (2) 在液滴撞击固壁面后发生铺展行为的基础上,通过降低Reyonlds数捕捉到了液滴弹跳现象,随后,深入分析了Reyonlds数、Weissenberg数、溶剂黏度比对黏弹性液滴撞击固壁面后动力学行为的影响。同时将本文改进的SPH方法扩展到基于PHan-Thien-Tanner(PTT)模型、Giesekus模型和eXtended Pom-Pom(XPP)模型的黏弹性液滴撞击固壁面的数值模拟中,详细分析了PTT模型下的拉伸参数ε、Giesekus模型下的流变参数α和XPP模型下的各向异性流变参数α、分子链拉抻量γ、分子链臂数Q等流变参数对液滴撞击固壁后的最大铺展宽度和弹跳高度的影响。

本文提出了增强型边界处理技术,通过发展粒子迁移技术对传统SPH方法进行了改进,捕捉到了液滴的弹跳行为,数值模拟并分析了不同模型下各流变参数对液滴撞击固壁面后动力学行为的影响,为深化液滴动力学机理的理解提供了重要的学术意义,并对指导相关工业过程提供了潜在的应用价值。

论文外文摘要:

Viscoelastic droplets are widely present in nature and industrial production, studying their collision with solid walls is of great academic significance for deepening the understanding of droplet dynamics mechanisms, and has practical application value in guiding related industrial processes. The Smooth Particle Hydrodynamics (SPH) method is a Lagrangian type meshless numerical method suitable for simulating viscoelastic flows with free surfaces, however, the traditional SPH method may encounter tension instability when simulating the impact of viscoelastic droplets on a solid wall, this tension instability can cause particles to form clumps during motion and ultimately lead to simulation interruptions. Therefore, it is necessary to improve the traditional SPH algorithm. In this paper, an improved SPH method is proposed, and then the accuracy and effectiveness of the improved SPH algorithm are verified, based on this, the bouncing behavior of viscoelastic droplets after impacting a solid wall is captured by reducing the Reynolds number. Finally, the improved SPH method was used to simulate the spreading and bouncing behavior of viscoelastic droplets after impacting a solid wall in various models, and the relevant dynamic mechanisms were analyzed in detail. The main content of this paper is as follows:

(1) To solve the problem of tension instability arising from viscoelastic droplet impact on solid wall simulated by traditional SPH method, this paper proposes an improved algorithm: In order to prevent particles from penetrating solid wall, an enhanced boundary processing technique is proposed; in order to eliminate tension instability, particle transport technology has been developed. The accuracy of the improved SPH method is verified by viscoelastic Poiseuille flow, the experimental results show that the improved SPH method has good accuracy and convergence. Then, the improved SPH method is used to numerically simulate the spreading behavior of viscoelastic droplet upon impact on a solid wall based on Oldroyd-B model, the effectiveness and advantages of the improved SPH method are further verified by comparing with analytical solutions or finite difference solutions and evaluating the numerical convergence.

(2) Based on the spreading behavior of droplet after impact on solid wall, the droplet bounce phenomenon was captured by reducing the Reyonlds number, and then, the influence of Reyonlds number, Weissenberg number and solvent viscosity ratio on the dynamic behavior of viscoelastic droplet after impact on solid wall was deeply analyzed. The improved SPH method is extended to the numerical simulation of viscoelastic droplet impact on solid walls based on PHan-Thien-Tanner(PTT) model, Giesekus model and eXtended Pom-Pom(XPP) model, the effects of the rheological parameters ε of PTT model, α of Giesekus model, α of anisotropic rheological parameter of XPP model, γ of molecular chain stretch and molecular chain arm number Q on the maximum spreading width and bouncing height of droplet impacting the solid wall are analyzed in detail.

In this paper, the enhanced boundary processing technology is proposed, and the traditional SPH method is improved by developing particle migration technology, captures the bouncing behavior of droplets, numerically simulates and analyzes the influence of various rheological parameters on the dynamic behavior of droplets after impacting a solid wall under different models, providing important academic significance for deepening the understanding of droplet dynamic mechanism, and also providing potential application value for guiding related industrial processes.

参考文献:

[1] Nguyen V P, Rabczuk T, Bordas S, et al. Meshless methods: a review and computer implementation aspects[J]. Mathematics and Computers in Simulation, 2008, 79(3): 763-813.

[2] Li S, Liu W K. Meshfree particle methods[M]. Springer Science & Business Media, 2007.

[3] Gingold R A, Monaghan J J. Smoothed particle hydrodynamics: theory and application to non-spherical stars[J]. Monthly Notices of the Royal Astronomical Society, 1977, 181(3): 375-389.

[4] Lucy L B. A numerical approach to the testing of the fission hypothesis[J]. Astronomical Journal, 1977, 82: 1013-1024.

[5] Chang H, Chen A, Ma R, et al. Eulerian consistent smoothed particle hydrodynamics (SPH) method for weakly compressible viscous flows applied to lid-driven cavity[J]. Computational Particle Mechanics, 2023: 1-14.

[6] Macià F, Merino-Alonso P E, Souto-Iglesias A. On the convergence of the solutions to the integral SPH heat and advection–diffusion equations: Theoretical analysis and numerical verification[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 397: 115045.

[7] Xu X, Dey M, Qiu M, Feng J J. Modeling of van der Waals force with smoothed particle hydrodynamics: Application to the rupture of thin liquid films[J]. Applied Mathematical Modelling, 2020, 83: 719-735.

[8] Myers C, Musk J, Palmer T, et al. A hybrid finite volume method and smoothed particle hydrodynamics approach for efficient and accurate blast simulations[J]. Frontiers in Physics, 2024, 11: 1325294.

[9] Islam M R I. SPH-based framework for modelling fluid–structure interaction problems with finite deformation and fracturing[J]. Ocean Engineering, 2024, 294: 116722.

[10] Monaghan J J. Simulating free surface flows with SPH[J]. Journal of Computational Physics, 1994, 110(2): 399-406.

[11] Liu W K, Jun S, Zhang Y F. Reproducing kernel particle methods[J]. International Journal for Numerical Methods in Fluids, 1995, 20(8‐9): 1081-1106.

[12] Ellero M, Kröger M, Hess S. Viscoelastic flows studied by smoothed particle dynamics[J]. Journal of Non-Newtonian Fluid Mechanics, 2002, 105(1): 35-51.

[13] Shao S, Lo E Y M. Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free Surface[J]. Advances in Water Resources, 2003, 26(7): 787-800.

[14] Ellero M, Tanner R I. SPH simulations of transient viscoelastic flows at low Reynolds number[J]. Journal of Non-Newtonian Fluid Mechanics, 2005, 132(1-3): 61-72.

[15] Fang J, Parriaux A, Rentschler M, et al. Improved SPH methods for simulating free surface flows of viscous fluids[J]. Applied Numerical Mathematics, 2009, 59(2): 251-271.

[16] Antuono M, Colagrossi A, Marrone S, et al. Free-surface flows solved by means of SPH schemes with numerical diffusive terms[J]. Computer Physics Communications, 2010, 181(3): 532-549.

[17] Marrone S, Antuono M, Colagrossi A, et al. δ-SPH model for simulating violent impact flows[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(13-16): 1526-1542.

[18] Monaghan J J, Rafiee A. A simple SPH algorithm for multi‐fluid flow with high density ratios[J]. International Journal for Numerical Methods in Fluids, 2013, 71(5): 537-561.

[19] Ozbulut M, Yildiz M, Goren O. A numerical investigation into the correction algorithms for SPH method in modeling violent free surface flows[J]. International Journal of Mechanical Sciences, 2014, 79: 56-65.

[20] Bertevas E, Férec J, Khoo B C, et al. Smoothed particle hydrodynamics (SPH) modeling of fiber orientation in a 3D printing process[J]. Physics of Fluids, 2018, 30(10).

[21] Monaghan J J. On the integration of the SPH equations for a highly viscous fluid[J]. Journal of Computational Physics, 2019, 394: 166-176.

[22] Antuono M, Sun P N, Marrone S, et al. The δ-ALE-SPH model: An arbitrary Lagrangian-Eulerian framework for the δ-SPH model with particle shifting technique[J]. Computers & Fluids, 2021, 216: 104806.

[23] He F, Zhang H, Huang C, et al. A stable SPH model with large CFL numbers for multi-phase flows with large density ratios[J]. Journal of Computational Physics, 2022, 453: 110944.

[24] Lyu H G, Sun P N. Further enhancement of the particle shifting technique: Towards better volume conservation and particle distribution in SPH simulations of violent free-surface flows[J]. Applied Mathematical Modelling, 2022, 101: 214-238.

[25] Meng Z F, Zhang A M, Yan J L, et al. A hydroelastic fluid–structure interaction solver based on the Riemann-SPH method[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 390: 114522.

[26] Troconis J, Sánchez-Silva F, Carvajal-Mariscal I, et al. Simulation of van der Waals liquid droplets within a hot air atmosphere using the smoothed particle hydrodynamics method[J]. International Journal of Heat and Mass Transfer, 2023, 202: 123749.

[27] Yoo H S, Jo Y B, Kim J W, et al. A simple Eulerian–Lagrangian weakly compressible smoothed particle hydrodynamics method for fluid flow and heat transfer[J]. International Journal for Numerical Methods in Engineering, 2023, 124(4): 928-958.

[28] Liu M B, Liu G R. Restoring particle consistency in smoothed particle hydrodynamics[J]. Applied Numerical Mathematics, 2006, 56(1): 19-36.

[29] Jiang T, Ouyang J, Yang B, et al. The SPH method for simulatin g a viscoelastic drop impact and spreading on an inclined plate[J]. Computational Mechanics, 2010, 45(6): 573-583.

[30] Liu M B, Shao J R, Chang J Z. On the treatment of solid boundary in smoothed particle hydrodynamics[J]. Science China Technological Sciences, 2012, 55: 244-254.

[31] Yang X, Liu M, Peng S. Smoothed particle hydrodynamics modeling of viscous liquid drop without tensile instability[J]. Computers & Fluids, 2014, 92: 199-208.

[32] 许晓阳. 剪切变稀自由表面流动问题的不可压 SPH 模拟[J]. 陕西理工学院学报: 自然科学版, 2016, 32(3): 71-77.

[33] Liu M B, Zhang Z L, Feng D L. A density-adaptive SPH method with kernel gradient correction for modeling explosive welding[J]. Computational Mechanics, 2017, 60(3): 513-529.

[34] Sun P N, Colagrossi A, Marrone S, et al. The δplus-SPH model: Simple procedures for a further improvement of the SPH scheme[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 315: 25-49.

[35] 任选其, 徐绯, 张显鹏, 等. 基于SPH/FEM方法的浅水冲击喷溅及其抑制结构研究[J]. 计算力学学报, 2018, 35(06): 769-776.

[36] 董祥伟, 李静, 黄小平, 等. 基于表面力模型的液滴冲击弹性基底 SPH 模拟[J]. 计算力学学报, 2020 , 37(04): 486-495.

[37] 张显鹏, 徐绯, 吴京泽, 等. 基于光滑粒子流体动力学的滑油泵数值仿真[J]. 计算力学学报, 2022, 39(01): 113~119.

[38] 姚学昊, 陈丁, 武立伟, 等. 流固耦合破坏分析的多分辨率 PD-SPH方法[J]. 力学学报, 2022, 54(12): 3333-3343.

[39] 许晓阳, 赵雨婷. 基于SPH方法的瞬态非等温黏弹性Couette流的数值模拟[J].应用数学和力学, 2023, 44(06): 654-665.

[40] 徐义祥, 杨刚, 邢钰林, 等. 上浮气泡与自由表面相互作用的 ISPH-FVM 耦合方法模拟[J]. 力学学报, 2024.

[41] Worthington A M. A study of splashes[M]. Longmans, Green, and Company, 1908.

[42] Tomé M F, Mangiavacchi N, Cuminato J A, et al. A finite difference technique for simulating unsteady viscoelastic free surface flows[J]. Journal of Non-Newtonian Fluid Mechanics, 2002, 106(2-3): 61-106.

[43] Oishi C M, Martins F P, Tomé M F, et al. Numerical simulation of drop impact and jet buckling problems using the eXtended Pom–Pom model[J]. Journal of Non-Newtonian Fluid Mechanics, 2012, 169: 91-103.

[44] Izbassarov D, Muradoglu M. Effects of viscoelasticity on drop impact and spreading on a solid surface[J]. Physical Review Fluids, 2016, 1(2): 023302.

[45] Norouzi M, Sheykhian M K, Shahmardan M M, et al. Experimental investigation of spreading and receding behaviors of Newtonian and viscoelastic droplet impacts on inclined dry surfaces[J]. Meccanica, 2021, 56(1): 125-145.

[46] Viezel C, Tomé M F, Pinho F T, et al. An Oldroyd-B solver for vanishingly small values of the viscosity ratio: Application to unsteady free surface flows[J]. Journal of Non-Newtonian Fluid Mechanics, 2020, 285: 104338.

[47] Li B, Chen L, Joo S. Impact dynamics of Newtonian and viscoelastic droplets on heated surfaces at low Weber number[J]. Case Studies in Thermal Engineering, 2021, 26: 101109.

[48] 关新燕, 富庆飞, 刘虎, 等. Oldroyd-B 黏弹性液滴碰撞过程的数值模拟[J]. 力学学报, 2022, 54: 1-9.

[49] Fang J, Owens R G, Tacher L, et al. A numerical study of the SPH method for simulating transient viscoelastic free surface flows[J]. Journal of Non-newtonian Fluid Mechanics, 2006, 139(1-2): 68-84.

[50] Rafiee A, Manzari M T, Hosseini M. An incompressible SPH method for simulation of unsteady viscoelastic free-surface flows[J]. International Journal of Non-Linear Mechanics, 2007, 42(10): 1210-1223.

[51] 杨波, 欧阳洁, 蒋涛, 等. PTT 黏弹性流体的光滑粒子动力学方法模拟[J]. 力学学报, 2011, 43(4): 667-673.

[52] Zainali A, Tofighi N, Shadloo M S, et al. Numerical investigation of Newtonian and non-Newtonian multiphase flows using ISPH method[J]. Computer Methods in Applied Mechanics and Engineering, 2013, 254: 99-113.

[53] Xu X, Deng X L. An improved weakly compressible SPH method for simulating free surface flows of viscous and viscoelastic fluids[J]. Computer Physics Communications, 2016, 201: 43-62.

[54] Moinfar Z, Vahabi S, Vahabi M. Numerical simulation of drop deformation under simple shear flow of Giesekus fluids by SPH[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2023, 33(1): 263-281.

[55] 刘桂荣, 刘谋斌, 韩旭, 等. 光滑粒子流体动力学: 一种无网格粒子法[M]. 长沙, 湖南大学出版社, 2005.

[56] Monaghan J.J., Simulating free surface with SPH. Journal of Computational Physics, 1994, 110: 399-406.

[57] Ellero M, Tanner R I. SPH simulations of transient viscoelastic flows at low Reynolds number[J]. Journal of Non-Newtonian Fluid Mechanics, 2005, 132(1-3): 61-72.

[58] Monaghan J J. On the problem of penetration in particle methods. J. of Comput. Phys., 1989, 82:1-15.

[59] Monaghan J J. SPH without a tensile instability[J]. Journal of Computational Physics, 2000, 159(2): 290-311.

[60] Gray J P, Monaghan J J, Swift R P. SPH elastic dynamics[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(49-50): 6641-6662.

[61] Libersky L D, Petscheck A G, Carney T C, Hipp J P and Allahdadi F A, High strain Lagrangian hydrodynamics-a three dimensional SPH code for dynamic material response. Journal of Computational Physics, 1993, 109:67-75.

[62] Morris J P, Analysis of smoothed particle hydrodynamics with applications. Ph.D. thesis,

Monash University,1996.

[63] Lind S J, Xu R, Stansby P K, et al. Incompressible smoothed particle hydrodynamics for free-surface flows: A generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves[J]. Journal of Computational Physics, 2012, 231(4): 1499-1523.

[64] Monaghan J J, Kajtar J B. SPH particle boundary forces for arbitrary boundaries[J]. Computer Physics Communications, 2009, 180(10): 1811-1820.

[65] Morris J P, Fox P J, Zhu Y. Modeling low Reynolds number incompressible flows using SPH[J]. Journal of Computational Physics, 1997, 136(1): 214-226.

[66] Khayyer A, Gotoh H, Shimizu Y. Comparative study on accuracy and conservation properties of two particle regularization schemes and proposal of an optimized particle shifting scheme in ISPH context[J]. Journal of Computational Physics, 2017, 332: 236-256.

[67] Wang P P, Meng Z F, Zhang A M, et al. Improved particle shifting technology and optimized free-surface detection method for free-surface flows in smoothed particle hydrodynamics[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 357: 112580.

[68] Lyu H G, Sun P N. Further enhancement of the particle shifting technique: Towards better volume conservation and particle distribution in SPH simulations of violent free-surface flows[J]. Applied Mathematical Modelling, 2022, 101: 214-238.

[69] Thien N P, Tanner R I. A new constitutive equation derived from network theory[J]. Journal of Non-Newtonian Fluid Mechanics, 1977, 2(4): 353-365.

[70] Giesekus H. A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility[J]. Journal of Non-Newtonian Fluid Mechanics, 1982, 11(1-2): 69-109.

[71] Verbeeten W M H, Peters G W M, Baaijens F P T. Differential constitutive equations for polymer melts: The extended Pom–Pom model[J]. Journal of Rheology, 2001, 45(4): 823-843.

中图分类号:

 O351.2    

开放日期:

 2024-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式